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Abstract

Social choice rules are often evaluated and compared byringwhether they
fulfill certain desirable criteria such as tl@®ndorcet criterionwhich states that
an alternative should always be chosen when more than h#ieofoters prefer
it over any other alternative. Many of these criteria can drenilated in terms
of choice sets that single out reasonable alternativeslbas¢he preferences of
the voters. In this paper, we consider choice sets whoseitiiimerely relies
on the pairwise majority relation. These sets includeGbpeland setthe Smith
set the Schwartz setandvon Neumann-Morgenstern stable s@tsoncept orig-
inally introduced in the context of cooperative game thoWe investigate the
relationships between these sets and completely chaesctheir computational
complexity. This allows us to obtain hardness results foiremlasses of social
choice functions.

1 Introduction

Given a profile of individual preferences over a number adralatives, the simple ma-
jority rule—choosing the alternative which the majorityaafents prefer over the other
alternative—is an attractive way of aggregating sociafgyences over any pair of al-
ternatives. It has an intuitive appeal to democratic pgled, is simple to understand
and, most importantly, has some formally attractive proper May’s theorem shows
that a number of rather weak and intuitively acceptableqgipies completely charac-
terize the majority rule in settings with two alternativeseé May, 1952). Moreover,
almost all common social choice rules satisfy May’s axiomd thus coincide with
the majority rule in the two alternative case. Thus it wolddm that the existence of
a majority of individuals preferring alternativaeto alternativeb signifies something
fundamental and generic about the group’s preferencesaoaedb. We will say that
in any such case alternatieedominateslternativeb.

Based on the simple majority rule, this dominance relatioobiviouslyasymmet-
ric in the strong sense thatdominatingb implies thatb does not dominata. A
fortiori the dominance relation is also irreflexives., no alternative dominates itself.
Conversely, any asymmetric binary relation on the set efa#itives, is induced as the
dominance relation of some preference profile, providettttenumber of voters is
large enough compared to the number of alternatives (Ma&yah053). As is well
known from Condorcet’s paradox (de Condorcet, 1785), hewéekie dominance rela-
tion may very well contain cycles. This implies that the doarice relation need not
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have a maximum, or even a maximal, element, even if the uyidgrindividual pref-
erences do all have a maximum or maximal element. Thus, theepd of maximality
has been rendered untenable in most cases.

There are several ways to get around this problem. One ofhwibjoof course,
to abandon the simple majority rule altogether. We will nohgider such attempts
here. Another would be to take more structure of the undeglindividual preference
profiles into account. We will not consider these here eith&rthird way would
be to take the dominance relation for granted and definenaltiee concepts to take
over the role of the maximality. As such we will be concernathwriteria for social
choice correspondences that are based on the dominantierrelaly, i.e., those that
Fishburn (1977) calle€1 functions. Formally, by &1 social choice concept we
will understand a concept that is invariant for all preferprofiles that give rise to
the same dominance relation. Examples of such concepth@i@ondorcet winner
defined as the alternative, if any, that dominates all otherratives. Other examples
are:

o theCopeland set.e., the set of all alternatives for which thei@irence between
the number of alternatives it dominates and the number efradtives that it is
dominated by is maximal,

o the Smith seti.e., the smallest set of alternatives that dominate all alterest
that are not in the set,

e the Schwartz seti.e., the union of all minimal sets of alternatives that are not
dominated by any alternative outside that set, and

e von Neumann-Morgenstern stable sets., any setU consisting precisely of
those alternatives that are not dominated by any altematiyd .

Social choice literature often mentions that one choice tid more dificult to
compute” than another. The main goal of this paper is to piefdrmal grounds for
such statements and, in particular, to obtain lower bouadhe computational com-
plexity of entire classes of choice functions. This apphoacinspired by Bartholdi,
[l et al. (1989) who proved the NP-hardness of any sowialfare functional that
is neutral, consistent, and Condorcet. They admit thatc&sionly the Kemeny rule
satisfies the hypotheses, this corollary is not entirelisiéng” (Bartholdi, Il et al.,
1989). During the last years, the computational compledfityarious existing voting
rules (such as the Dodgson, Kemeny, or Young rule) has beapletely character-
ized (see Faliszewski et al., 2006, for a recent survey). é¥ew we are not aware of
any hardness results regarding broader classes of rules.

