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Abstract

The paper investigates how voting weights should be assigned to differ-
ently sized constituencies of an assembly. The one-person, one-vote prin-
ciple is interpreted as calling for a priori equal indirect influence on deci-
sions. The latter are elements of a one-dimensional convex policy space
and may result from strategic behavior consistent with the median voter
theorem. Numerous artificial constituency configurations, the EU and
the US are investigated by Monte-Carlo simulations. Penrose’s square
root rule, which originally applies to preference-free dichotomous deci-
sion environments and holds only under very specific conditions, comes
close to ensuring equal representation. It is thus more robust than pre-
viously suggested.

1 Introduction

The principle of “one person, one vote” is generally taken to be a cornerstone
of democracy. It is not clear, however, how this principle ought to be opera-
tionalized in practice in terms of determining what are the ideal shares. This
paper addresses this problem for two-tier voting systems that involve multi-
ple constituencies of different population size. We concentrate on situations in
which representatives of constituencies in the higher-level assembly vote as a
block (as in the US Electoral College) or in which a single agent represents each
constituency but is endowed with a number of votes that somehow reflect pop-
ulation size (as in the EU Council of Ministers). Both boil down to weighted
voting.

Although it seems straightforward to allocate weights proportional to popu-
lation sizes, this ignores the combinatorial properties of weighted voting, which
often imply stark discrepancies between voting weight and actual voting power :
In an assembly with simple majority rule and three representatives having
weight 47, 43, and 10, all three possess exactly the same number of possibilities
to form a winning coalition and hence the same a priori power. Moreover, direct
proportionality disregards the possibly nonlinear relationship between popula-
tion size and an individual’s effect on the respective constituency’s top-tier
policy position.

The most well-known solution to this problem is the one first suggested
by Penrose (1946). Starting from the ideal world in which only constituency
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membership1 distinguishes voters, Penrose found that if members of any con-
stituency are to have the same a priori chance to indirectly determine the out-
come of top-tier decisions, then constituencies’ voting weights need to be such
that their power at the top-tier as measured by the Penrose-Banzhaf index
(Penrose 1946; Banzhaf 1965) is proportional to the square root of the respec-
tive constituency’s population size (also see Felsenthal and Machover 1998, sect.
3.4). This square root rule has recently become the benchmark for numerous
studies of the EU Council of Ministers (see, e. g. Felsenthal and Machover 2001;
2004, Leech 2002) and it is at least a reference point for investigations concern-
ing the US (see e. g. Gelman, Katz, and Bafumi 2004).

Applying the square root rule has, unfortunately, two weaknesses: First,
Penrose’s theorem critically depends on equiprobable ‘yes’ and ‘no’-decisions
by all voters (or at least a ‘yes’-probability which is random and distributed
independently across voters with mean exactly 0.5). If the ‘yes’-probability is
slightly lower or higher, or if it exhibits even minor dependence across voters –
say, they are influenced by the same newspapers – then the square root rule
may result in highly unequal representation (see Good and Mayer 1975 and
Chamberlain and Rothschild 1981). Related empirical studies in fact have failed
to confirm the predictions for average closeness of two-party elections which
lie behind the square root rule (see Gelman, Katz, and Tuerlinckx 2002 and
Gelman, Katz, and Bafumi 2004).

Second, rigorous justifications for using the square root rule as the bench-
mark have so far concerned only preference-free binary voting.2 But real deci-
sions are rarely binary, e. g., about either introducing a tax, building a road,
accepting a candidate, introducing affirmative action, etc. or not. At least at
intermediate levels there is a preference-driven compromise that involves many
alternative tax levels, road attributes, suitable candidates, degrees of affirmative
action, etc.

The first criticism has been addressed in the literature, at least in abstract
normative terms. Namely, one can argue that constitutional design should be
carried out behind a thick veil of ignorance in which no particular type of
dependence or modification of equiprobability (which follows from the principle
of insufficient reason) is justified. Regarding the second issue, this paper is
to our knowledge the first to investigate equal representation for non-binary
decisions that possibly involve strategic behavior.

We consider policy alternatives from a finite interval. Our formal model
(see Section 2) imposes two key assumptions: first, the policy advocated by
the top-tier representative of any given constituency coincides with the ideal
point of the respective constituency’s median voter (or the constituency’s core).

