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Abstract

Electoral control refers to attempts by an election’s organizer (“the
chair”) to influence the outcome by adding/deleting/partitioning vot-
ers or candidates. The groundbreaking work of Bartholdi, Tovey, and
Trick [BTT92] on (constructive) control proposes computational com-
plexity as a means of resisting control attempts: Look for election sys-
tems where the chair’s task in seeking control is itself computationally
infeasible.
We introduce and study a method of combining two or more candidate-
anonymous election schemes in such a way that the combined scheme
possesses all the resistances to control (i.e., all the NP-hardnesses of con-
trol) possessed by any of its constituents: It combines their strengths.
From this and new resistance constructions, we prove for the first time
that there exists an election scheme that is resistant to all twenty stan-
dard types of electoral control.
Key words: multiagent systems, computational social choice, preference
aggregation, computational complexity, electoral control.

1 Introduction

Elections are a way of, from a collection of voters’ (or agents’) individual pref-
erences over candidates (or alternatives), selecting a winner (or outcome). The
importance of and study of elections is obviously central in political science,
but also spans such fields as economics, mathematics, operations research, and
computer science. Within computer science, the applications of elections are
most prominent in distributed AI, most particularly in the study of multiagent
systems. For example, voting has been concretely proposed as a computational
mechanism for planning [ER91,ER93] and has also been suggested as an ap-
proach to collaborative filtering [PHG00]. However, voting also has received
attention within the study of systems. After all, many distributed algorithms
must start by selecting a leader, and election techniques have also been pro-
posed to attack the web page rank aggregation problem and the related issue of
lessening the spam level of results from web searches [DKNS01,FKS03]. Indeed,
in these days of a massive internet with many pages, many surfers, and many
robots, of intracorporate decision-making potentially involving electronic input
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from many units/individuals/warehouses/trucks/sources, and more generally
of massive computational settings including many actors, it is easy to note any
number of situations in which elections are natural and in which the number of
candidates and/or voters might be massive. For example, suppose amazon.com
were to select a “page of the week” via an election where the candidates were
all its web pages and the voters were all visiting surfers (with preferences in-
ferred from their page-viewing times or patterns); such an election would have
an enormous number of candidates and voters. All these applications are excit-
ing, but immediately bring to a theoretician’s mind the worry of whether the
complexity of implementing election systems is satisfyingly low and whether
the complexity of distorting (controlling or manipulating) election systems is
reassuringly high.

Since the complexity of elections is a topic whose importance has made
itself clear, it is natural to ask whether the standard tools and techniques of
complexity-theoretic study exist in the context of elections. One important
technique in complexity is the combination of problems. For example, for sets
in complexity theory, a standard approach to combination is the join (also
known as the disjoint union and as the marked union): A ⊕ B = {0x | x ∈
A} ∪ {1y | y ∈ B}.

In some sense, our work in this paper can be thought of as simply providing,
for elections, an analog of the join. That is, we will propose a method of com-
bining two (or more) elections in a way that will maintain desirable simplicity
properties (e.g., if all of the constituent elections have polynomial-time win-
ner algorithms then so will our combined election) while also inheriting quite
aggressively desirable hardness properties (we will show that any resistance-
to-control—in the sense that is standard [BTT92] and that we will provide a
definition of later—possessed by even one of the constituent elections will be
possessed by the combined election). One cannot directly use a join to achieve
this, because the join of two sets modeling elections is not itself an election.
Rather, we must find a way of embedding into election specifications—lists
of voter preferences over candidates—triggers that both allow us to embed
and switch between all the underlying election systems and to not have such
switching go uncontrollably haywire when faced with electoral distortions such
as adding/deleting/partitioning voters/candidates, since we wish hardness with
respect to control by such mechanisms to be preserved.

We above have phrased this paper’s theme as the development of a way of
combining multiple election systems—and in doing so, have desirable types of
simplicity/complexity inheritance. However, this paper also has in mind a very
specific application—both for its own interest and as a sounding board against
which our election hybridization scheme can be tested. This application is the
control of election systems.