It is interesting to note that social choice theory literatalmost exclusively deals
with tournamentsi.e., asymmetric and complete relations on a set of alternatives
any odd number ofinear individual preferences, the simple majority dominance re-
lation is indeed a tournament. From a social choice perimeettiese could be taken
as relatively mild and technically convenient restricor-or one, the transitivity of
a tournament implies its acyclicity andce versa Moreover, there can be at most



one maximal element in a tournament, and if there is one ihéondorcet win-
ner, the alternative that has a simple majority against anyradtiernative. Without
these restrictions, the simple majority rule allows fosténd the dominance relation
need not be complete. From the perspective of computatemraplexity, however,
the restriction to tournaments is not as harmless as it nsigitn from a social choice
point of view. We will find that some problems we consider asenputationally sig-
nificantly easier for tournaments than for the general c&ethermore, in settings
of computational interest such as webpage ranking thersually a large number of
alternatives over which the voters only have partial pesiees with possibly many
indifferences (see.g, Altman and Tennenholtz, 2005).

The remainder of this paper is structured as follows. Théscbhoice setting we
consider is introduced in Section 2. Section 3 motivatéspduces, and analyzes four
choice sets whose computational complexity is investijaieSection 4. Section 5
concludes the paper with an overview and interpretatioh@fésults.

2 Preliminaries

In a social choice setting, agents from a finite Nethoose among a finite sétof
alternatives. The cardinalities of these sets will be dethotandm, respectively. For
each agente N there is a binary preference relatignover the alternatives iA. We
havea x; b denote that playervalues alternativa at least as much as alternative
As usual, we write-; for the strict part of>;, i.e, a > bif a »; b but notb x; a.
Similarly, ~; denotes’s indifference relationi.e., a ~; b if both a >; b andb %; a.
We make no specific structural assumptions individual pesfees should fulfill, apart
from the indiference relation being reflexive and symmetric. Obvioublg, includes
all linear orders—i.e,, reflexive, transitive, complete and anti-symmetric ielzad—
over the alternatives. On the other end of the spectrum, efigition also allows for
incompleteor quasi-transitivepreferences.

Given apreference profil€x;)icn, We say that alternativeedominateslternativeb,
in symbolsa > b, whenever the number of voters for whialx; b exceeds the number
of voters for whichb >; a. Obviously, the dominance relationasymmetric Despite
the fact that most of the social choice literature has fodusgournamentgseee.g,
Laslier, 1997; L&ond et al., 1995),e.,, complete dominance relations, the dominance
relation need not in general memplete? In fact, McGarvey (1953) shows thahy
dominance relation can be realized by a particular preter@nofile for a number of
voters polynomial irm, even if individual preferences are transitive, compleanti-
symmetric. In the presence mfcompleteor quasi-transitivepreferences, incomplete
dominance relations are more than just a theoretical piéigsibn the remainder of
this paper, we will be mainly concerned with dominance refet and tacitly assume
appropriate underlying individual preferences.

1We say a relatiore is asymmetriovheneverx > y impliesy # x. We say> is anti-symmetriovhen-
everx >y andy > ximply x = y. The relation> is quasi-transitive, it- (the strict part of) is transitive.

2Qbviously, one is guaranteed to obtain a complete dominegiaéion if the number of voters is odd
and individual preferences are linear.



3 Choice sets

In this section, we motivate and introduce four choice sateHd on the pairwise ma-
jority dominance relation and analyze the relationshigs/ben these sets.

We say that an alternativee A is undominatedn X C A relative to>, whenever
there are no alternativdse X with b > a. We say that an element issxdominated
if it is undominated inA. A special type of undominated alternative is thendorcet
winner, which is an alternative that dominates every other altearmand is dominated
by none. The concept ofrmaximal elemente reserve in this paper for transitive (and
possibly reflexive) relations. An alternativea € A is said to bemaximalin such a
transitive relation, if there is nb € A such thab > a but nota > b. Equivalently, the
maximal elements af can be defined as the undominated elements in the stagt (
asymmetric) part of.