1We take the constituency configuration to be given exogenously. See, e. g., Epstein and
O’Halloran (1999) on constructing majority-minority voting districts along ethnic, religious,
or social lines.

2For rigorous, very comprehensive treatments of the binary or simple-game world see
Felsenthal and Machover (1998) or Taylor and Zwicker (1999). – The former (pp. 72ff) also
justify the square root rule regarding voting weights by its minimal expected majority deficit.



Second, the decision taken at the top tier is the position of the pivotal repre-
sentative (or the assembly’s core), with pivotality determined by the weights
assigned to constituencies and a 50% decision quota. The respective core is
meant to capture the result of strategic interaction. As long as this is a rea-
sonable approximation, the actual systems determining collective choices are
undetermined and could even differ across constituencies.

In the benchmark case of voters with independent most-preferred policies,
a given individual’s chance to be pivotal at the bottom tier is inversely propor-
tional to the respective constituency’s population size. This makes it necessary
and sufficient for equal representation of voters that the probability of any given
constituency being pivotal at the top tier is proportional to its size.3

The population size of a constituency affects the distribution of its median.
A given voter’s chance to be doubly pivotal thus becomes a rather complex
function of (the order statistics of) differently distributed independent random
variables. This makes a neat analytical statement similar to Penrose’s rule ex-
ceptionally hard and likely impossible, except for special limit situations. We
therefore resort to Monte-Carlo simulation (see Section 3). Considering a vast
number of randomly generated population configurations as well as recent data
for the EU and the US, top-tier weights proportional to the square root of
population turn out optimal for most practically relevant population configura-
tions. Even for extreme artificial cases, the rule yields good results and becomes
optimal if the number of constituencies gets large.

Our surprising main finding is thus that the square root rule is a much more
robust norm for egalitarian design of two-tier voting systems than previous
analysis suggests. In particular, it continues to apply in the presence of many
finely graded policy alternatives and strategic interactions consistent with the
median voter theorem. To the extent that this still produces independent me-
dian voters, the rule is even robust to the introduction of preference dependence
within or across constituencies.

2 Model

Consider a large population of voters partitioned into m constituencies
C1, . . . , Cm with nj = |Cj | > 0 members each. Voters’ preferences are single-
peaked with ideal point λj

i (for i = 1, . . . , nj and j = 1, . . . , m) in a bounded
convex one-dimensional policy space normalized to X ≡ [0, 1]. Assume for
simplicity that all nj are odd numbers.

For any random policy issue, let · : nj denote the permutation of voter
numbers in constituency Cj such that λj

1:nj
≤ . . . ≤ λj

nj :nj
holds. In other

words, k : nj denotes the k-th leftmost voter in Cj and λj
k:nj

denotes the k-th

leftmost ideal point (i. e., λj
k:nj

is the k-th order statistic of λj
1, . . . , λ

j
nj

).

3If voters’ utility is linear in distance, the criterion also guarantees equal expected utility,
i. e., a priori power and expected success are then perfectly aligned. See Laruelle, Mart́ınez,
and Valenciano (2006) for a conceptual discussion of the latter.



A policy x ∈ X is decided on by an electoral college E consisting of one
representative from each constituency. Without going into details, we assume
that the representative of Cj , denoted by j, adopts the ideal point of his con-
stituency’s median voter,4 denoted by λj ≡ λj

(nj+1)/2:nj
. Let λk:m denote the

k-th leftmost ideal point amongst all the representatives (i. e., the k-th order
statistic of λ1, . . . , λm).

In the top-tier assembly or electoral college E , each constituency Cj has
voting weight wj ≥ 0. Any subset S ⊆ {1, . . . , m} of representatives which
achieves a combined weight

∑
j∈S wj above q ≡ 1

2

∑m
j=1 wj , i. e. a simple ma-

jority of total weight, can implement a policy x ∈ X.
Consider the random variable P defined by

P ≡ min
{

r ∈ {1, . . . ,m} :
r∑

k=1

wk:m > q
}

.

Player P :m’s ideal point, λP :m, is the unique policy that beats any alternative
x ∈ X in a pairwise majority vote, i. e. constitutes the core of the voting game
defined by weights and quota.5 Without detailed equilibrium analysis of any
decision procedure that may be applied in E (see Banks and Duggan 2000 for
sophisticated non-cooperative support of policy outcomes inside or close to the
core), we assume that the policy agreed by E is in the core, i. e. it equals the
ideal point of the pivotal representative P :m.

