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Abstract

We study the complexity of influencing elections through bribery: How
computationally complex is it for an external actor to determine whether
by a certain amount of bribing voters a specified candidate can be made
the election’s winner? We study this problem for election systems as var-
ied as scoring protocols and Dodgson voting, and in a variety of settings
regarding the nature of the voters, the size of the candidate set, and the
specification of the input. We obtain both polynomial-time bribery al-
gorithms and proofs of the intractability of bribery. Our results indicate
that the complexity of bribery is extremely sensitive to the setting. For
example, we find settings where bribing weighted voters is NP-complete in
general but if weights are represented in unary then the bribery problem
is in P. We provide a complete classification of the complexity of bribery
for the broad class of elections (including plurality, Borda, k-approval,
and veto) known as scoring protocols.

1 Introduction

This paper studies the complexity of bribery in elections, that is, the complexity
of computing whether it is possible, by modifying the preferences of a given
number of voters, to make some preferred candidate a winner. Recall that
an election system provides a framework for aggregating voters’ preferences—
ideally (though there is no truly ideal voting system [DS00,Gib73,Sat75]) in a
way that is satisfying, attractive, and natural. Societies use elections to select
their leaders, establish their laws, and decide their policies. However, practical
applications of elections are not restricted to people and politics. Many parallel
algorithms start by electing leaders; multiagent systems sometimes use voting
for the purpose of planning [ER93]; web search engines can aggregate results
using methods based on elections [DKNS01].

With such a range of applications, it is not surprising that elections may
have a wide range of voter-to-candidate proportions. For example, in typical
presidential elections there are relatively few candidates but there may be mil-
lions of voters. In the context of the web, one may consider web pages as voting
on other pages by linking to them, or may consider humans to be voting on
pages at a site by the time they spend on each. In such a setting we may have
both a large number of voters and a large number of candidates. On the other
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hand, Dwork et al. [DKNS01] suggest designing a meta search engine that treats
other search engines as voters and web pages as candidates. This yields very
few voters but many candidates.

Typically, we are used to the idea that each vote is equally important.
However, all the above scenarios make just as much sense in a setting in which
each voter has a different voting power. For example, U.S. presidential elections
are in some sense weighted (different states have different voting powers in
the Electoral College); shareholders in a company have votes weighted by the
number of shares they own; and search engines in the above example could be
weighted by their quality. Weighted voting is a natural choice in many other
settings as well.

The importance of election systems naturally inspired questions regarding
their resistance to abuse, and several potential dangers were identified and
studied. For example, the organizers can make attempts to control the outcome
of the elections by procedural tricks such as adding or deleting candidates or
encouraging/discouraging people from voting. Classical social choice theory
is concerned with the possibility or impossibility of such procedural control.
However, recently it was realized that even if control is possible, it may still
be difficult to find what actions are needed to effect control, e.g., because the
computational problem is NP-complete. The complexity of controlling who
wins the election was first studied by Bartholdi, Tovey, and Trick [BTT92].

Elections are endangered not only by the organizers but also by the voters
(manipulation), who might be tempted to vote strategically (that is, not ac-
cording to their true preferences) to obtain their preferred outcome. This is not
desirable as it can skew the result of the elections in a way that is arguably not in
the best interest of the society. The Gibbard–Satterthwaite/Duggan–Schwartz
Theorems [Gib73,Sat75,DS00] show that essentially all election systems can be
manipulated. So it is important to discover for which systems manipulation
is computationally difficult to execute. This line of research was started by
Bartholdi, Tovey, and Trick [BTT89a], and was continued by many researchers,
e.g, [CS02a,CS02b,CS03,CLS03,EL05,HH05].

Surprisingly, nobody seems to have addressed the issue of (the complexity
of) bribery, i.e., attacks where the person interested in the success of a partic-
ular candidate picks a group of voters and convinces them to vote as he or she
says. Bribery seems strongly motivated from both real life and from computa-
tional agent-based settings, and shares some of the flavor of both manipulation
(changing voters’ (reported) preferences) and control (deciding which voters
to influence). This paper initiates the study of the complexity of bribery in
elections.