Given its asymmetry, transitivity of the dominance relatimplies its acyclicity.
The implication in the other direction holds for tournanssiotit not for the more gen-
eral case. Failure of transitivity or completeness makasalCondorcet winner need
not exist; failure of acyclicity, moreover, that the donica relation need not even
contain maximal elements. As such, the obvious notion ofimalbity is no longer
available to single out the “best” alternatives among whtod social choice should
be selected. Other concepts had to be devised to take ovetdtsin this paper, we
will be concerned with four of these concepts: the Copelaidthe Smith set, the
Schwartz set and von Neumann-Morgenstern stable sets.

3.1 Definitions

If a Condorcet winner exists, it is obviously the alternatiiat dominates the great-
est number of alternativesiz. all but itself, and is dominated by the smallest num-
ber,viz.by none. TheCopeland setaries on this theme, by singling out those alterna-
tives that maximize the fference between the number of alternatives they dominate
and the number of alternatives they are dominated by (Cogel951).

Definition 1 (Copeland score and Copeland setflhe Copeland scorec(a) of an
alternative a given a dominance relatiom on a set of alternatives A
equals |{xe Ajla> x}| — |{xeA|x>a}|. The Copeland setC is given
by {xe A|c(a) > c(b), forallb € A}, i.e, the set of alternatives with maximum
Copeland score.

Obviously, the Copeland set never fails to be non-empty amtains the Condorcet
winner as its only element if there is one.

A set of alternativeX has theSmith propertyf any alternative inX dominates any
alternative not inX, i.e., if x > y holds for allx € X and ally ¢ X. Note that the set of
all alternatives satisfies this property, and hence thaandg of at least one subset of
alternatives with the Smith property is trivially guaragde As is not hard to prove, the
sets with the Smith property are, moreover, totally orddngdet inclusion. Hence,
having assumed the set of alternatives to be finite, a urimalesthon-empty subset



of alternatives with the Smith property cannot fail to exighis set, as it was originally
proposed by Smith (1973), we refer to as 8mith sef

Definition 2 (Smith set) TheSmith setS is the smallest non-empty set of alternatives
with the Smith property,e., such that a- b, forallae S andallb¢ S.

If the Smith set contains only one element, this alternatwhe Condorcet win-
ner. Numerous choice rules always pick alternatives froer@mith sete.g, Nanson,
Kemeny, or Fishburn (see,g, Fishburn, 1977).

We say that a subs#tof alternatives has th&chwartz propertywhenever no alter-
ative in X is dominated by some alternative notini.e., fornox € X thereis ay ¢ X
with y > X . Vacuously the set of all alternatives satisfies the Sclaadperty and
so the existence of a non-empty subset with the Schwartzpsofs guaranteed. In
contradistinction to the subsets with the Smith propertyyéver, there need not be
in general auniqgueminimal non-empty subset with the Schwartz property. Wit t
set of alternatives having been assumed to be finite, we ogiesbut those subsets
with the Schwartz property that are both non-empty and anémail (‘smallest’) with
respect to set inclusion. We say that an alternative is irBtttevartz setwhenever it
is an alternative of some such minimal subset with the Sdawapperty (Schwartz,
1972).

Definition 3 (Schwartz set) TheSchwartz seT C A is the union of all sets'TC A
such that:

(i) thereisnobg T’ and no ac T’ with b> a, and
(ii) there is no non-empty proper subset dftiat fulfills property(i).

Alternatively, the Schwartz set could be defined as the setacimal elements of
the transitive closure of the dominance relatiohllemma 1). It is also worth observ-
ing that, if the dominance relation is acyclic, the Schwagvrconsists precisely of all
undominated alternatives. Moreover, unlike the Smith aetl (stable sets below), the
Schwartz set can contain a single alternative without thésrsative being the Con-
dorcet winner. If there is a Condorcet winner, however, It inivariably be the only
element of the Schwartz set. The Schwartz set coincidesiétBmith set if the dom-
inance relation is completeg,, in the case of tournaments. Well-known choice rules
that always pick alternatives from the Schwartz set are Betand ranked pairs (see,
e.g, Schulze, 2003).