In this setting we consider the following egalitarian norm: Each voter in any
constituency should have an equal chance to determine the policy implemented
by the electoral college. Or, more formally, there should exist a constant c > 0
such that

∀j ∈ {1, . . . , m} : ∀i ∈ Cj : Pr
(
j = P :m ∧ i = (nj + 1)/2:nj

) ≡ c. (1)

We would like to answer the following question: which allocation of weights
w1, . . . , wm satisfies this norm (at least approximately) for an arbitrary given
partition of an electorate into m constituencies? In other words we search
for an analogue of Penrose’s (1946) rule, which calls for proportionality of a
constituency’s Penrose-Banzhaf index6 and square root of population.

The probability of a voter’s double pivotality in (1) depends on the distri-
bution of all voters’ ideal points. Though in practice ideal points in different

4We are aware of this not being appropriate in all contexts. – The possibility that two ideal
points exactly coincide, in which case the median voter (in contrast to the median policy) is
not well-defined, is ignored. This is innocuous for any continuous ideal point distribution.

5Things are more complicated if q > 1
2

Pm
j=1 wj is assumed. Then, the complement of a

losing coalition need no longer be winning. In this case there may not exist any policy x ∈ X
which beats all alternatives x′ 6= x despite unidimensionality of X and single-peakedness of
preferences.

6This index equals a constituency’s probability of being pivotal under equiprobable random
‘yes’-or-‘no’ votes at the top tier. Conditions for when this is approximately the voting weight
are given by Lindner and Machover (2004). In general, implementing Penrose’s square root
rule requires numerical solution of the inverse problem of finding weights which induce a
desired power distribution (see e. g. Leech 2003).



constituencies may come from different distributions on X and may exhibit var-
ious dependencies, it is appealing from a normative constitutional-design point
of view to presume that the ideal points of all voters in all constituencies are
independently and identically distributed (i. i. d.).

Given that voters’ ideal points in constituency Cj are i. i. d., each voter i ∈ Cj

has the same probability to be its median. Hence,

∀j ∈ {1, . . . , m} : ∀i ∈ Cj : Pr
(
i = (nj + 1)/2:nj

)
=

1
nj

.

Because the events {i = (nj + 1)/2 :nj} and {j = P :m} are independent, one
can thus write (1) as

∀j ∈ {1, . . . ,m} :
Pr (j = P :m)

nj
≡ c. (2)

Representatives’ ideal points λ1, . . . , λm are independently but (except in
the trivial case n1 = . . . = nm) not identically distributed. If all voter ideal
points come from the (arbitrary) identical distribution F with density f , then
Cj ’s median position is asymptotically normally distributed (see e. g. Arnold
et al. 1992) with mean µj = F−1(0.5) and standard deviation

σj =
1

2 f(F−1(0.5))√nj
.

So, the larger a constituency Cj is, the more concentrated is the distribution of
its median voter’s ideal point, λj , on the median of the underlying ideal point
distribution (assumed to be identical for all λj

i ). This makes the representative
of a larger constituency on average more central in the electoral college and
more likely to be pivotal in it for a given weight allocation.

It is important to observe that the assumption of the respective collective
preferences having an identical a priori distribution is inconsistent with the
assumption that all individual preferences are a priori identically distributed.
We find the latter assumption considerably more fitting and will assume i. i. d.
ideal points for all bottom-tier voters throughout this paper.

Probability Pr (j = P :m) in (2) depends both on the different distributions
of representatives’ ideal points (essentially the standard deviations σj deter-
mined by constituency sizes nj) and the voting weight assignment. This makes
computation of the probability of a given constituency Cj being pivotal a com-
plex numerical task even for the most simple case of uniform weights, in which
the representative of Cj with median top-tier ideal point is always pivotal, i. e.
P ≡ (m + 1)/2 for odd m. Define N j ≡ {1, . . . , j − 1, j + 1, . . . ,m} as the
index set of all constituencies except Cj . Then, the probability of constituency
Cj being pivotal is