There are many different settings in which bribery can be studied. In the
simplest one we are interested only in the least number of voters we need to
bribe to make our favored candidate win. A natural extension is to consider
prices for each voter. In this setting, voters are willing to change their true
preferences to anything we say, but only if we can meet their price. In an
even more complicated setting it is conceivable that voters would have different



prices depending on how we want to affect their vote (however, it is not clear
how to succinctly encode a voter’s price scheme). We study only the previous
two scenarios.

We classify election systems with respect to bribery by in each case seeking
to either prove the complexity is low by giving a polynomial-time algorithm
or argue intractability via proving the NP-completeness of discovering whether
bribery can affect a given case. We obtain a broad range of results showing
that the complexity of bribery depends closely on the setting. For example, for
weighted plurality elections, bribery is in P but jumps to being NP-complete if
the weighted voters have price tags as well. As another example, for approval
voting the manipulation problem is easily seen to be in P, but in contrast we
prove that the bribery problem is NP-complete. Yet we also prove that when
the bribery cost function is made more local the complexity of approval voting
falls back to P. For scoring protocols we obtain a full classification of the
complexity of bribery, for all the settings that we consider.

The paper is organized as follows. In the preliminary section we describe the
election systems and bribery problems we are interested in. Then we provide a
detailed study of bribery in plurality elections. After that we study connections
between manipulation and bribery, and fully classify bribery under scoring pro-
tocols. Finally, we study the case of succinctly represented elections. Due to
space limits, the proofs are omitted except for some brief sketches. All details
can be found in the full version [FHH06].

2 Preliminaries

We can describe elections by providing a set C = {c1, . . . , cm} of candidates, a
set V of voters specified by their preferences, and a rule for selecting winners. A
voter v’s preferences are represented as a list ci1 > ci2 > . . . > cim , {i1, i2, . . . ,
im} = {1, 2, . . . ,m}, where ci1 is the most preferred candidate and cim

is the
most despised one. We assume that preferences are transitive, complete (for
every two candidates each voter knows which one he or she prefers), and strict.

Let us briefly describe the election systems that we analyze in this paper.2

Winners of plurality elections are the candidate(s) who are the top choice of the
largest number of voters (of course, these will be different voters for different
winners). In approval voting each voter selects candidates he or she approves
of; the candidate(s) with the most approvals win.

A scoring protocol for m candidates is described by a vector α = (α1, . . . ,
αm) of nonnegative integers such that α1 ≥ α2 . . . ≥ αm. (We have not required

2In the social choice literature, often voting systems are assumed to have at least one
winner, or exactly one winner, but at least in terms of the notion of voting system, we do not
require such a restriction, since one can imagine wanting to study elections in which—perhaps
due to tie effects or symmetry effects (or even due to having zero candidates)—there is not
always exactly one winner. Indeed, in practice, in such elections as those on Hall of Fame
induction worthiness or on who should be hired at a given academic department, it is quite
possible that a real-world election system might give the answer “No one this year.”



α1 > αm, as we wish to classify the broadest class of cases possible, including
the usually easy boundary case when all αi’s are equal.) Each time a candidate
appears in the i’th position of a voter’s preference list, that candidate gets αi

points; the candidate(s) who receive the most points win. Well-known examples
of scoring protocols include the Borda count, plurality, k-approval, and veto
voting systems, where for m-candidate elections Borda count uses α = (m −
1,m − 2, . . . , 0), plurality uses α = (1, 0, . . . , 0, 0), k-approval uses (1k, 0m−k),
and veto uses α = (1, 1, . . . , 1, 0).

A Condorcet winner is a candidate who (strictly) beats all other candidates
in pairwise contests, that is, a Condorcet winner beats everyone else in pairwise
plurality elections. Clearly, there can be at most one Condorcet winner, but
sometimes there are none. There are many voting systems that choose the
Condorcet winner if one exists and use some compatible rule otherwise. One
such system is that of Dodgson, where a winner is the person(s) who can become
a Condorcet winner by a smallest number of switches in voters’ preference
lists. (A switch changes the order of two adjacent candidates on a list.) If a
Condorcet winner exists, he or she is the unique winner in Dodgson’s scheme.
See Dodgson [Dod76] for details regarding Dodgson’s voting rule, under which
it is known that winner testing is complete for parallel access to NP [HHR97].

