
The Computational Complexity of Choice Sets∗

Felix Brandt Felix Fischer Paul Harrenstein

Abstract

Social choice rules are often evaluated and compared by inquiring whether they
fulfill certain desirable criteria such as theCondorcet criterion, which states that
an alternative should always be chosen when more than half ofthe voters prefer
it over any other alternative. Many of these criteria can be formulated in terms
of choice sets that single out reasonable alternatives based on the preferences of
the voters. In this paper, we consider choice sets whose definition merely relies
on the pairwise majority relation. These sets include theCopeland set, theSmith
set, theSchwartz set, andvon Neumann-Morgenstern stable sets(a concept orig-
inally introduced in the context of cooperative game theory). We investigate the
relationships between these sets and completely characterize their computational
complexity. This allows us to obtain hardness results for entire classes of social
choice functions.

1 Introduction

Given a profile of individual preferences over a number of alternatives, the simple ma-
jority rule—choosing the alternative which the majority ofagents prefer over the other
alternative—is an attractive way of aggregating social preferences over any pair of al-
ternatives. It has an intuitive appeal to democratic principles, is simple to understand
and, most importantly, has some formally attractive properties. May’s theorem shows
that a number of rather weak and intuitively acceptable principles completely charac-
terize the majority rule in settings with two alternatives (see May, 1952). Moreover,
almost all common social choice rules satisfy May’s axioms and thus coincide with
the majority rule in the two alternative case. Thus it would seem that the existence of
a majority of individuals preferring alternativea to alternativeb signifies something
fundamental and generic about the group’s preferences overa andb. We will say that
in any such case alternativea dominatesalternativeb.

Based on the simple majority rule, this dominance relation is obviouslyasymmet-
ric in the strong sense thata dominatingb implies thatb does not dominatea. A
fortiori the dominance relation is also irreflexive,i.e., no alternative dominates itself.
Conversely, any asymmetric binary relation on the set of alternatives, is induced as the
dominance relation of some preference profile, provided that the number of voters is
large enough compared to the number of alternatives (McGarvey, 1953). As is well
known from Condorcet’s paradox (de Condorcet, 1785), however, the dominance rela-
tion may very well contain cycles. This implies that the dominance relation need not
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have a maximum, or even a maximal, element, even if the underlying individual pref-
erences do all have a maximum or maximal element. Thus, the concept of maximality
has been rendered untenable in most cases.

There are several ways to get around this problem. One of which is, of course,
to abandon the simple majority rule altogether. We will not consider such attempts
here. Another would be to take more structure of the underlying individual preference
profiles into account. We will not consider these here either. A third way would
be to take the dominance relation for granted and define alternative concepts to take
over the role of the maximality. As such we will be concerned with criteria for social
choice correspondences that are based on the dominance relation only, i.e., those that
Fishburn (1977) calledC1 functions. Formally, by aC1 social choice concept we
will understand a concept that is invariant for all preference profiles that give rise to
the same dominance relation. Examples of such concepts arethe Condorcet winner,
defined as the alternative, if any, that dominates all other alternatives. Other examples
are:

• theCopeland set, i.e., the set of all alternatives for which the difference between
the number of alternatives it dominates and the number of alternatives that it is
dominated by is maximal,

• theSmith set, i.e., the smallest set of alternatives that dominate all alternatives
that are not in the set,

• the Schwartz set, i.e., the union of all minimal sets of alternatives that are not
dominated by any alternative outside that set, and

• von Neumann-Morgenstern stable sets, i.e., any setU consisting precisely of
those alternatives that are not dominated by any alternative in U.

Social choice literature often mentions that one choice rule “is more difficult to
compute” than another. The main goal of this paper is to provide formal grounds for
such statements and, in particular, to obtain lower bounds for the computational com-
plexity of entire classes of choice functions. This approach is inspired by Bartholdi,
III et al. (1989) who proved the NP-hardness of any socialwelfare functional that
is neutral, consistent, and Condorcet. They admit that “since only the Kemeny rule
satisfies the hypotheses, this corollary is not entirely satisfying” (Bartholdi, III et al.,
1989). During the last years, the computational complexityof various existing voting
rules (such as the Dodgson, Kemeny, or Young rule) has been completely character-
ized (see Faliszewski et al., 2006, for a recent survey). However, we are not aware of
any hardness results regarding broader classes of rules.