Pr
�
j = (m + 1)/2:m

�
= Pr

�
exactly m−1

2
of the λk, k 6= j, satisfy λk < λj

�
=

Z P
S⊂Nj ,

|S|=(m−1)/2

Q
k∈S

Fk(x) · Q
k∈NjrS

(1− Fk(x)) · fj(x) dx,

(3)



where fj and Fj denote the density and cumulative density functions of λj

(j = 1, . . . , m). It seems feasible (but is beyond the scope of this paper) to
provide an asymptotic approximation for this probability as a function of con-
stituency sizes n1, . . . , nm for special cases, e. g. for n2 = . . . = nm (hence
F2 = . . . = Fm). However, we doubt the existence of a reasonable approxi-
mation for arbitrary configurations (n1, . . . , nm), let alone the case of weighted
voting (P 6≡ (m+1)/2). A purely analytical investigation of the model is there-
fore unlikely to produce much insight. The following section for this reason
uses Monte-Carlo simulation in order to approximate the probability of any
constituency Cj being pivotal for given partition of an electorate or configura-
tion {C1, . . . , Cm} and a fixed weight vector (w1, . . . , wm). Based on this, we
try to find weights (w∗1 , . . . , w∗m) which approximately satisfy the two equivalent
equal representation conditions (1) and (2).

3 Simulation results

The probability πj ≡ Pr (j = P :m) can be viewed as the expected value of the
random variable Hj ≡ gw

j (λ1, . . . , λm) which equals 1 if j = P : m holds for
given weight vector w and realized median ideal points λ1, . . . , λm, and 0 other-
wise. The Monte-Carlo method (Metropolis and Ulam 1949) then exploits the
fact that the empirical average of s independent draws of Hj , h̄s

j = 1
s

∑s
l=1 hl

j ,
converges to Hj ’s theoretical expectation E(Hj) = πj by the law of large num-
bers. The speed of convergence in s can be assessed by the sample variance of
h̄s

j . Using the central limit theorem, it is then possible to obtain estimates of
πj with a desired precision (e. g. a 95%-confidence interval) if one generates and
analyzes a sufficiently large number of realizations.

To obtain a realization hl
j of Hj , we first draw m random numbers λ1, . . . , λm

from distributions F1, . . . , Fm.7 Throughout our analysis, we take Fj to be a
beta distribution with parameters

(
(nj + 1)/2, (nj + 1)/2

)
. This corresponds to

the median of nj independently [0, 1]-uniformly distributed voter ideal points,
i. e. all individual voter positions are assumed to be distributed uniformly.8

Second, the realized constituency positions are sorted and the pivotal position
p is determined. Constituency Cp:m is thus identified as the pivotal player of E .
It follows that hl

j = 1 for j = p :m, and 0 for all other constituencies.
The goal is to identify a simple rule for assigning voting weights to con-

stituencies which – if it exists – approximately satisfies equal representation
conditions (1) or (2) for various numbers of constituencies m and population

7We use a Java computer program. The source code is available upon request. Directly
drawing the constituency medians λj provides a huge computational advantage. Unfortu-
nately, it prevents statements about the population median and, e. g., its average distance to
the policy outcome.

8The mentioned asymptotic results for order statistics imply that only F ’s median position
and density at the median matter when constituency sizes are large. So below findings are
not specific to the assumption of uniform distributions at the bottom tier.



configurations {C1, . . . , Cm}. A natural focus is the investigation of power laws

wj = nj
α (4)

with α ∈ [0, 1]. For big m this approximately includes Penrose’s square root
rule as the special case α = 0.5 (see Lindner and Machover 2004 and ?).9

For any given m and population configuration {C1, . . . , Cm} under consider-
ation, we fix α and then approximate πj by its empirical average π̂j in a run of
10 million iterations. This is repeated for different values of α, ranging from 0
to 1 with a step size of 0.1 or 0.01, in order to find the exponent α which comes
‘closest’ to implying equal representation for the given configuration.

Our criterion for evaluating distance between the (estimated) probability
vector π̂ ≡ (π̂1, . . . , π̂m) realized by weights w and the ideal egalitarian vec-
tor π∗ ≡ (

∑m
k=1 nk)−1 · (n1, . . . , nm) considers cumulative quadratic deviations

between the realized and the ideal chances of an individual. Any voter in any
constituency Cj would ideally determine the outcome with the same probability
1/

∑m
k=1 nk, but vector π̂ actually gives him or her the probability π̂j/nj of

doing so. Treating all nj voters in any constituency Cj equally then amounts
to looking at

m∑

j=1

nj ·
(

1∑m
k=1 nk

− π̂j

nj

)2

. (5)

We refer to measure (5) as cumulative individual quadratic deviation below.