In election control, we ask whether an election’s organizer (the chair)
can by some specific type of manipulation of the election’s structure
(adding/deleting/partitioning voters/candidates) cause a specified candidate to
be the (unique) winner. As mentioned earlier, the complexity-theoretic study



of control was proposed by Bartholdi, Tovey, and Trick in 1992 [BTT92]. We
will closely follow their model. In this model, the chair is assumed to have
knowledge of the vote that will be cast by each voter, and there are ten dif-
ferent types of control (candidate addition, candidate deletion, voter addition,
voter deletion, partition of candidates, run-off partition of candidates, and par-
tition of voters [BTT92]—and for each of the three partition cases one can have
subelection ties promote or can have subelection ties eliminate, see [HHR05a]).

Of course, the dream case would be to find an election system that has
the desirable property of having a polynomial-time algorithm for evaluating
who won, but that also has the property that for every single one of the ten
standard types of control it is computationally infeasible (NP-hard) to assert
such control. Unfortunately, no system yet has been proven resistant to all
ten types of control. In fact, given that broad “impossibility” results exist for
niceness of preference aggregation systems (e.g., Arrow’s Theorem [Arr63]) and
for nonmanipulability of election systems (e.g., the Gibbard–Satterthwaite and
Duggan–Schwartz Theorems ([Gib73,Sat75,DS00], see also [Tay05])), one might
even momentarily wonder whether the “dream case” mentioned above can be
proven impossible via proving a theorem of the following form: “For no election
system whose winner complexity is in P are all ten types of control NP-hard.”
However, such a claim is proven impossible by our work: Our hybrid system
in fact will allow us to combine all the resistance types of the underlying elec-
tions. And while doing so, it will preserve the winner-evaluation simplicity of
the underlying elections. Thus, in particular, we conclude that the “dream
case” holds: There is an election system—namely, our hybridization of plural-
ity and Condorcet elections—that is resistant to all ten types of constructive
control. We also show—by building some artificial election systems achieving
resistance to destructive control types for which no system has been previously
proven resistant and then invoking our hybridization machinery—that there is
an election system that is resistant to all ten types of destructive control (in
which the chair’s goal is to preclude a given candidate from being the (unique)
winner) as well as to all ten types of constructive control (Theorem 3.8).

Our hybridization system takes multiple elections and maintains their sim-
plicity while inheriting each resistance-to-control possessed by any one of its
constituents. Thus, it in effect unions together all their resistances—thus the
“broaden” of our title. We mention in passing that in the quite different set-
ting of election manipulation (which regards not actions by the chair but rather
which regards voters altering their preferences in an attempt to influence who
becomes the winner) [BTT89a], there has been some work by Conitzer and
Sandholm [CS03] regarding making manipulation hard, even for systems where
it is not hard, by changing the system by going to a two-stage election in which
a single elimination preround is added, and Elkind and Lipmaa [EL05] have
generalized this to a sequence of elimination rounds conducted under some sys-
tem(s) followed by an election under some other system. Though the latter
paper like this paper uses the term “hybrid,” the domains differ sharply and
the methods of election combination are nearly opposite: Our approach (in or-



der to broaden resistance to control) embeds the election systems in parallel
and theirs (in order to fight manipulation) strings them out in sequence. Of the
two approaches, ours far more strongly has the flavor of our simple motivating
example, the join.

The previous work most closely related to that of this paper is the construc-
tive control work of Bartholdi, Tovey, and Trick [BTT92] and the destructive
control work of Hemaspaandra, Hemaspaandra, and Rothe [HHR05a]. Work
on bribery is somewhat related to this paper, in the sense that bribery can
be viewed as sharing aspects of both manipulation and control [FHH06]. Of
course, all the classical [BTT89b,BTT89a,BO91] and recent papers (of which
we particularly point out, for its broad framework and generality, the work of
Spakowski and Vogel [SV00]) on the complexity of election problems share this
paper’s goal of better understanding the relationship between complexity and
elections.

We here omit proofs due to lack of space, but detailed proofs are available
in the full version of this paper [HHR06].