Now let us define the bribery problem for a given election system E . All
numbers are nonnegative integers and, unless otherwise specified, are repre-
sented in binary. E-bribery is the following problem.

Given: A set C of candidates, a set V of voters specified via their preference
lists, distinguished candidate p, and a nonnegative integer k.

Question: Is it possible to make p a winner of the E election by changing the
preference lists of at most k voters?

Bribery problems come in several different flavors. In the unweighted case,
the default for this paper, all voters are equal; in the weighted case each voter
has a possibly different weight. In the E-$bribery family of problems we assume
that each voter has a price for changing his or her preference list. In such a
case we ask not whether we can bribe at most k people, but whether we can
make p a winner by spending at most k dollars on bribing. Naturally, we also
consider $bribery problems with weighted voters.

Regarding the fact that in these models voters are assumed to vote as the
bribes dictate, we stress that by using the term bribery, we do not intend
to imply any moral failure on the part of bribe recipients: Bribes are simply
payments.

Formally, our bribery problems speak of making the preferred candidate a
winner rather than making him or her the unique winner. However, essentially
all our results hold for the unique winner cases as well.

As always, we say A ≤p
m B (A many-one polynomial-time reduces to B) if

there is a polynomial-time computable function f such that x ∈ A ⇐⇒ f(x) ∈
B. We also use disjunctive truth-table reductions: A ≤p

dtt B (A disjunctively
truth-table reduces to B) if there is a polynomial-time procedure that on input



x outputs a list of strings such that x ∈ A if and only if at least one of those
strings is in B. See, e.g., the work of Ladner, Lynch, and Selman [LLS75] for
details regarding various reduction types. ‖S‖ denotes the cardinality of set S.

3 Plurality

In this section we establish the complexity of bribery for plurality rule elections.
The widespread use of plurality elections makes these results of particular rel-
evance.

Not surprisingly, plurality-bribery is easy.

Theorem 3.1 plurality-bribery is in P.

To make sure our favorite candidate p wins, it is enough to keep on bribing
voters of the currently most popular candidate to vote for p until p becomes a
winner. However, bribery within the plurality system is not always easy.

Theorem 3.2 plurality-weighted-$bribery is NP-complete, even for just two
candidates.

That is, bribery is easy in the simplest case, but if we allow voters to have
prices and weights, then the problem becomes intractable. It is natural to ask
which of the additional features (prices? weights?) is responsible for making the
problem difficult. It turns out that neither of them is the sole reason and that
only their combination yields enough power to make the problem NP-complete.

Theorem 3.3 Both plurality-$bribery and plurality-weighted-bribery are in
P.

A direct greedy algorithm, like that underpinning Theorem 3.1, fails to prove
Theorem 3.3. Rather we approach Theorem 3.3’s proof as follows. Assume
that p will be capable of getting at least r votes (or in the weighted case, r vote
weight), where r is some number to be specified later. If this is to make p a
winner, we need to make sure that everyone else gets at most r votes. Thus we
carefully choose enough cheapest (heaviest) voters of candidates that defeat p
and bribe those voters to vote for p. Then we simply have to make sure that
p gets at least r votes by bribing the cheapest (the heaviest) of the remaining
voters. If during this process p ever becomes a winner without exceeding the
budget (the bribe limit) then we know that bribery is possible. How do we
pick the value of r? In the case of plurality-$bribery, we can just run this
procedure for all ‖V ‖ possible values, and accept exactly if it succeeds for at
least one of them. For plurality-weighted-bribery a slightly trickier approach
works. (Essentially, we need to try only ‖V ‖ values as well; we can start from
r = 1 and always increase r so that minimally less people need to be bribed in
the first part of the above algorithm.)

Pushing the approach outlined above even further it is in fact possible to
get yet stronger results. In plurality-weighted-$bribery we assume that both



prices and weights are encoded in binary. However, if either the prices or the
weights are encoded in unary, then the problem becomes easy.

Theorem 3.4 Both plurality-weighted-$briberyunary and plurality-
weightedunary-$bribery are in P.