It is interesting to note that social choice theory literature almost exclusively deals
with tournaments, i.e., asymmetric and complete relations on a set of alternatives. For
any odd number oflinear individual preferences, the simple majority dominance re-
lation is indeed a tournament. From a social choice perspective these could be taken
as relatively mild and technically convenient restrictions. For one, the transitivity of
a tournament implies its acyclicity andvice versa. Moreover, there can be at most



one maximal element in a tournament, and if there is one it is the Condorcet win-
ner, the alternative that has a simple majority against any other alternative. Without
these restrictions, the simple majority rule allows for ties and the dominance relation
need not be complete. From the perspective of computationalcomplexity, however,
the restriction to tournaments is not as harmless as it mightseem from a social choice
point of view. We will find that some problems we consider are computationally sig-
nificantly easier for tournaments than for the general case.Furthermore, in settings
of computational interest such as webpage ranking there is usually a large number of
alternatives over which the voters only have partial preferences with possibly many
indifferences (seee.g., Altman and Tennenholtz, 2005).

The remainder of this paper is structured as follows. The social choice setting we
consider is introduced in Section 2. Section 3 motivates, introduces, and analyzes four
choice sets whose computational complexity is investigated in Section 4. Section 5
concludes the paper with an overview and interpretation of the results.

2 Preliminaries

In a social choice setting, agents from a finite setN choose among a finite setA of
alternatives. The cardinalities of these sets will be denotedn andm, respectively. For
each agenti ∈ N there is a binary preference relation%i over the alternatives inA. We
havea %i b denote that playeri values alternativea at least as much as alternativeb.
As usual, we write≻i for the strict part of%i , i.e., a ≻i b if a %i b but notb %i a.
Similarly, ∼i denotesi’s indifference relation,i.e., a ∼i b if both a %i b andb %i a.
We make no specific structural assumptions individual preferences should fulfill, apart
from the indifference relation being reflexive and symmetric. Obviously, this includes
all linear orders—i.e., reflexive, transitive, complete and anti-symmetric relations—
over the alternatives. On the other end of the spectrum, the definition also allows for
incompleteor quasi-transitivepreferences.1

Given apreference profile(%i)i∈N, we say that alternativea dominatesalternativeb,
in symbolsa ≻ b, whenever the number of voters for whicha %i b exceeds the number
of voters for whichb %i a. Obviously, the dominance relation isasymmetric. Despite
the fact that most of the social choice literature has focused on tournaments(seee.g.,
Laslier, 1997; Laffond et al., 1995),i.e., complete dominance relations, the dominance
relation need not in general becomplete.2 In fact, McGarvey (1953) shows thatany
dominance relation can be realized by a particular preference profile for a number of
voters polynomial inm, even if individual preferences are transitive, complete and anti-
symmetric. In the presence ofincompleteor quasi-transitivepreferences, incomplete
dominance relations are more than just a theoretical possibility. In the remainder of
this paper, we will be mainly concerned with dominance relations and tacitly assume
appropriate underlying individual preferences.

1We say a relation≥ is asymmetricwheneverx ≥ y implies y � x. We say≥ is anti-symmetricwhen-
everx ≥ y andy ≥ x imply x = y. The relation≥ is quasi-transitive, if> (the strict part of≥) is transitive.

2Obviously, one is guaranteed to obtain a complete dominancerelation if the number of voters is odd
and individual preferences are linear.



3 Choice sets

In this section, we motivate and introduce four choice sets based on the pairwise ma-
jority dominance relation and analyze the relationships between these sets.

We say that an alternativea ∈ A is undominatedin X ⊆ A relative to≻, whenever
there are no alternativesb ∈ X with b ≻ a. We say that an element isundominated
if it is undominated inA. A special type of undominated alternative is theCondorcet
winner, which is an alternative that dominates every other alternative and is dominated
by none. The concept of amaximal elementwe reserve in this paper for transitive (and
possibly reflexive) relations≥. An alternativea ∈ A is said to bemaximalin such a
transitive relation, if there is nob ∈ A such thatb ≥ a but nota ≥ b. Equivalently, the
maximal elements of≥ can be defined as the undominated elements in the strict (i.e.,
asymmetric) part of≥.