2 Definitions and Discussion

2.1 Elections

An election system (or election rule or election scheme or voting system) E is
simply a mapping from (finite though arbitrary-sized) sets (actually, mathe-
matically, they are multisets) V of votes (each a preference order—strict, tran-
sitive, and complete—over a finite candidate set) to (possibly empty, possibly
nonstrict) subsets of the candidates. All votes in a given V are over the same
candidate set, but different V ’s of course can be over different (finite) candidate
sets. Each candidate that for a given set of votes is in E ’s output is said to be
a winner. If for a given input E outputs a set of cardinality one, that candidate
is said to be the unique winner. Election control focuses on making candidates
be unique winners and on precluding them from being unique winners.

Throughout this paper, a voter’s preference order will be exactly that: a
tie-free linear order over the candidates. And we will discuss and hybridize
only election systems based on preference orders.

We now define two common election systems, plurality voting and Condorcet
voting. In plurality voting, the winners are the candidates who are ranked first
the most. In Condorcet voting, the winners are all candidates (note: there can
be at most one and there might be zero) who strictly beat each other candidate
in head-on-head majority-rule elections (i.e., get strictly more than half the
votes in each such election). For widely used systems such as plurality voting,
we will write plurality rather than Eplurality.

We say that an election system E is candidate-anonymous if for every pair
of sets of votes V and V ′, ‖V ‖ = ‖V ′‖, such that V ′ can be created from V by
applying some one-to-one mapping h from the candidate names in V onto new
candidate names in V ′ (e.g., each instance of “George” in V is mapped by h



to “John” in V ′ and each instance of “John” in V is mapped by h to “Hillary”
in V ′ and each instance of “Ralph” in V is mapped by h to “Ralph” in V ′) it
holds that E(V ′) = {c′ | (∃c ∈ E(V )) [h(c) = c′]}. Informally put, candidate-
anonymity says that the strings we may use to name the candidates are all
created equal. Note that most natural systems are candidate-anonymous. For
example, both the election systems mentioned immediately above—plurality-
rule elections and the election system of Condorcet—are candidate-anonymous.

2.2 Our Hybridization Scheme

We now define our basic hybridization scheme, hybrid.

Definition 2.1 Let E0, E1, . . . , Ek−1 be election rules that take as input voters’
preference orders. Define hybrid(E0, E1, . . . , Ek−1) to be the election rule that
does the following: If there is at least one candidate and all candidate names
(viewed as natural numbers via the standard bijection between Σ∗ and N) are
congruent, modulo k, to i (for some i, 0 ≤ i ≤ k − 1) then use election rule Ei.
Otherwise use, by convention, Ek−1 as the default election rule.

Having defined our system there is much to discuss. Why did we choose
this system? What are its properties? What other approaches did we choose
not to use, and why? What aspects of the input is our method for switching
between election systems using, and what aspects is it choosing not to exploit,
and what are the costs associated with our choices?

As to the properties of this system, Section 3 is devoted to that, but most
crucially we will see that this system possesses every resistance-to-control prop-
erty possessed by even one of its constituents. And this will hold essentially
due to the fact that hybrid is a close analog of the effect of a join: It splices the
constituents together in such a way that key questions about the constituent
systems can easily be many-one polynomial-time reduced (≤p

m-reduced or re-
duced, for short) to questions about their hybrid.

As to why we chose this particular system, note that hybrid “switches” be-
tween constituent systems via wildly redundant information. This will let us
keep deletions/partitions of voters/candidates from causing a switch between
the underlying systems (if the starting state routed us to a nondefault case).
Note that some other approaches that one might take are more sensitive to
deletions. For example, suppose we wanted to hybridize just two election sys-
tems and decided to do so by using the first election system exactly if the first
voter’s most disliked candidate’s name is lexicographically less than the first
voter’s second-most-disliked candidate’s name. Note that if, as part of our
control problem, that voter is deleted, that might suddenly change the system
to which the problem is routed. Or, as another example, if we use the mod-
ulo k value of the name of the lexicographically smallest candidate to control
switching between the k election systems, then that hybridization approach
would be very sensitive to jumping between systems if, as part of our control
problem, that candidate is deleted. These examples give some idea of why we



chose the approach we did, though admittedly even it can in some cases be
nudged into jumping between systems—but at least this happens in very lim-
ited, very crisply delineated cases and in ways that we will generally be able to
appropriately handle.