The intuition behindstable setgan perhaps best be understood by thinking of the
social choice situation as one in which the voters have tilesepon a selection of
alternatives from which the eventual social choice is to édlected by lot or some
other mechanism beyond their control. One could argue thasach selection should
at least satisfy two properties. No majority can be foundawof of restricting the

3The Smith set appears in the literature under various names astop cycle minimal undominated
set or Condorcet setlt is also sometimes confused with the Schwartz set bedausarnaments$oth sets
coincide.



selection by excluding some alternative from it. In a simv¥ain, it must be possible to
find a majority against each proposal to include an outsigerstive in the selection.
Formally, stable sets are defined as follows.

Definition 4 (Stable set) A set of alternatives L& A is stableif it satisfies the follow-
ing two properties, also known @sternaland externalstability, respectively:

(i) a>b,fornoabe U, and
(i) foralla ¢ U there is some k& U with b > a.
Equivalently, stable sets can be given a single fixed poiatadterization:

The alternatives in atablesetU are precisely those that are undominated by
any alternative irJ.

Observe that this definition does not exclude the possiliiféat an alternative outside
a stable set dominates an alternative inside it.

Stable sets were proposed by von Neumann and Morgensteta)(i®deal with
intransitive dominance relations on imputations in theealos of a sensible concept
of maximality. Originally, they were introduced as a sadaticoncept for coopera-
tive games and as such they have been studied extensivedgialty in the 1950s.
Richardson (1953), although also driven by game-theometitives, researched their
formal properties in a more abstract setting. Within theterinof social choice, stable
sets have been paid considerably less attention to. If deresi at all, it is only for
a restricted class of situations (seeg, Lahiri, 2004) or the concept is modified to
some extent (see,g, Dutta, 1988; van Deemen, 1991). One reason might be that in
tournaments, a stable set exists if and only if there is a Gared winner, which it
then contains as its only element. In the general case, lwmsither uniqueness nor
existence of stable sets is guaranteed. If the dominanagarlis transitive, there is
a unigue stable set, which consists precisely of its maxeteshents (and thus equals
the Schwartz set). Moreover, a stable set is unique and kestingf and only if there
is Condorcet winner.

We conclude this section by stating without proof that nohthe proposed sets
may contain the Condorcet loser., an alternative that is dominated by all other
alternatives.

3.2 Dominance and Digraphs

It is very convenient to view the dominance relation derifresn the voters’ prefer-
ences as a directed gragh= (V, E) where the seV of vertices equals the sét of
alternatives and there is a directed edgd) € E for a,b € V if and only ifa > b (see,

e.g, Miller, 1977). Figure 1 shows the digraph obtained for acfeix alternatives
and the following profile of partial preferences for five ustéto improve readabil-

ity, we only give the strict part of the preference orderingor each voteli € N):
e>1d>1C>1b>1a,b>za>29,d>20>2 f,a>30, f >3e>3d,a>4c>4e,

a>4 b>4d, ande >5 c >5 a. Since all choice sets considered in this paper are defined
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Figure 1: Dominance graph over a set of six alternatives atid®@opeland set = {e},
Smith setS = {a,b,c,d, e, f}, Schwartz seT = {c,d, g, f}, and the unique stable set
U ={b,d, f}

in terms of the dominance relation only, we will henceforistrict our attention to
dominance graphs. From a computational perspective, welynerake the assump-
tion that determining the dominance relation from a prefeesprofile is easy,e., no
harder than computing the majority function on a string @é.biThis is a reasonable
assumption, since hardness of this operation obvioushidvmean hardness of any
choice rule that takes individual preferences into account

3.3 Relationships Between Choice Sets

Laffond et al. (1995) have conducted a thorough comparison i¢elets and derived
various inclusions. However, their study is restrictedtarhaments and does not cover
stable sets. For this reason, this section provides an skiaset-theoretic analysis
of the concepts defined in Section 3.1. We start by obserhiapail sets we consider
are contained in the Smith set. Due to space restrictioesptbof of the following
theorem is omitted.

Theorem 1 The Copeland set, the Schwartz set, and every stable sebat&iced in
the Smith set. O

We leave it to the reader to verify that no other inclusioatiehships between the
discussed sets hold. In order to further investigate theifsignce of stable sets in
the context of social choice, we now consider the relatignbbtween the Schwartz
set and stable sets. We start by providing a useful altemnatiaracterization of the
Schwartz set.