The main idea of the proof of Theorem 3.4 is the same as that underpinning
the proof of Theorem 3.3, but the details are more complicated. Theorem 3.4
is particularly interesting because it says that plurality-weighted-$bribery will
be difficult only if we choose both weights and bribe prices to be high. But the
prices are set by voters, and in many cases one could assume that there would
be fairly low values for the bribe prices and so the problem would be easy.

We can look at the problem of bribery within plurality elections from a
yet another perspective. Note that all of the above algorithms (in most cases,
implicitly) assume that we bribe others to vote for p. This is a reasonable
method of bribing if one wants p to become a winner, but it also has potential
real-world downsides: The more people we bribe, the more likely it may be that
the malicious attempts will be detected and will work against p. To minimize
the chances of that happening we might instead bribe voters not to vote for p
but for some other candidates. This way p does not get extra votes but might
be able to take away enough voters from the most popular candidates to become
a winner. We call this setting negative-bribery. Negative bribery draws a very
sharp line between the complexity of bribing weighted and priced voters.

Theorem 3.5 plurality-weighted-negative-bribery is NP-complete, but
plurality-negative-$bribery is in P.

4 Bribery versus Manipulation

The previous section provides a detailed discussion of the complexity of bribery
for plurality voting. Its results are obtained by hand-crafting algorithms and
reductions. It would be nicer if one could find tools that would let one inherit
complexity results from the vast election systems literature. In this section
we study relations between bribery and manipulation, and show how to obtain
results using the relations we find. In the next section we will discuss another
fairly general tool to study certain types of bribery and manipulation problems.

Manipulation is in flavor somewhat similar to bribery, with the difference
that in manipulation the set of voters who may change their preference lists is
specified by the input. Bribery can be viewed as manipulation where the set of
manipulators is not fixed in advance and finding who to manipulate is part of
the challenge. This might suggest that bribery problems should not be easier
than analogous manipulation ones. In fact, there are election systems for which
bribery is NP-complete but manipulation is easy.

Theorem 4.1 approval-bribery is NP-complete, but approval-manipulation
and approval-weighted-manipulation are both in P.



Algorithms for approval-manipulation and approval-weighted-manipulation are
trivial: The manipulating group approves of just the favorite candidate. The
NP-completeness result follows from a reduction from the NP-complete Exact-
Cover-by-3Sets problem.

Somewhat surprisingly, it is also possible that manipulation is NP-complete,
while bribery is in P. We have designed an artificial election system where this
is the case.

Theorem 4.2 There exists a voting system E for which manipulation is NP-
complete, but bribery is in P .

We briefly sketch a proof of this theorem. Let A be an NP-complete set and let
B ∈ P be such that

1. A = {x ∈ Σ∗ | (∃y ∈ Σ∗)[〈x, y〉 ∈ B]}, and

2. (∀x, y ∈ Σ∗)[〈x, y〉 ∈ B ⇒ |x| = |y|].

Such sets can easily be constructed from any NP-complete set by padding. The
idea of the proof is to embed a verifier for A within the election rule E . We
do this in a way that forces manipulation to solve arbitrary A instances, while
allowing bribery to still be easy.

First, we observe that preference lists can be used to encode arbitrary binary
strings. We will use the following encoding. For C a set of candidates, let
c1, c2, . . . , cm be those candidates in lexicographical order. We will view the
preference list

ci1 > ci2 > ci3 > · · · > cim

as an encoding of the binary string b1b2 · · · bbm/2c, where for each j, 1 ≤ j ≤
bm/2c, if i2j−1 > i2j then bj = 0 and otherwise bj = 1.

In our reduction, binary strings starting with 1 will encode instances, and
binary strings starting with 0 will encode witnesses. Given this setup, we can
describe our election system E . Let (C, V ) be an election. For each c ∈ C, c is
a winner of the election if and only if ‖V ‖ = 3 and

Rule 1: all preference lists encode strings starting with 1 or all preference lists
encode strings starting with 0, or

Rule 2: exactly one preference list encodes a string that starts with 1, say
1x, and at least one other preference list encodes a string 0y such that
〈x, y〉 ∈ B.