Given its asymmetry, transitivity of the dominance relation implies its acyclicity.
The implication in the other direction holds for tournaments but not for the more gen-
eral case. Failure of transitivity or completeness makes that a Condorcet winner need
not exist; failure of acyclicity, moreover, that the dominance relation need not even
contain maximal elements. As such, the obvious notion of maximality is no longer
available to single out the “best” alternatives among whichthe social choice should
be selected. Other concepts had to be devised to take over itsrole. In this paper, we
will be concerned with four of these concepts: the Copeland set, the Smith set, the
Schwartz set and von Neumann-Morgenstern stable sets.

3.1 Definitions

If a Condorcet winner exists, it is obviously the alternative that dominates the great-
est number of alternatives,viz. all but itself, and is dominated by the smallest num-
ber,viz.by none. TheCopeland setvaries on this theme, by singling out those alterna-
tives that maximize the difference between the number of alternatives they dominate
and the number of alternatives they are dominated by (Copeland, 1951).

Definition 1 (Copeland score and Copeland set)The Copeland scorec(a) of an
alternative a given a dominance relation≻ on a set of alternatives A
equals | {x ∈ A | a ≻ x} | − | {x ∈ A | x ≻ a} | . The Copeland set C is given
by {x ∈ A | c(a) ≥ c(b), for all b ∈ A}, i.e., the set of alternatives with maximum
Copeland score.

Obviously, the Copeland set never fails to be non-empty and contains the Condorcet
winner as its only element if there is one.

A set of alternativesX has theSmith propertyif any alternative inX dominates any
alternative not inX, i.e., if x ≻ y holds for allx ∈ X and ally < X. Note that the set of
all alternatives satisfies this property, and hence the existence of at least one subset of
alternatives with the Smith property is trivially guaranteed. As is not hard to prove, the
sets with the Smith property are, moreover, totally orderedby set inclusion. Hence,
having assumed the set of alternatives to be finite, a uniquesmallestnon-empty subset



of alternatives with the Smith property cannot fail to exist. This set, as it was originally
proposed by Smith (1973), we refer to as theSmith set.3

Definition 2 (Smith set) TheSmith setS is the smallest non-empty set of alternatives
with the Smith property,i.e., such that a≻ b, for all a ∈ S and all b< S .

If the Smith set contains only one element, this alternativeis the Condorcet win-
ner. Numerous choice rules always pick alternatives from the Smith set,e.g., Nanson,
Kemeny, or Fishburn (see,e.g., Fishburn, 1977).

We say that a subsetX of alternatives has theSchwartz propertywhenever no alter-
ative inX is dominated by some alternative not inX, i.e., for no x ∈ X there is ay < X
with y ≻ x . Vacuously the set of all alternatives satisfies the Schwartz property and
so the existence of a non-empty subset with the Schwartz property is guaranteed. In
contradistinction to the subsets with the Smith property, however, there need not be
in general auniqueminimal non-empty subset with the Schwartz property. With the
set of alternatives having been assumed to be finite, we can single out those subsets
with the Schwartz property that are both non-empty and are minimal (‘smallest’) with
respect to set inclusion. We say that an alternative is in theSchwartz set, whenever it
is an alternative of some such minimal subset with the Schwartz property (Schwartz,
1972).

Definition 3 (Schwartz set) TheSchwartz setT ⊆ A is the union of all sets T′ ⊆ A
such that:

(i) there is no b< T′ and no a∈ T′ with b≻ a, and

(ii) there is no non-empty proper subset of T′ that fulfills property(i).

Alternatively, the Schwartz set could be defined as the set ofmaximal elements of
the transitive closure of the dominance relation (cf. Lemma 1). It is also worth observ-
ing that, if the dominance relation is acyclic, the Schwartzset consists precisely of all
undominated alternatives. Moreover, unlike the Smith set (and stable sets below), the
Schwartz set can contain a single alternative without this alternative being the Con-
dorcet winner. If there is a Condorcet winner, however, it will invariably be the only
element of the Schwartz set. The Schwartz set coincides withthe Smith set if the dom-
inance relation is complete,i.e., in the case of tournaments. Well-known choice rules
that always pick alternatives from the Schwartz set are Schulze and ranked pairs (see,
e.g., Schulze, 2003).

The intuition behindstable setscan perhaps best be understood by thinking of the
social choice situation as one in which the voters have to settle upon a selection of
alternatives from which the eventual social choice is to be selected by lot or some
other mechanism beyond their control. One could argue that any such selection should
at least satisfy two properties. No majority can be found in favor of restricting the

3The Smith set appears in the literature under various names such astop cycle, minimal undominated
set, or Condorcet set. It is also sometimes confused with the Schwartz set becausein tournamentsboth sets
coincide.



selection by excluding some alternative from it. In a similar vein, it must be possible to
find a majority against each proposal to include an outside alternative in the selection.
Formally, stable sets are defined as follows.