Lemma 1 An alternative ac A is in the Schwartz set if and only if for everyebA
such that there is a path from b to a in the dominance graphethiso is a path from a
to b.

Proof: Consider the Schwartz sé&tfor a setA of alternatives and an arbitrary pref-
erence profile oveA. For an alternativa € A, let D*(a) denote the set of alterna-
tivesb # areachable froma in the dominance graph, ariof(a) the set of alterna-
tivesb # a from whicha can be reached. Since the statement is trivially satisfied fo
alternatives that are undominateck( vertices with indegree zero), we only need to
consider alternatives for whidb*(a) # 0.



To see the implication from left to right, assume for conictidn thata € T, and
that soméb € D*(a) is not reachable from, i.e,, D*(a) \ D*(a) # 0. Sincea € T, there
must be a minimal s€f, C T with the Schwartz property arale T.. Furthermore,
by induction on the length of a shortest path from ang D*(a) to a, it is easily
verified thatD*(a) ¢ Ta. On the other hand, there can be no alternatizeA \ D*(a)
that dominates any alternative Df (a), since then there would be a path freno a
and thusc € D*(a). This contradicts the assumption tfiatis a minimal set with the
Schwartz property. _

Conversely assume that¢ T and thatD*(a) € D*(a). Again, we only consider
the case wherais dominated by at least one other alternative, hédiga) # 0. Then,
however,D*(a) U {a} satisfies the Schwartz property, and this does not hold fgr an
proper nonempty subset, contradicting the assumptionatlignot in the Schwartz
set. mi

Building on the previous lemma, it can be shown that the gstetion of any stable set
and the Schwartz set is always non-empty. We omit the proofdet space restric-
tions.

Theorem 2 Every stable set intersects with the Schwartz set. m]

4 Complexity Results

In the remainder of the paper, we investigate the compuiatioomplexity of the
considered choice sets. We start by defining decision pmubler the Condorcet
winner and each of the four choice sets defined in Section Sfblbbws: given a
setA of alternatives, a particular alternatisec A, and a preference profile:;}icn,
IS-CONDORCET asks whether alternativeeis the Condorcet winner for preference
profile {;}icn, @ndIN-COPELAND, IN-SMITH, IN-SCHWARTZ, andIN-STABLE ask
whethera is contained in the Copeland set, the Smith set, the Schwettand a sta-
ble set for{x}icn, respectively. We further assume the reader to be familitir the
well-known chain of complexity classes ¥@& L ¢ NL ¢ NC ¢ P ¢ NP, and the
notions of constant-depth and polynomial-time redudip{léee e.g, Johnson, 1990).
TC is the class of problems solvable by uniform constant-dBptblean circuits with
unbounded fan-in, a polynomial number of gates, and allgvgio-called threshold
gates which yieldrueif and only if the number ofrue inputs exceeds a certain thresh-
old. Basic functions computable in this class have beersiiya&ted by Chandra et al.
(1984). NC is the class of problems solvable by Boolean ésauith bounded fan-in
and a polynomial number of gates. L and NL are the classesatfigms solvable
by deterministic and nondeterministic Turing machinesigsinly logarithmic space,
respectively. P and NP are the classes of problems that caolzed in polynomial
time by deterministic and nondeterministic Turing machirrespectively.

First of all, we observe that a particular entry in the adjeyematrix of the dom-
inance graph for a preference profibg Xcn iS given by the majority function for a
particular pair of alternatives, and that the complete @fjay matrix can be com-
puted in TE. Showing thalS-CONDORCET is in TC is also straightforward. We



just have to check whether all entries in the row of the adjagenatrix corresponding
to aare 1. Hardness, on the other hand, follows from the factttieatasen = 2 is
equivalent to computing the majority function on a strind$, which in turn is hard
for TC®. For IN-COPELAND, we have to check whether theffdirence between out-
degree and indegree of the vertex correspondimgsanaximal over all vertices in the
dominance graph. We can do this by computing, for each rolveatljacency matrix
in parallel, the sum of all entries in this row and subtraet $hm of all entries in the
corresponding column. Finally, we check whether the rdsulthe row (and column)
corresponding t@ attains the maximum over all pairs of rows (and correspandin
columns). Hardness follows from the fact tigtCOPELAND andIS-CONDORCET
are equivalent for the case of two alternatives and an oddeunf voters with linear
preferences.