Finally, we come to what we allow ourselves to use to control the switching,
what we choose not to use, and what price we pay for our choices. What we
use (as is allowed in the [BTT92] model) are the candidates’ names and only
the candidates’ names. We use absolutely nothing else to control switching
between elections. We do not use voters’ names. Indeed, in the [BTT92] model
that we follow, voters (unlike candidates) do not even have names. But since
the votes are input as a list, their ordering itself could be used to pass bits of
information—e.g., we could look at whether the first vote in the list viewed as
a string is lexicographically less than the last vote in the list viewed as a string.
We in no way “cheat” by exploiting such input-order information, either for the
votes or for the list of candidates (as per [BTT92], formally the candidate set is
passed in separately to cover a certain boundary case). Our “switch” is based
purely on candidates’ names and just candidates’ names. This also points to
the price we pay for this choice: Even when all its constituent elections are
candidate-anonymous, hybrid may not possess candidate-anonymity.

2.3 Types of Constructive and Destructive Control

Constructive control problems ask whether a certain class of actions by the
election’s chair can make a specified candidate the election’s unique winner.
Constructive control was first defined and studied by Bartholdi, Tovey, and
Trick [BTT92]. Destructive control problems ask whether a certain class of ac-
tions by the election’s chair can make a specified candidate fail to be a unique
winner of the election. Destructive control was defined and studied by Hemas-
paandra, Hemaspaandra, and Rothe [HHR05a], and in the different context
of electoral manipulation destruction was introduced even earlier by Conitzer,
Lang, and Sandholm [CS02,CLS03].

Bartholdi, Tovey, and Trick’s [BTT92] groundbreaking paper defined seven
types of electoral control. Among those seven, three are partition problems
for which there are two different natural approaches to handling ties in sub-
elections (see [HHR05a] which introduced these tie-handling models for this
context): eliminating tied subelection winners (the “TE” model) or promoting
tied subelection winners (the “TP” model). Thus, there are (7− 3) + 2 · 3 = 10
different standard types of constructive control, and there are essentially the
same ten types of destructive control.

Since it is exceedingly important to not use a slightly different problem
statement than earlier work whose results we will be drawing on, we will state
the seven standard constructive control types (which become ten with the three
partition control types each having both “TE” and “TP” versions) and their
destructive analogs using word-for-word definitions from [HHR05a,HHR05b],
which themselves are based closely and often identically on [BTT92] (see the



discussion in [HHR05a,HHR05b]).
Though V , the set of votes, is conceptually a multiset as in the previous

related work, we take the view that the votes are input as a list (“the ballots”),
and in particular are not directly input as a multiset in which cardinalities are
input in binary (though we will mention later that our main result about hybrid
holds also in that quite different model).
Constructive (Destructive) Control by Adding Candidates: Given a
set C of qualified candidates and a distinguished candidate c ∈ C, a set D of
possible spoiler candidates, and a set V of voters with preferences over C∪D, is
there a choice of candidates from D whose entry into the election would assure
that c is (not) the unique winner?
Constructive (Destructive) Control by Deleting Candidates: Given a
set C of candidates, a distinguished candidate c ∈ C, a set V of voters, and
a positive integer k < ‖C‖, is there a set of k or fewer candidates in C whose
disqualification would assure that c is (not) the unique winner?
Constructive (Destructive) Control by Partition of Candidates: Given
a set C of candidates, a distinguished candidate c ∈ C, and a set V of voters,
is there a partition of C into C1 and C2 such that c is (not) the unique winner
in the sequential two-stage election in which the winners in the subelection
(C1, V ) who survive the tie-handling rule move forward to face the candidates
in C2 (with voter set V )?
Constructive (Destructive) Control by Run-Off Partition of Candi-
dates: Given a set C of candidates, a distinguished candidate c ∈ C, and a set
V of voters, is there a partition of C into C1 and C2 such that c is (not) the
unique winner of the election in which those candidates surviving (with respect
to the tie-handling rule) subelections (C1, V ) and (C2, V ) have a run-off with
voter set V ?
Constructive (Destructive) Control by Adding Voters: Given a set of
candidates C and a distinguished candidate c ∈ C, a set V of registered voters,
an additional set W of yet unregistered voters (both V and W have preferences
over C), and a positive integer k ≤ ‖W‖, is there a set of k or fewer voters from
W whose registration would assure that c is (not) the unique winner?
Constructive (Destructive) Control by Deleting Voters: Given a set of
candidates C, a distinguished candidate c ∈ C, a set V of voters, and a positive
integer k ≤ ‖V ‖, is there a set of k or fewer voters in V whose disenfranchise-
ment would assure that c is (not) the unique winner?
Constructive (Destructive) Control by Partition of Voters: Given a
set of candidates C, a distinguished candidate c ∈ C, and a set V of voters, is
there a partition of V into V1 and V2 such that c is (not) the unique winner in
the hierarchical two-stage election in which the survivors of (C, V1) and (C, V2)
run against each other with voter set V ?