3.1 Randomly generated configurations

Table 1 reports the optimal values of α that were obtained for four sets
of configurations {C1, . . . , Cm}.10 For m ∈ {10, 15, 20, 25, 30, 40, 50}, con-
stituency sizes n1, . . . , nm were independently drawn from a uniform distri-
bution over [0.5 · 106, 99.5 · 106] . Numbers in column (I) are the optimal
α ∈ {0, 0.1, . . . , 0.9, 1} ⊂ [0, 1], where probabilities π̂j were estimated by a sim-
ulation with 10 mio. iterations. Cumulative individual quadratic deviations for
optimal α’s are shown in brackets. Column (II) reports the respective values
obtained for an independent second set of constituency configurations; columns
(III) and (IV) do likewise but based on the finer grid {0, 0.01, 0.02, . . . , 0.99, 1}
that contains α.11

9For comparison purposes, we also considered the exact version of Penrose’s rule for a
selected number of population configurations. Although there are exceptions to this, Penrose’s
rule tends to perform worse than (4) with the respective optimal exponent α. This extends to
α = 0.5 when this is close to being optimal. In other cases, e.g., when in fact uniform weights
produce the most equal representation, Penrose’s square root rule performs better at least
than its approximation by wj =

√
nj . We leave a more systematic investigation of alternatives

to (4) – like “wj s.t. βj is proportional to nj
α” with βj referring to j’s Penrose-Banzhaf index,

as suggested by an anonymous referee – for future research.
10The configuration draws are independent across different values of m. Thus, the table

actually reports optimal values obtained for 28 independent configurations.
11Hence columns (III) and (IV) each report on 101·7 simulation runs (with 10 mio. iterations

each).



# const (I) (II) (III) (IV)

10 0.5 0.6 0.39 0.00
(1.22× 10−11) (1.04× 10−11) (2.20× 10−12) (2.39× 10−11)

20 0.5 0.5 0.49 0.49
(4.80× 10−14) (8.59× 10−14) (5.66× 10−15) (6.91× 10−15)

30 0.5 0.5 0.49 0.49
(1.11× 10−15) (5.12× 10−15) (7.36× 10−15) (2.38× 10−15)

50 0.5 0.5 0.50 0.50
(3.06× 10−15) (4.70× 10−15) (3.10× 10−15) (3.30× 10−15)

Table 1: Optimal value of α for uniformly distributed constituency sizes (cu-
mulative individual squared deviations from ideal probabilities in parentheses)

While results for m = 10 are still inconclusive, α ≈ 0.5 emerges as the very
robust ideal exponent for larger number of constituencies. The reported cumu-
lative individual quadratic deviations are so small that even if the power laws
assumed in (4) do not contain the theoretically best rule for equal representa-
tion in our median-voter context (because possibly constituencies’ sizes are not
the right reference point, but rather something like their Penrose-Banzhaf or
Shapley-Shubik index), they allow a sufficiently good approximation for most
practical purposes.

Results in Table 1 are strongly suggesting that (an approximation of) Pen-
rose’s square root rule holds also in the context of median voter-based policy
decisions in [0, 1]. But optimality of α ≈ 0.5 could be an artifact of considering
uniformly distributed constituency sizes n1, . . . , nm, which perhaps unrealisti-
cally makes small constituencies as likely as large ones. We therefore conduct
similar investigations using other distributional assumptions.