It is well-known that both the Smith set and the Schwartz aetlwe computed in
polynomial time by applying the algorithm of Kosaraju fording strongly connected
components in the dominance graph. In graph-theoreticstetine Smith set is the
maximal strongly connected component in the digraph fomtagority-or-tie domi-
nance relation, while the Schwartz set is the maximal styoognnected component
for themajority dominance relation. Our approach for computing the Smitfsspiite
different and based on the in- and outdegree of vertices instewride that set. As-
sume there exists a Smith tc A of sizek. Since by definition every member &f
must dominate every non-member, the outdegree of everyegleaiS in the domi-
nance graph foA must be at least — k, while every alternative not i must have
indegree at lea®t. Furthermore, no alternative can satisfy both propertiEabse the
sum of in- and outdegree for each vertex in an asymmetri@ghyis bounded by—1.
Given a particulak, we can thus try to partitioA into two setsS’ andS’ = A\ S’ by
the above criterion, such th&t is the unique candidate for a set of skzthat satisfies
the Smith property. We can then easily check whe8feactually satisfies the Smith
property, and find the Smith set by repeating this process fok < n. We proceed to
show that this algorithm can be implemented using a consigpth threshold circuit,
and that checking membership in the Smith set is actuallyptei® for the class TC

Theorem 3 IN-SMITH is TC’-complete.

Proof: Hardnessis immediate from the equivalence ofN-SMITH and IS-
CONDORCET for the case of two alternatives and an odd number of votetslinear
preferences.

For membershipwe construct a constant depth threshold circuit that ascid
whether there exists a set of sizavith the Smith property. We can then perform the
checks for all possible values kfin parallel, and decide whether a particular alterna-
tive is in the smallest such set. We start by computing thacsdjcy matrixM = (m;)
of the dominance graph from the preference profile. This artsoto a polynomial
number of majority votes over pairs of alternatives and dariausly be done in T&
We then apply a threshold of— k to each row ofM to obtain a vectov such that;
is true if and only if theith alternative is in the potential Smith sBt. To decide
whetherS’ actually satisfies the Smith property, we have to check vérdtie outde-
gree of vertices irg’ is still high enough if we only consider edges to verticeS$in



i.e., whether the properties regarding in- and outdegree aisfisdtfor thebipartite
part of Awith respect t&8’ andS’. We thus compute the adjacency matiR = (rqu)
for the bipartite part oA asn\bj = (mj A —v;) and again apply a threshold of- k to
each row to yield a vector. S’ satisfies the Smith property if and only if a threshold
of k applied toV® yieldstrue. In this case, théth alternative is contained in this set
if VP = true. O

The previous theorem implies that any choice rule that pitske/inner from the
Smith set is T€-hard, and thus in principle not harder than any Condoragitetrule.
As noted above, the Smith set and the Schwartz setrdinly by their treatment of ties
in the pairwise comparison. Nevertheless, and quite singli, deciding membership
in the Schwartz set is computationally harder unles8=I\L..

Theorem 4 IN-SCHWARTZ is NL-complete.

Proof: Given a dominance graph and using Lemma 1, membership oftamal
tive a € Ain the Schwartz set can be shown by checking for every otherral-
tive b € A that eitherb is reachable frona or a is not reachable frorh. Clearly, the
existence of a particular edge in the dominance graph ancettbe existence of a path
between a pair of vertices can be decided by a nondeteriinigting machine using
only logarithmic space. Membership in the Schwartz set kban be decided using an
additional pointer into the input to store alternative