2.4 Immunity, Susceptibility, Vulnerability, Resistance

Again, to allow consistency with earlier papers and their results, we take this
definition from [HHR05a,HHR05b], with the important exception regarding re-
sistance discussed below Definition 2.2. It is worth noting that immunity and
susceptibility both are “directional” (can we change this?) but that vulnerabil-
ity and resistance are, in contrast, outcome-oriented (can we end up with this
happening?) and complexity-focused.

Definition 2.2 We say that a voting system is immune to control in a given
model of control (e.g., “destructive control via adding candidates”) if the model
regards constructive control and it is never possible for the chair to by using
his/her allowed model of control change a given candidate from being not a
unique winner to being the unique winner, or the model regards destructive
control and it is never possible for the chair to by using his/her allowed model
of control change a given candidate from being the unique winner to not being
a unique winner. If a system is not immune to a type of control, it is said to
be susceptible to that type of control.

A voting system is said to be (computationally) vulnerable to control if it is
susceptible to control and the corresponding language problem is computationally
easy (i.e., solvable in polynomial time).

A voting system is said to be resistant to control if it is susceptible to control
but the corresponding language problem is computationally hard (i.e., NP-hard).

We have diverged from all previous papers by defining resistance as meaning
NP-hardness (i.e., NP-≤p

m-hardness) rather than NP-completeness (i.e., NP-
≤p

m-completeness). In [BTT92], where the notion was defined, all problems
were trivially in NP. But control problems might in difficulty exceed NP-
completeness, and so the notion of resistance is better captured by NP-hardness.

An anonymous IJCAI referee commented that even polynomial-time algo-
rithms can be expensive to run on sufficiently large inputs. We mention that
though the comment is correct, almost any would-be controller would proba-
bly much prefer that challenge, solving a P problem on large inputs, to the
challenge our results give him/her, namely, solving an NP-complete problem on
large inputs. We also mention that since the hybrid scheme is designed so as
to inherit resistances from the underlying schemes, if a hybrid requires extreme
ratios between the number of candidates and the number of voters to display
asymptotic hardness, that is purely due to inheriting that from the underlying
systems. Indeed, if anything the hybrid is less likely to show that behavior
since, informally put, if even one of the underlying systems achieves asymptotic
hardness even away from extreme ratios between the number of candidates and
the number of voters, then their hybrid will also.

2.5 Inheritance

We will be centrally concerned with the extent to which hybrid(E0, E1, . . . , Ek−1)
inherits the properties of its constituents. To do so, we formally define our



notions of inheritance (if all the constituents have a property then so does their
hybrid) and of strong inheritance (if even one of the constituents has a property
then so does the hybrid).

Definition 2.3 We say that a property Γ is strongly inherited (respectively,
inherited) by hybrid if the following holds: Let k ∈ N+. Let E0, E1, . . . , Ek−1

be candidate-anonymous election systems (each taking as input (C, V ), with V
a list of preference orders). It holds that hybrid(E0, E1, . . . , Ek−1) has property
Γ if at least one of its constituents has (respectively, all its constituents have)
property Γ.