Definition 4 (Stable set) A set of alternatives U⊆ A isstableif it satisfies the follow-
ing two properties, also known asinternalandexternalstability, respectively:

(i) a ≻ b, for no a, b ∈ U, and

(ii) for all a < U there is some b∈ U with b≻ a.

Equivalently, stable sets can be given a single fixed point characterization:

The alternatives in astablesetU are precisely those that are undominated by
any alternative inU.

Observe that this definition does not exclude the possibility that an alternative outside
a stable set dominates an alternative inside it.

Stable sets were proposed by von Neumann and Morgenstern (1944) to deal with
intransitive dominance relations on imputations in the absence of a sensible concept
of maximality. Originally, they were introduced as a solution concept for coopera-
tive games and as such they have been studied extensively, especially in the 1950s.
Richardson (1953), although also driven by game-theoreticmotives, researched their
formal properties in a more abstract setting. Within the context of social choice, stable
sets have been paid considerably less attention to. If considered at all, it is only for
a restricted class of situations (see,e.g., Lahiri, 2004) or the concept is modified to
some extent (see,e.g., Dutta, 1988; van Deemen, 1991). One reason might be that in
tournaments, a stable set exists if and only if there is a Condorcet winner, which it
then contains as its only element. In the general case, however, neither uniqueness nor
existence of stable sets is guaranteed. If the dominance relation is transitive, there is
a unique stable set, which consists precisely of its maximalelements (and thus equals
the Schwartz set). Moreover, a stable set is unique and a singleton if and only if there
is Condorcet winner.

We conclude this section by stating without proof that none of the proposed sets
may contain the Condorcet loser,i.e., an alternative that is dominated by all other
alternatives.

3.2 Dominance and Digraphs

It is very convenient to view the dominance relation derivedfrom the voters’ prefer-
ences as a directed graphG = (V,E) where the setV of vertices equals the setA of
alternatives and there is a directed edge (a, b) ∈ E for a, b ∈ V if and only if a ≻ b (see,
e.g., Miller, 1977). Figure 1 shows the digraph obtained for a setof six alternatives
and the following profile of partial preferences for five voters (to improve readabil-
ity, we only give the strict part of the preference ordering%i for each voteri ∈ N):
e ≻1 d ≻1 c ≻1 b ≻1 a, b ≻2 a ≻2 e, d ≻2 c ≻2 f , a ≻3 c, f ≻3 e ≻3 d, a ≻4 c ≻4 e,
a ≻4 b ≻4 d, ande≻5 c ≻5 a. Since all choice sets considered in this paper are defined
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Figure 1: Dominance graph over a set of six alternatives and with Copeland setC = {e},
Smith setS = {a, b, c, d, e, f }, Schwartz setT = {c, d, e, f }, and the unique stable set
U = {b, d, f }

in terms of the dominance relation only, we will henceforth restrict our attention to
dominance graphs. From a computational perspective, we merely make the assump-
tion that determining the dominance relation from a preference profile is easy,i.e., no
harder than computing the majority function on a string of bits. This is a reasonable
assumption, since hardness of this operation obviously would mean hardness of any
choice rule that takes individual preferences into account.

3.3 Relationships Between Choice Sets

Laffond et al. (1995) have conducted a thorough comparison of choice sets and derived
various inclusions. However, their study is restricted to tournaments and does not cover
stable sets. For this reason, this section provides an exhaustive set-theoretic analysis
of the concepts defined in Section 3.1. We start by observing that all sets we consider
are contained in the Smith set. Due to space restrictions, the proof of the following
theorem is omitted.

Theorem 1 The Copeland set, the Schwartz set, and every stable set are contained in
the Smith set. �

We leave it to the reader to verify that no other inclusion relationships between the
discussed sets hold. In order to further investigate the significance of stable sets in
the context of social choice, we now consider the relationship between the Schwartz
set and stable sets. We start by providing a useful alternative characterization of the
Schwartz set.

Lemma 1 An alternative a∈ A is in the Schwartz set if and only if for every b∈ A
such that there is a path from b to a in the dominance graph, there also is a path from a
to b.