For hardnesswe provide a reduction from the NL-complete problem of dgr
reachability (seeg.g, Johnson, 1990). Given a particular digraphk= (V, E) and two
designated verticest € V, we construct a dominance gragh = (V’, E’) by adding
an additional vertex, an edge front to u, and edges frorm to any vertex but, i.e.,
V' =Vu{ulandE' = EU{(t,u)} Uu{(u,Vv)|VveV,v=t}. ltis easily verified thaG’
can be computed fror® by a Boolean circuit of constant depth. We claim thas
contained in the Schwartz set fGf if and only if there exists a path frosito t in G.
First of all, we observe that a path frosto t in G’ exists if and only if such a path
already existed i, since we have not added any outgoing edgesotoany incoming
edges ta. By construction, every vertex @’, includings, can be reached froin
Hence, by Lemma 15 cannot be contained in the Schwartz sdtdgannot be reached
from s. Conversely assume thiais reachable frons. Then this property holds as well
for every vertex ofG’, particularly those from whicls can be reached. In virtue of
Lemma 1, we may conclude thats in the Schwartz set. m|

For all choice sets considered so far, we can chéoiently whether they contain
a particular alternative or not. Unfortunately, this is ©ate for stable sets (unless
P=NP).

Theorem 5 IN-STABLE is NP-complete, even if a non-empty stable set is guaranteed
to exist.

Proof: Membershipn NP is obvious. Given a dominance graph over afsef alter-
natives and a particular alternatige= A, we can simply guess a sub&¢tC A such



thata € U, and verify that for every ¢ U there is an edge from some elementbf
to b and that there are no edges between verticés. of

For hardnesswe provide a reduction from satisfiability of a Boolean fateB
(SAT) to the problem of deciding whether a designated altereati A is contained in
a stable set (or the union of all stable sets). The reductibased on the reduction by
Chvatal (1973) to show NP-hardness of the problem of degidihether a digraph has
akernel. LeB = A1.<m Vi<j<k Pij b€ aSAT instance over variables. We construct
an asymmetric dominance gra@h= (V, E) with three vertices;,, ¢, andc;s for each
clause ofB, four verticesx;, x;, X', andx’ for each variable 0B, and four additional
verticesd, dy, d3, andds, such thatl; is contained in a stable set if and onl\Bfhas
a satisfying assignment. Verticeg will henceforth called clause verticeg,and x;
will be referred to as positive and negative literal vetioespectively. Edges are such
that the vertices of each clause form a directed cycle ofttetigee, and the vertices
of each variable as well as the decision vertices form a ayiclength four according
to the sequence given above. Furthermore, there is an eglgeafpositive or negative
literal vertex to all clause vertices of a clause in which tbgpective literal appears.
Finally, there is an edge fronl to every clause vertex. More formally, we have

E ={(d1, d2), (dz, d3), (d3, d4), (ds, d1) } U
{(Ci1, Gi2), (Ci2, Ci3), (Ci3, Ci1) [ L < T <m}uU
{06, %), (%, X)), (6, %), (6, %) [ L< i < [X[}U
{(%, €j2), (%, Cj2), (X, €j3) | pje = X for some 1< £ < kj}u
{ (%, ¢ja), (%, €j2), (X, Cja) | pje = X for some 1< £ < kj}U
{(d2, Cin), (d2, Ci2), (A, Ciz) | L < i < m}.

Figure 2 illustrates this construction for a particular Bam formula. We observe the
following facts: G can be constructed frod in polynomial time. {x;,x' | 1 < i <
m}U{d,, ds} is a stable set db irrespective of the structure & Every stable set db
must either contaigl; andds or d; andd,, but not both. For each every stable set
must either contaiw; andx’ or x; andx’, but not both. A stable set & cannot contain
a pair of clause vertices for the same clause. In turn, aest®ilmust contain vertices
with outgoing edges to at least two of the three vertices ¥ereclause. However,
every vertex that has an outgoing edge to any vertex for séause has an outgoing
vertex to all three vertices for that clause. Hence, a stabtecannot contain any
clause vertices. A stable set must contain eitheor a subset of the literal vertices
containing at least one vertex for a literal in every clauS&ce a stable set cannot
contain bothx; and x;, the latter corresponds to a satisfying assignnienHence, a
stable set containingy exists if and only ifB is satisfiable. m]

We can actually derive a stronger result, concerning thepeaational complexity
of anychoice rule that is guaranteed to select an alternative &a@table set, if such
an alternative exists.

Theorem 6 Consider a choice rule that selects an alternative from blstaet if one
exists and an arbitrary alternative otherwise. This chaigke cannot be executed in
worst-case polynomial time unlessRP.