Definition 2.3 builds in the assumption that all constituents are candidate-
anonymous. This assumption isn’t overly onerous since as mentioned earlier
candidate-anonymity is very common—but will be used in many of our proofs.

Though we will build candidate-anonymity into the assumptions underlying
inheritance, we will often try to let interested readers know when that assump-
tion is not needed. In particular, when we say “inherited (and flexibly so)”
or “strongly inherited (and flexibly so),” the “(and flexibly so)” indicates that
the claim holds even if in Definition 2.3 the words “candidate-anonymous” are
deleted. For example, the following easy but quite important claim follows
easily from the definition of hybrid.

Proposition 2.4 “Winner problem membership in P,” “unique winner prob-
lem membership in P,” “winner problem membership in NP,” and “unique win-
ner problem membership in NP” are inherited (and flexibly so) by hybrid.

3 Inheritance and Hybrid Elections: Results

In this section we will discuss the inheritance properties of hybrid with respect
to susceptibility, resistance, immunity, and vulnerability. Table 1 summarizes
our results for the cases of constructive control and destructive control. (This
table does not discuss/include the issue of when “(and flexibly so)” holds, i.e.,
when the candidate-anonymity assumption is not needed, but rather focuses on
our basic inheritance definition.)

3.1 Susceptibility

We first note that susceptibility strongly inherits. We remind the reader that
throughout this paper, when we speak of an election system, we always im-
plicitly mean an election system that takes as input (C, V ) with V a list of
preference orders over C.

Theorem 3.1 Let k ∈ N+ and let E0, E1, . . . , Ek−1 be election systems. Let Φ
be one of the standard twenty types of (constructive and destructive) control.
If for at least one i, 0 ≤ i ≤ k − 1, Ei is candidate-anonymous and susceptible
to Φ, then hybrid(E0, E1, . . . , Ek−1) is susceptible to Φ.



Control by Susceptibility Resistance Immunity Vulnerability

Adding Candidates SI SI Not I / I∗ I
Deleting Candidates SI SI I / Not I∗ I iff P = NP
Partition SI SI Not I On (??) systems:
of Candidates (TE) I iff SI iff P = NP
Partition SI SI Not I On (?) systems:
of Candidates (TP) I iff SI iff P = NP
Run-off Partition SI SI Not I On (??) systems:
of Candidates (TE) I iff SI iff P = NP
Run-off Partition SI SI Not I On (?) systems:
of Candidates (TP) I iff SI iff P = NP
Adding Voters SI SI I I
Deleting Voters SI SI I I
Partition SI SI I I
of Voters (TE)
Partition SI SI I I
of Voters (TP)

Table 1: Inheritance results that hold or provably fail for hybrid. Key: I =
Inherits. SI = Strongly Inherits. Boxes without a ∗ state results for both
constructive and destructive control. In boxes with a ∗, the ∗ refers to the
destructive control case. “On (?) systems” is a shorthand for “On election sys-
tems having winner problems in the polynomial hierarchy.” “On (??) systems”
is a shorthand for “On election systems having unique winner problems in the
polynomial hierarchy.”

Corollary 3.2 hybrid strongly inherits susceptibility to each of the standard
twenty types of control.

3.2 Resistance

We now come to the most important inheritance case, namely, that of resistance.
Since our hope is that hybrid elections will broaden resistance, the ideal case
would be to show that resistance is strongly inherited. And we will indeed
show that, and from it will conclude that there exist election systems that are
resistant to all twenty standard types of control.

We first state the key result, which uses the fact that hybrid can embed
its constituents to allow us to ≤p

m-reduce from control problems about its con-
stituents to control problems about hybrid.

Theorem 3.3 Let k ∈ N+ and let E0, E1, . . . , Ek−1 be election systems. Let Φ
be one of the standard twenty types of (constructive and destructive) control. If
for at least one i, 0 ≤ i ≤ k− 1, Ei is candidate-anonymous and resistant to Φ,
then hybrid(E0, E1, . . . , Ek−1) is resistant to Φ.

Corollary 3.4 hybrid strongly inherits resistance to each of the standard
twenty types of control.