Thus, either all candidates are winners or none of them are winners. Note that
testing whether a candidate c is a winner of an E election can easily be done in
polynomial time. E-bribery is in P because we are in one of the following three
cases: all candidates are winners already, or no candidate can become a winner
because ||V || 6= 3, or we can make each candidate a winner by bribing exactly
one voter so that all voters’ preference lists encode strings that start with the
same symbol.



On the other hand, the ability to solve the manipulation problem for E im-
plies the ability to solve A. We construct a reduction from A to E-manipulation.
Given a string x ∈ Σ∗, we first check whether 〈x, 0|x|〉 ∈ B. If so, then clearly
x ∈ A and we output some fixed member of E-manipulation. Otherwise, we
output a manipulation problem with candidates {1, 2, . . . , 2(|x|+ 1)} and three
voters, v0, v1, and v2, such that v0’s preference list encodes 1x, v1’s prefer-
ence list encodes 00|x|, and v2 is the only manipulative voter. We claim that
candidate 1 can be made a winner if and only if x ∈ A.

Since 〈x, 0|x|〉 6∈ B, the only way in which v2 can make 1 a winner is when
v2 encodes a string 0y such that 〈x, y〉 ∈ B in which case x ∈ A. For the
converse, if x ∈ A, there exists a string y ∈ Σ|x| such that 〈x, y〉 ∈ B. We can
encode string 0y as a preference list over {1, 2, . . . , 2(|x| + 1)}, and let this be
the preference list for v2. This ensures that 1 is a winner of the election.

Since this reduction can be computed in polynomial time, and the E-
manipulation’s membership in NP is clear, we have that E-manipulation is
NP-complete.

While the above election system is not natural, together with the results
on approval voting it tells us that we cannot hope to get a result that says
“manipulation always reduces to an analogous bribery problem,” unless P =
NP. Nonetheless, if instead of looking at all election systems and all versions
of bribery and manipulation we somewhat restrict our focus, either to some
subclass of election systems or to some subclass of bribery types, then we can
still find interesting connections between the complexity of bribery and the
complexity of manipulation.

First, let us observe that to check whether bribery can be successful on a
given input we can simply try all possible manipulations by k voters, where
k is the number of bribes we are willing to make. This way for a fixed k
we can disjunctively truth-table reduce any bribery problem to the analogous
manipulation problem. In the following meta-theorem, B means any of our
bribery problems that does not involve prices, and M represents the analogous
manipulation problem.

Theorem 4.3 For each fixed k it holds that B ≤p
dtt M, where the bribery prob-

lem B allows at most k bribes, and the manipulation problem M allows the
manipulator set to contain any number of voters between 0 and k.

While simple, this result is still powerful enough to inherit some results from
previous papers. Bartholdi, Tovey, and Trick [BTT89a] discuss manipulations
by single voters. Theorem 4.3 translates their results to the bribery case. In
particular, this translation says that bribery for k = 1 is in P for plurality,
Borda count and many other systems.

Instead of looking at bribery problems that restrict the number of voters we
can affect, we can focus on a restricted set of election systems. Namely, we will
concentrate on a very natural and broad family, the scoring protocols.

Hemaspaandra and Hemaspaandra [HH05] showed a dichotomy theorem
that classifies weighted manipulation problems for all scoring protocols as either



being NP-complete or in P (see also [PR06] and the unpublished 2005 combined
version of [CS02a,CLS03]). By reducing manipulation to bribery for scoring
protocols (but also by employing several other insights) we have obtained an
analogous classification for the case of bribery.

Theorem 4.4 For each scoring protocol α = (α1, . . . , αm) Table 1 shows the
complexity of each of the five natural bribery problems for that scoring protocol.

We will now briefly sketch how Table 1 was obtained. First, let us note
that for each scoring protocol α = (α1, . . . , αm) such that α1 = · · · = αm any
bribery problem is in P; in this case each preference list has the same effect on
elections. For α1 > α2 = · · · = αm it is clear that each appropriate bribery
problem is a special case of an analogous bribery problem for plurality. (Only
the NP-completeness result needs some care, but it can be translated to the
scoring protocol world as well.) Thus, the interesting part of the table is that
where it is not the case that α2 = · · · = αm.