Constituency sizes seem usually a matter of history, geography, or deliberate
design. In the latter case, one might expect them to be clustered around some
‘ideal’ intermediate level. This makes a (truncated) normal distribution around
some value n̄ a focal assumption for constituency configurations. Table 2 indi-
cates that, in this case, α = 0.5 is no longer the general clear winner from the
considered set of parameters {0, 0.1, . . . , 0.9, 1}. This is neither very surpris-
ing nor – from a square-root-rule point of view – very disturbing: Moderately
many and more or less equally sized constituencies give rather little scope for
discrimination between constituencies. Assigning slightly larger constituencies
substantially more weight risks overshooting the mark, but assigning them only
slightly more weight may not translate into an increased number of pivot posi-
tions at all. So, first, the optimal α can be expected to be rather sensitive to the
precise constituency configuration at hand, especially when a small number of
constituencies creates relatively few distinct opportunities to achieve a major-
ity. And, second, in the wide range where extra weight to an above-the-average
constituency translates into no or few extra winning coalitions, the objective
function is very flat. This is nicely illustrated by Figure 1. Its minimization via
Monte Carlo techniques is then particularly sensitive to remaining estimation



# const (I) (II) (III) (IV)

10 0.0 0.0 0.0 0.0
(1.22× 10−9) (1.65× 10−9) (9.21× 10−9) (1.83× 10−9)

30 0.1 0.2 0.4 0.5
(1.07× 10−10) (1.07× 10−10) (6.94× 10−11) (6.76× 10−11)

50 0.4 0.2 0.3 0.3
(1.60× 10−11) (7.39× 10−12) (3.56× 10−11) (4.72× 10−11)

100 0.5 0.5 0.5 0.5
(1.01× 10−13) (2.30× 10−12) (1.99× 10−13) (3.44× 10−13)

Table 2: Optimal value of α for normally distributed constituency sizes (µ =
1 mio., σ = 200,000; truncated below 0)

Figure 1: Cumulative individual quadratic deviation in normal-distribution runs (I)
for different numbers of constituencies

errors. But note that the importance of these issues decreases as m gets large.
This indicates that the applicability of the square root rule rests on enough
flexibility regarding the formation of distinct winning coalitions.

When historical or geographical boundaries determine a population parti-
tion, a yet more natural distributional benchmark for nj is a power law such
as Zipf’s law (or zeta distribution). In summary, simulations results with con-
stituency sizes drawn from Pareto distributions correspond nicely to those for
the uniform distribution as long as the distribution is only moderately skewed.
wj = √

nj performs best and gets close to ensuring equal representation pro-
vided that the number of constituencies is sufficiently large. The former is
no longer the case for a heavily skewed distribution of constituency sizes, i. e.
when there are mostly small constituencies and only one or perhaps two large
constituencies (reminiscent of atomic players in an otherwise oceanic game).
Giving all constituencies equal weight does reasonably well. As in the normal-
distribution case, this problem gets less severe, the greater is the total number
of constituencies: For m = 100 or larger, α = 0.5 turns out to be clearly optimal



even for high skewness.
The above analysis of many different population configurations reveals three

things. First, as Table 1 and Figures 1 show, α = 0.5 results in representation
close to being as equal as possible for the given partition of the electorate.
Second, for a moderately large number m of constituencies α ≈ 0.5 is optimal
in the considered class of power laws unless all constituency sizes are very similar
(e. g., nj normally distributed with small variance) or rather similar with one
or two outliers (corresponding to a heavily skewed distribution). Third, even
in these extreme cases the optimal α converges to 0.5 as m gets large. We now
turn to two prominent real-world two-tier voting systems.

3.2 EU Council of Ministers

Together with Commission and Parliament, the Council of Ministers is one of
the European Union’s chief legislative bodies. It is widely held to be the most
influential amongst the three and most voting power analysis concentrates on
it.12 It consists of a national government representative from each of the EU
member states, endowed with voting weight that is (weakly) increasing in share
of total population.13

Figure 2 illustrates the probabilities that representatives from differently
sized member states are pivotal in the Council assuming a 50% decision quota
and assigning voting weight based on populations size via wj = nj

α.14 In line
with above findings for randomly generated two-tier voting systems, α = 0.5
performs best amongst all coefficients in {0, 0.1, . . . , 1}. The figure shows how
close the implied probability of country j being pivotal comes to the respec-
tive ideal value, which would implement a priori perfectly equal representation.
Only the most populous country, Germany, would be visibly misrepresented
(here: over-represented).

Note that this analysis not only puts historical voting patterns and prefer-
ence similarities between some members behind a veil of ignorance but also, as
do the mentioned applied studies, it disregards differences between the bottom-
tier voting procedures which determine national governments. For example, the
UK uses plurality rule or a “first-past-the-post” system, whilst Germany uses a
roughly proportional system.15 This difference might have a systematic effect
on the respective accuracy of our median voter assumption at the constituency
level. To the extent that it does not, our findings are robust.