Before we turn to applying this corollary, let us note that Theorem 3.3 and
Corollary 3.4 are both, as is this entire paper, within the most natural, most
typical model: Votes are input as a list (“nonsuccinct” input) and each vote
counts equally (“unweighted” votes). We mention that for each of the other
three cases—“succinct, weighted,” “succinct, unweighted,” and “nonsuccinct,
weighted”—Theorem 3.3 and Corollary 3.4 both still hold.

Let us apply Corollary 3.4 to obtain election systems that are broadly re-
sistant to control.

Corollary 3.5 There exist election systems—for example, hybrid(plurality,
Condorcet)—that are resistant to all the standard ten types of constructive con-
trol.

To make the same claim for destructive control, a bit more work is needed,
since for three of the standard ten types of destructive control no system has
been, as far as we know, proven to be resistant. So we first construct an
artificial system, Enot-all-one (defined in the full version), having the missing
three resistance properties.

Lemma 3.6 There exists a candidate-anonymous election system, Enot-all-one,
that is resistant to (a) destructive control by deleting voters, (b) destructive
control by adding voters, and (c) destructive control by partition of voters in
the TE model.

Corollary 3.7 There exist election systems that are resistant to all ten stan-
dard types of destructive control.

We cannot apply Theorem 3.3 directly to rehybridize the systems of Corol-
laries 3.5 and 3.7, because hybrid itself is not in general candidate-anonymous.
However, we can get the same conclusion by directly hybridizing all the con-
stituents underlying Corollaries 3.5 and 3.7.

Theorem 3.8 There exist election systems that are resistant to all twenty stan-
dard types of control.

The proof simply is to consider hybrid(plurality,Condorcet, Enot-all-one).

3.3 Immunity

We now turn to inheritance of immunity. Here, for each of constructive and
destructive control, five cases inherit and five cases provably fail to inherit.

Theorem 3.9 Any candidate-anonymous election system that is immune to
constructive control by deleting candidates can never have a unique winner.

Since “never having a unique winner” is inherited by hybrid, Theorem 3.9
implies:



Theorem 3.10 Immunity to constructive control by deleting candidates is in-
herited by hybrid.

By applying a duality result of Hemaspaandra, Hemaspaandra, and Rothe
multiple times, we can retarget this to a type of destructive control.

Proposition 3.11 ([HHR05b]) A voting system is susceptible to construc-
tive control by deleting candidates if and only if it is susceptible to destructive
control by adding candidates.

Corollary 3.12 Immunity to destructive control by adding candidates is in-
herited by hybrid.

hybrid’s immunity to all voter-related types of control is immediate.

Theorem 3.13 Immunity to constructive and destructive control under each
of (a) adding voters, (b) deleting voters, (c) partition of voters in model TE,
and (d) partition of voters in model TP is inherited (and flexibly so) by hybrid.

For the ten remaining cases, inheritance does not hold.

3.4 Vulnerability

hybrid strongly inherited resistance, which is precisely what one wants, since
that is both the aesthetically pleasing case and broadens resistance to control.
However, for vulnerability it is less clear what outcome to root for. Inheritance
would be the mathematically more beautiful outcome. But on the other hand,
what inheritance would inherit is vulnerability, and vulnerability to control is
in general a bad thing—so maybe one should hope for “Not I(nherits)” entries
for our table in this column. In fact, our results here are mixed. In particu-
lar, we for ten cases prove that inheritance holds unconditionally and for ten
cases prove that inheritance holds (though in some cases we have to limit our-
selves to election systems with winner/unique winner problems that fall into
the polynomial hierarchy) if and only if P = NP.

4 Conclusions

Table 1 summarizes our inheritance results. The main contribution of this
paper is the hybrid system, the fact that hybrid strongly inherits resistance,
and the consequence that there is an election system that resists all twenty
standard types of electoral control. The authors jointly with P. Faliszewski
are currently working to show that some natural election systems may exhibit
broad resistance to control.

Acknowledgments: We thank Holger Spakowski, COMSOC ’06 referees, and
IJCAI ’07 referees for helpful comments.
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