Proof: Consider the Schwartz setT for a setA of alternatives and an arbitrary pref-
erence profile overA. For an alternativea ∈ A, let D∗(a) denote the set of alterna-
tives b , a reachable froma in the dominance graph, and̄D∗(a) the set of alterna-
tivesb , a from whicha can be reached. Since the statement is trivially satisfied for
alternatives that are undominated (i.e., vertices with indegree zero), we only need to
consider alternatives for which̄D∗(a) , ∅.



To see the implication from left to right, assume for contradiction thata ∈ T, and
that someb ∈ D∗(a) is not reachable froma, i.e., D̄∗(a) \D∗(a) , ∅. Sincea ∈ T, there
must be a minimal setTa ⊆ T with the Schwartz property anda ∈ Ta. Furthermore,
by induction on the length of a shortest path from anyc ∈ D̄∗(a) to a, it is easily
verified thatD̄∗(a) ( Ta. On the other hand, there can be no alternativec ∈ A \ D̄∗(a)
that dominates any alternative of̄D∗(a), since then there would be a path fromc to a
and thusc ∈ D̄∗(a). This contradicts the assumption thatTa is a minimal set with the
Schwartz property.

Conversely assume thata < T and thatD̄∗(a) ⊆ D∗(a). Again, we only consider
the case wherea is dominated by at least one other alternative, henceD∗(a) , ∅. Then,
however,D̄∗(a) ∪ {a} satisfies the Schwartz property, and this does not hold for any
proper nonempty subset, contradicting the assumption thata is not in the Schwartz
set. �

Building on the previous lemma, it can be shown that the intersection of any stable set
and the Schwartz set is always non-empty. We omit the proof tomeet space restric-
tions.

Theorem 2 Every stable set intersects with the Schwartz set. �

4 Complexity Results

In the remainder of the paper, we investigate the computational complexity of the
considered choice sets. We start by defining decision problems for the Condorcet
winner and each of the four choice sets defined in Section 3.1 as follows: given a
setA of alternatives, a particular alternativea ∈ A, and a preference profile{%i}i∈N,
IS-CONDORCET asks whether alternativea is the Condorcet winner for preference
profile{%i}i∈N, andIN-COPELAND, IN-SMITH, IN-SCHWARTZ, andIN-STABLE ask
whethera is contained in the Copeland set, the Smith set, the Schwartzset, and a sta-
ble set for{%i}i∈N, respectively. We further assume the reader to be familiar with the
well-known chain of complexity classes TC0 ⊆ L ⊆ NL ⊆ NC ⊆ P ⊆ NP, and the
notions of constant-depth and polynomial-time reducibility (see,e.g., Johnson, 1990).
TC0 is the class of problems solvable by uniform constant-depthBoolean circuits with
unbounded fan-in, a polynomial number of gates, and allowing so-called threshold
gates which yieldtrue if and only if the number oftrue inputs exceeds a certain thresh-
old. Basic functions computable in this class have been investigated by Chandra et al.
(1984). NC is the class of problems solvable by Boolean circuits with bounded fan-in
and a polynomial number of gates. L and NL are the classes of problems solvable
by deterministic and nondeterministic Turing machines using only logarithmic space,
respectively. P and NP are the classes of problems that can besolved in polynomial
time by deterministic and nondeterministic Turing machines, respectively.

First of all, we observe that a particular entry in the adjacency matrix of the dom-
inance graph for a preference profile (%i)i∈N is given by the majority function for a
particular pair of alternatives, and that the complete adjacency matrix can be com-
puted in TC0. Showing thatIS-CONDORCET is in TC0 is also straightforward. We



just have to check whether all entries in the row of the adjacency matrix corresponding
to a are 1. Hardness, on the other hand, follows from the fact thatthe casem = 2 is
equivalent to computing the majority function on a string ofbits, which in turn is hard
for TC0. For IN-COPELAND, we have to check whether the difference between out-
degree and indegree of the vertex corresponding toa is maximal over all vertices in the
dominance graph. We can do this by computing, for each row of the adjacency matrix
in parallel, the sum of all entries in this row and subtract the sum of all entries in the
corresponding column. Finally, we check whether the resultfor the row (and column)
corresponding toa attains the maximum over all pairs of rows (and corresponding
columns). Hardness follows from the fact thatIN-COPELAND andIS-CONDORCET
are equivalent for the case of two alternatives and an odd number of voters with linear
preferences.