12See Felsenthal and Machover (2004), and Leech (2002) for examples. Napel and Widgrén
(2006) argue formally that the Commission’s and Parliament’s positions are nearly irrelevant
in the EU25’s most common codecision procedure.

13The current voting rule (based on the Treaty of Nice) is actually quite complex. In
addition to standard weighted voting it involves the requirement that the majority weight
supporting a policy represents a simple majority of member states and 62% of population.

14These and the following numbers are Monte-Carlo estimates obtained from six runs with
10 million iterations each. In case of qualified majority voting, the pivot is identified by
assuming a status quo q = 0 ∈ X.

15Germany’s system is actually complex: some members of parliament are directly elected
in a first-past-the-post manner, others get seats in proportion to their party’s vote.



Figure 2: EU25 with weights wj = nj
α compared to ideal probabilities

Investigation of a quota variation even for a very idealized Council illustrates
that the decision threshold is not only affecting the balance of ‘external costs’
and ‘decision-making costs’ (Buchanan and Tullock 1962) or challenging the so-
called ‘efficiency’ of a decision-making body (operationalized as the probability
that a random proposal is passed in the classical 0-1 setting by Felsenthal and
Machover 2001 and Baldwin et al. 2001 amongst others). The quota also has
important implications for equality of representation and hence the legitimacy
of decisions.

3.3 US Electoral College

US citizens elect their president via an Electoral College. The 50 states and
Washington DC each send representatives to it. Their number is weakly in-
creasing in the represented share of total population. Although most Electors
are not legally bound to vote in any particular way, all state representatives
cast their vote for the presidential candidate who secured a plurality of the
respective state’s popular vote with only minor exceptions. The US Electoral
College is therefore commonly treated as a weighted voting system.

Decisions in the Electoral College have in the recent past been essentially
binary. The pivotal player amongst the states’ median voters might, however,
feature prominently in a more sophisticated model of how the two main con-
testants are selected. In any case, consideration of strategic policy choices in
a convex space provide a useful benchmark for the preference-free dichotomous
model considered by Penrose (1946) and, specifically addressing the Electoral
College, Banzhaf (1968).16 Figure 3 illustrates the result of determining (hypo-
thetical) weights for state representatives based on current US state population
data. Corroborating the findings of Penrose and Banzhaf, the square root rule

16Early weighted voting analysis of US presidential elections also includes Brams (1978,
ch. 3).



Figure 3: US Electoral College with weights wj = nj
α compared to ideal probabilities

corresponding to α = 0.5 is again extremely successful in ensuring equal repre-
sentation.

4 Concluding remarks

As highlighted, e. g., by Good and Mayer (1975) and Chamberlain and Roth-
schild (1981), even slight changes regarding decision making at the individual or
collective level can produce very different recommendations for operationalizing
the one-person, one-vote principle, interpreted here as identical (and positive)
indirect expected influence on final outcomes by all voters. Apart from our
‘veil of ignorance’ perspective with a priori identical but independent voters,
the setting considered in this paper is very remote from the preference-free bi-
nary model considered by Penrose (1946), Banzhaf (1965, 1968) and others.
It is thus surprising that voting weight proportional to square root of popu-
lation, which corresponds to Penrose’s original suggestion for most practical
purposes,17 emerges as optimal for both prominent real-world examples as well
as many artificial population configurations.

This result matters not only from an abstract point of view. It shows that
numerous applied studies have indeed used a robust benchmark. This is also
highlighted by recent work of Beisbart and Bovens (2005), which discovers op-
timality of the square root rule in a very different binary, utility-based egalitar-
ian model. And at least for large constituency populations consisting of many
small blocks, Barberà and Jackson (2005) produce similar conclusions in an en-
tirely utilitarian framework. In summary, the square root rule is a simple and
trustworthy norm, not an artifact of a particular objective function or setting.

17In fact, Penrose (1946) seems to have deliberately blurred the distinction between voting
weight and voting power in his discussion of equal representation in a world assembly. Penrose
was aware, however, that approximate proportionality of weight and power generally holds
only for sufficiently many constituencies.



This insight can hopefully increase its effect on constitutional design in the real
world.18
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