Each time we consider some scoring protocol α = (α1, . . . , αm) we automat-
ically limit ourselves to a setting with a fixed constant number of candidates,
namely m. Thus, there are only m! different preference orders each voter might
have, and so it is possible to evaluate all possible ways of bribing unweighted
voters. This gives us that both α-bribery and α-$bribery are in P for any α.
Using a similar in spirit, but somewhat more involved, dynamic-programming
algorithm we can also show that α-weightedunary-$bribery is in P.

It remains to show that α-weighted-bribery and α-weighted-$bribery are
NP-complete when it is not the case that α2 = · · · = αm. In the case of α-
weighted-$bribery this is fairly easy as we simply need to observe that manip-
ulation is in fact just a special case of $bribery (Theorem 4.5) and invoke the
Hemaspaandra and Hemaspaandra dichotomy theorem.

Theorem 4.5 Let M be some manipulation problem and let B be the analogous
$bribery problem (for the same election system). It holds that M≤p

m B.

The reduction simply takes an instance of the manipulation problem and out-
puts a bribery problem that is identical to the manipulation one only that all
the nonmanipulators have price 1, all manipulators have price 0 and (just for
specificity) some fixed preferences, and the budget is set to 0.

It remains to show that for scoring protocols α such that it is not the case
that α2 = · · · = αm the α-weighted-bribery is still NP-complete, even without
the use of price tags. It would be nice to do so by reducing to our problem
from the corresponding manipulation problems. This seems not to work, but
we construct such a reduction that has the right properties whenever its inputs
satisfy an additional condition (namely, that the weight of the lightest manip-
ulating voter is at least double that of the heaviest nonmanipulator). So we
would be done if this restriction of the manipulation problem were NP-hard. To
show that, we by close examination of the dichotomy proof of Hemaspaandra
and Hemaspaandra [HH05] prove that though the reduction from partition to
that manipulation problem does not obey the desired condition in all its image



Scoring protocol α = (α1, . . . , αm).
α1 > α2 and not true that

bribery problem α1 = · · · = αm α2 = · · · = αm α2 = · · · = αm

α-bribery P P P
α-$bribery P P P
α-weightedunary-$bribery P P P
α-weighted-bribery P P NP-complete
α-weighted-$bribery P NP-complete NP-complete

Table 1: The complexity of bribery within scoring protocols.

elements, if we look at the image of only a certain restriction of the partition
problem we can modify the thus-obtained elections to obey the desired con-
ditions. Finally, we show that the restricted partition problem used above is
NP-hard. This completes the sketch of the proof of Theorem 4.4.

In the beginning of this section we noted that approval voting is an example
of an election system where bribery is NP-complete, whereas manipulation is
easy. We mention that bribery in approval elections is actually very easy, pro-
vided that one looks at a slightly different model. Our bribery problems allow
us to completely modify the approval vector of a voter. This may, however,
be too demanding since a voter might be willing to change some of his or her
approval vector’s entries but not to completely change his or her approval vec-
tor. In particular, in the approval-bribery′ problem we will ask whether it is
possible to make our favorite candidate p a winner by at most k entry changes
in the approval vectors. We also define the weighted and priced versions of
approval-bribery′ in the natural way.

Theorem 4.6 approval-bribery′, approval-$bribery′, approval-
weightedunary-$bribery′ and approval-weighted-$bribery′unary are in P.
approval-weighted-$bribery′ is NP-complete.

Which of the bribery models for approval is more practical depends on the
setting. For example, bribery′ seems more natural when we look at the web
and treat web pages as voting by linking to other pages. It certainly is easier
to ask a webmaster to add/remove a link than to completely redesign the page.

5 Succinct Elections

So far we have discussed only nonsuccinct elections—ones where voters with the
same preference lists (and weights, if voters are weighted) are given by listing
them one at a time (as if given a stack of ballots). It is also very natural to
consider the case where each preference list has its frequency conveyed via a
count (in binary), and we will refer to this as “succinct” input. Succinct in
curly braces within a name of a bribery problem will describe the fact that it
holds in both cases, e.g., if we say that plurality-{succinct}-bribery is in P, we
mean that both plurality-bribery and plurality-succinct-bribery are in P. (By



the way, Theorem 3.1, by a similar but more careful algorithm than the one
mentioned right after it, also holds for the succinct case.)