It is well-known that both the Smith set and the Schwartz set can be computed in
polynomial time by applying the algorithm of Kosaraju for finding strongly connected
components in the dominance graph. In graph-theoretic terms, the Smith set is the
maximal strongly connected component in the digraph for themajority-or-tie domi-
nance relation, while the Schwartz set is the maximal strongly connected component
for themajoritydominance relation. Our approach for computing the Smith set is quite
different and based on the in- and outdegree of vertices inside and outside that set. As-
sume there exists a Smith setS ⊆ A of sizek. Since by definition every member ofS
must dominate every non-member, the outdegree of every element ofS in the domi-
nance graph forA must be at leastn − k, while every alternative not inS must have
indegree at leastk. Furthermore, no alternative can satisfy both properties because the
sum of in- and outdegree for each vertex in an asymmetric digraph is bounded byn−1.
Given a particulark, we can thus try to partitionA into two setsS′ andS̄′ = A \ S′ by
the above criterion, such thatS′ is the unique candidate for a set of sizek that satisfies
the Smith property. We can then easily check whetherS′ actually satisfies the Smith
property, and find the Smith set by repeating this process for1 ≤ k ≤ n. We proceed to
show that this algorithm can be implemented using a constantdepth threshold circuit,
and that checking membership in the Smith set is actually complete for the class TC0.

Theorem 3 IN-SMITH is TC0-complete.

Proof: Hardness is immediate from the equivalence ofIN-SMITH and IS-
CONDORCET for the case of two alternatives and an odd number of voters with linear
preferences.

For membership, we construct a constant depth threshold circuit that decides
whether there exists a set of sizek with the Smith property. We can then perform the
checks for all possible values ofk in parallel, and decide whether a particular alterna-
tive is in the smallest such set. We start by computing the adjacency matrixM = (mi j )
of the dominance graph from the preference profile. This amounts to a polynomial
number of majority votes over pairs of alternatives and can obviously be done in TC0.
We then apply a threshold ofn− k to each row ofM to obtain a vectorv such thatvi

is true if and only if the ith alternative is in the potential Smith setS′. To decide
whetherS′ actually satisfies the Smith property, we have to check whether the outde-
gree of vertices inS′ is still high enough if we only consider edges to vertices inS̄′,



i.e., whether the properties regarding in- and outdegree are satisfied for thebipartite
part of A with respect toS′ andS̄′. We thus compute the adjacency matrixMb = (mb

i j )

for the bipartite part ofA asmb
i j = (mi j ∧ ¬v j) and again apply a threshold ofn− k to

each row to yield a vectorvb. S′ satisfies the Smith property if and only if a threshold
of k applied tovb yields true. In this case, theith alternative is contained in this set
if vb

i = true. �

The previous theorem implies that any choice rule that picksits winner from the
Smith set is TC0-hard, and thus in principle not harder than any Condorcet choice rule.
As noted above, the Smith set and the Schwartz set differ only by their treatment of ties
in the pairwise comparison. Nevertheless, and quite surprisingly, deciding membership
in the Schwartz set is computationally harder unless TC0=NL.

Theorem 4 IN-SCHWARTZ is NL-complete.

Proof: Given a dominance graph and using Lemma 1, membership of an alterna-
tive a ∈ A in the Schwartz set can be shown by checking for every other alterna-
tive b ∈ A that eitherb is reachable froma or a is not reachable fromb. Clearly, the
existence of a particular edge in the dominance graph and hence the existence of a path
between a pair of vertices can be decided by a nondeterministic Turing machine using
only logarithmic space. Membership in the Schwartz set can then be decided using an
additional pointer into the input to store alternativeb.

For hardness, we provide a reduction from the NL-complete problem of digraph
reachability (see,e.g., Johnson, 1990). Given a particular digraphG = (V,E) and two
designated verticess, t ∈ V, we construct a dominance graphG′ = (V′,E′) by adding
an additional vertexu, an edge fromt to u, and edges fromu to any vertex butt, i.e.,
V′ = V ∪ {u} andE′ = E ∪ {(t, u)} ∪ { (u, v) | v ∈ V, v , t }. It is easily verified thatG′

can be computed fromG by a Boolean circuit of constant depth. We claim thats is
contained in the Schwartz set forG′ if and only if there exists a path froms to t in G.
First of all, we observe that a path froms to t in G′ exists if and only if such a path
already existed inG, since we have not added any outgoing edges tosor any incoming
edges tot. By construction, every vertex ofG′, including s, can be reached fromt.
Hence, by Lemma 1,s cannot be contained in the Schwartz set ift cannot be reached
from s. Conversely assume thatt is reachable froms. Then this property holds as well
for every vertex ofG′, particularly those from whichs can be reached. In virtue of
Lemma 1, we may conclude thats is in the Schwartz set. �

For all choice sets considered so far, we can check efficiently whether they contain
a particular alternative or not. Unfortunately, this is notcase for stable sets (unless
P=NP).