Figure 2: Dominance graph for the Boolean formway o V X3 V Xg) A (X4 V Xs)
according to the construction used in the proof of Theorentf% certain variable
appears exclusively as either positive or negative lité¢hal other three vertices for the
variable can be omitted.

Proof: Again consider the construction used in the proof of Thedseand illustrated
in Figure 2. In this construction, four designated vertidgso d, have been used
to guarantee the existence of a stable set, no matter whidtn@nderlying Boolean
formula B has a satisfying assignment or not. This guarantee alsosibanfinding
somealternative that belongs to a stable set is trivial. It isilgagerified that if we
remove verticesl; to ds, a stable set in grap® exists if and only ifB has a satisfying
assignment, and the vertices in such a stable set are thossponding to the literals
set to true in a particular satisfying assignments.

Now consider a Turing machine with an oracle that computésglesalternative
belonging to a stable set, if such a set exists, and an anpatternative otherwise.
Using this machine, the existence of a satisfying assigtfioera particular Boolean
formulaB can be decided as follows. First, compute the dominancehd@sap (V, E)
corresponding td. Then, iteratively reduce the graph by requesting a vertegm
the oracle and removing vertices as followsv i x; or v = x for some 1< i < [X],
removex;, X/, X, X and allc;j such that X;, ¢ij) € E; if v= X orv = X for some 1<
i < |X], removex;, X', X, X and allc;; such that %, c;;) € E. If at some point there
no longer exists any vertax;, let the machine halt and accept. If at some point there
no longer exists any; or x; but there still is some;;, or if the oracle returns;; for
some 1<i <m, j€{1,2 3}, let the machine halt and reject.

As already pointed out in the proof of Theorem 5, the gr&ptan be computed
from B in polynomial time. In every later step, the machine eith&itshor removes
at least one vertex, of which there are only polynomially ynadence, the machine



tournaments | general dominance
graphs
IS-CONDORCET
IN-COPELAND TCP-complete
IN-SMITH TCO-complete
IN-SCHWARTZ NL-complete
IN-STABLE NP-complete

Table 1: Complexity of choice sets

is guaranteed to halt after a polynomial number of stepsthEumnore, if the machine
accepts, the set of all vertices returned by the oracle fostalzle set o5, which can
only exist if B has a satisfying assignment. We have thus provided a Coaictied
from SAT to the problem of selecting an arbitrary element of a stadtieshowing that
a polynomial-time algorithm for the latter would imply=RIP. m]

While the union of all stable sets need not in general be @uedain the Schwartz
set (seee.g, Figure 1), this is the case for the dominance graphs usetkiproofs
of the previous two theorems. Hence, hardness holds as avetleciding whether
an alternative lies in the intersection of a stable set andithwartz set, and for any
choice rule that selects an alternative that is both in destai and in the Schwartz set.

5 Conclusion

We have investigated the relationships and computati@maptexity of various choice
sets based on the pairwise majority relation. Table 1 sunzesmour complexity-
theoretic results, which can be interpreted as follows.cAtlisidered problems except
IN-STABLE are computationally tractable. Moreover, these problerascantained
in the complexity class NC of problems amenable to paratehgutation. All prob-
lems exceptN-SCHWARTZ andIN-STABLE can be solved on a deterministic Turing
machine using only logarithmic space. These results carsée 10 make statements
regarding the complexity of entire classes of choice rudas, the hardness of every
choice rule that picks an alternative from a stable set.

In addition, Table 1 underlines the significanffdience between tournaments and
general dominance graphs. Surprisingly, the Smith seetuout to be computation-
ally easier than the Schwartz set in general dominance gi@pitess T€=NL), while
both concepts coincide in tournaments. Deciding whetheal@nnative is included
in a stable set is NP-complete in general dominance gragtik im tournaments the
same problem is equivalent to the %C€omplete problem of deciding whether the al-
ternative is the Condorcet winner.

Finally, it should be noted that our results are fairly gaher the sense that they
only rely on theasymmetrypf the dominance relation. As a matter of fact, all consid-
ered sets are reasonable substitutes for maximality inabe 6f non-transitive rela-
tions, no matter whether these relations stem from aggedgaeferences or not.
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