In this section we provide P membership results regarding succinctly repre-
sented elections with a fixed number of candidates. (Such results for the case
of succinct representation immediately yield results for the nonsuccinct case.)
The most useful tool here is Lenstra’s [Len83] extremely powerful result that
the integer programming feasibility problem is in P when the number of vari-
ables is bounded. Lenstra’s algorithm has a very large constant factor in its
running time, but what we are after are P-membership results and tools for
obtaining them and not actual optimized algorithms.

Using the integer programming approach we obtain polynomial-time algo-
rithms for bribery under scoring protocols in both the succinct and the non-
succinct cases. The same approach yields a similar result for manipulation.
(The nonsuccinct case for manipulation was already obtained by Conitzer and
Sandholm [CS02a].)

Theorem 5.1 For every scoring protocol α = (α1, . . . , αm), both α-{succinct}-
bribery and α-{succinct}-manipulation are in P.

The power of the integer programming approach is not limited to the case
of scoring protocols. In fact, the seminal paper of Bartholdi, Tovey, and
Trick [BTT89b] shows that applying this method to computing the Dodg-
son score in nonsuccinct elections with a fixed number of candidates yields
a polynomial-time score algorithm (and though they did not address the issue
of succinct elections, one can see that there too this method works perfectly).
Applying an integer programming attack for the case of bribery is a bit more
complicated, since one has both the issue of the bribes and the issue of the
exchanges involved in computing the Dodgson scores. But even in this setting
one can represent the question as an integer programming feasibility problem,
and thus via Lenstra’s algorithm we have the following result.

Theorem 5.2 For each fixed number of candidates, DodgsonScore-{succinct}-
bribery is in P when restricted to that number of candidates.

By this we mean that in polynomial time we can test if a given bribe suffices to
obtain or beat a given Dodgson score for our favored candidate (the Dodgson
score of candidate c is the number of switches needed to be done in voters’
preference lists to make c the Condorcet winner). Using binary search we may
compute the minimum bribe needed to make our favored candidate have a given
Dodgson score.

In Young elections ([You77]; see also [RSV03], which proves that the winner
problem in Young elections is complete for parallel access to NP) the score of
a candidate is the number of voters that need to be removed to make that
candidate a Condorcet winner.

Theorem 5.3 For each fixed number of candidates, YoungScore-{succinct}-
bribery is in P when restricted to that number of candidates.



The issue of actually making a candidate p a winner (a unique winner, if we
are studying the unique winner case) of Dodgson elections is, as already indi-
cated, much more difficult and a direct attack using integer linear programming
seems to fail. Nonetheless, combining the integer programming method with a
brute-force algorithm resolves the issue for the nonsuccinct case.

Theorem 5.4 For each fixed number of candidates, Dodgson-bribery,
Dodgson-$bribery, Young-bribery, and Young-$bribery are all in P.

On the other hand, using integer programming, we obtain polynomial-time
algorithms for bribery in Kemeny elections in both the succinct and nonsuccinct
cases.

Theorem 5.5 For each fixed number of candidates, Kemeny-{succinct}-
bribery is in P when restricted to that number of candidates.

In brief, Kemeny’s system elects each candidate who is most preferred in at
least one preference order that maximizes the number of agreements with the
voters’ preferences, where for two candidates, a and b, two preference orders
agree if they both place a ahead of b or both place b ahead of a.

6 Research Directions

This paper provides a detailed study of the complexity of bribery with respect
to plurality rule and, more generally, scoring protocols. This paper also provides
tools and results regarding many other election systems such as approval voting
and Dodgson elections.

There are several directions in which further research on bribery might go.
The most obvious one is to study the complexity of bribery for other election
systems. Another very interesting route is to study approximation algorithms
for $bribery problems. It would also be interesting to study the complexity of
bribery in other settings, such as with incomplete information, multiple com-
peting bribers, or more complicated bribe structures.
Acknowledgments: We are very grateful to Samir Khuller for helpful conver-
sations about the Bartholdi, Tovey, and Trick integer programming attack on
fixed-candidate Dodgson elections, and we thank the anonymous AAAI-06 and
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