Theorem 5 IN-STABLE is NP-complete, even if a non-empty stable set is guaranteed
to exist.

Proof: Membershipin NP is obvious. Given a dominance graph over a setA of alter-
natives and a particular alternativea ∈ A, we can simply guess a subsetU ⊆ A such



thata ∈ U, and verify that for everyb < U there is an edge from some element ofU
to b and that there are no edges between vertices ofU.

For hardness, we provide a reduction from satisfiability of a Boolean formula B
(SAT) to the problem of deciding whether a designated alternativea ∈ A is contained in
a stable set (or the union of all stable sets). The reduction is based on the reduction by
Chvátal (1973) to show NP-hardness of the problem of deciding whether a digraph has
a kernel. LetB =

∧
1≤i≤m

∨
1≤ j≤ki

pi j be aSAT instance over variablesX. We construct
an asymmetric dominance graphG = (V,E) with three verticesci1, ci2, andci3 for each
clause ofB, four verticesxi , x̄i , x′i , and x̄′i for each variable ofB, and four additional
verticesd1, d2, d3, andd4, such thatd1 is contained in a stable set if and only ifB has
a satisfying assignment. Verticesci j will henceforth called clause vertices,xi and x̄i

will be referred to as positive and negative literal vertices, respectively. Edges are such
that the vertices of each clause form a directed cycle of length three, and the vertices
of each variable as well as the decision vertices form a cycleof length four according
to the sequence given above. Furthermore, there is an edge from a positive or negative
literal vertex to all clause vertices of a clause in which therespective literal appears.
Finally, there is an edge fromd2 to every clause vertex. More formally, we have

E = { (d1, d2), (d2, d3), (d3, d4), (d4, d1) } ∪

{ (ci1, ci2), (ci2, ci3), (ci3, ci1) | 1 ≤ i ≤ m} ∪

{ (xi , x̄i), (x̄i, x
′
i ), (x

′
i , x̄
′
i ), (x̄

′
i , xi) | 1 ≤ i ≤ |X| } ∪

{ (xi , c j1), (xi, c j2), (xi , c j3) | p jℓ = xi for some 1≤ ℓ ≤ k j } ∪

{ (x̄i , c j1), (x̄i, c j2), (x̄i , c j3) | p jℓ = x̄i for some 1≤ ℓ ≤ k j } ∪

{ (d2, ci1), (d2, ci2), (d2, ci3) | 1 ≤ i ≤ m}.

Figure 2 illustrates this construction for a particular Boolean formula. We observe the
following facts: G can be constructed fromB in polynomial time. { xi , x′i | 1 ≤ i ≤
m}∪ {d2, d4} is a stable set ofG irrespective of the structure ofB. Every stable set ofG
must either containd1 andd3 or d2 andd4, but not both. For eachi, every stable set
must either containxi andx′i or x̄i andx̄′i , but not both. A stable set ofG cannot contain
a pair of clause vertices for the same clause. In turn, a stable set must contain vertices
with outgoing edges to at least two of the three vertices for every clause. However,
every vertex that has an outgoing edge to any vertex for some clause has an outgoing
vertex to all three vertices for that clause. Hence, a stableset cannot contain any
clause vertices. A stable set must contain eitherd2 or a subset of the literal vertices
containing at least one vertex for a literal in every clause.Since a stable set cannot
contain bothxi and x̄i , the latter corresponds to a satisfying assignmentB. Hence, a
stable set containingd1 exists if and only ifB is satisfiable. �

We can actually derive a stronger result, concerning the computational complexity
of anychoice rule that is guaranteed to select an alternative froma stable set, if such
an alternative exists.

Theorem 6 Consider a choice rule that selects an alternative from a stable set if one
exists and an arbitrary alternative otherwise. This choicerule cannot be executed in
worst-case polynomial time unless P=NP.
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Figure 2: Dominance graph for the Boolean formula (x1 ∨ x̄2 ∨ x3 ∨ x̄4) ∧ (x4 ∨ x̄5)
according to the construction used in the proof of Theorem 5.If a certain variable
appears exclusively as either positive or negative literal, the other three vertices for the
variable can be omitted.

Proof: Again consider the construction used in the proof of Theorem5 and illustrated
in Figure 2. In this construction, four designated verticesd1 to d4 have been used
to guarantee the existence of a stable set, no matter whetherthe underlying Boolean
formulaB has a satisfying assignment or not. This guarantee also means that finding
somealternative that belongs to a stable set is trivial. It is easily verified that if we
remove verticesd1 to d4, a stable set in graphG exists if and only ifB has a satisfying
assignment, and the vertices in such a stable set are those corresponding to the literals
set to true in a particular satisfying assignments.

Now consider a Turing machine with an oracle that computes a single alternative
belonging to a stable set, if such a set exists, and an arbitrary alternative otherwise.
Using this machine, the existence of a satisfying assignment for a particular Boolean
formulaB can be decided as follows. First, compute the dominance graph G = (V,E)
corresponding toB. Then, iteratively reduce the graph by requesting a vertexv from
the oracle and removing vertices as follows: ifv = xi or v = x′i for some 1≤ i ≤ |X|,
removexi , x′i , x̄i , x̄′i and allci j such that (xi , ci j ) ∈ E; if v = x̄i or v = x̄′i for some 1≤
i ≤ |X|, removexi , x′i , x̄i , x̄′i and allci j such that ( ¯xi , ci j ) ∈ E. If at some point there
no longer exists any vertexci j , let the machine halt and accept. If at some point there
no longer exists anyxi or x̄i but there still is someci j , or if the oracle returnsci j for
some 1≤ i ≤ m, j ∈ {1, 2, 3}, let the machine halt and reject.

As already pointed out in the proof of Theorem 5, the graphG can be computed
from B in polynomial time. In every later step, the machine either halts or removes
at least one vertex, of which there are only polynomially many. Hence, the machine



tournaments general dominance
graphs

IS-CONDORCET

TC0-complete

TC0-completeIN-COPELAND

IN-SMITH

IN-SCHWARTZ NL-complete

IN-STABLE NP-complete

Table 1: Complexity of choice sets

is guaranteed to halt after a polynomial number of steps. Furthermore, if the machine
accepts, the set of all vertices returned by the oracle form astable set ofG, which can
only exist if B has a satisfying assignment. We have thus provided a Cook reduction
from SAT to the problem of selecting an arbitrary element of a stable set, showing that
a polynomial-time algorithm for the latter would imply P=NP. �

While the union of all stable sets need not in general be contained in the Schwartz
set (seee.g., Figure 1), this is the case for the dominance graphs used in the proofs
of the previous two theorems. Hence, hardness holds as well for deciding whether
an alternative lies in the intersection of a stable set and the Schwartz set, and for any
choice rule that selects an alternative that is both in a stable set and in the Schwartz set.

5 Conclusion

We have investigated the relationships and computational complexity of various choice
sets based on the pairwise majority relation. Table 1 summarizes our complexity-
theoretic results, which can be interpreted as follows. Allconsidered problems except
IN-STABLE are computationally tractable. Moreover, these problems are contained
in the complexity class NC of problems amenable to parallel computation. All prob-
lems exceptIN-SCHWARTZ andIN-STABLE can be solved on a deterministic Turing
machine using only logarithmic space. These results can be used to make statements
regarding the complexity of entire classes of choice rules,e.g., the hardness of every
choice rule that picks an alternative from a stable set.

In addition, Table 1 underlines the significant difference between tournaments and
general dominance graphs. Surprisingly, the Smith set turned out to be computation-
ally easier than the Schwartz set in general dominance graphs (unless TC0=NL), while
both concepts coincide in tournaments. Deciding whether analternative is included
in a stable set is NP-complete in general dominance graphs, while in tournaments the
same problem is equivalent to the TC0-complete problem of deciding whether the al-
ternative is the Condorcet winner.

Finally, it should be noted that our results are fairly general in the sense that they
only rely on theasymmetryof the dominance relation. As a matter of fact, all consid-
ered sets are reasonable substitutes for maximality in the face of non-transitive rela-
tions, no matter whether these relations stem from aggregated preferences or not.
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