
Finding leximin-optimal solutions using
constraint programming: new

algorithms and their application to
combinatorial auctions

Sylvain Bouveret and Michel Lemâıtre

Abstract

We study the problem of computing a leximin-optimal solution of a con-
straint network. This problem is highly motivated by fairness and ef-
ficiency requirements in many real-world applications implying human
agents. We compare several generic algorithms which solve this problem
in a constraint programming framework. The second one is entirely orig-
inal, and the other ones are partially based on existing works adapted
to fit with this problem. These algorithms are tested on combinatorial
auctions instances.

1 Introduction

Many advances have been done in recent years in modeling and solving com-
binatorial problems with constraint programming (CP). These advances con-
cern, among others, the ability of this framework to deal with human reasoning
schemes, such as, for example, the expression of preferences with soft con-
straints. However, one aspect of importance has only received little attention
in the constraints community to date: the way to handle fairness requirements
in multiagent combinatorial problems.

The seek for fairness stands as a subjective but strong requirement in a wide
set of real-world problems implying human agents. It is particularly relevant
in crew or worker timetabling and rostering problems, or the optimization of
long and short-term planning for firemen and emergency services. Fairness is
also ubiquitous in multiagent resource allocation problems, like, among others,
bandwidth allocation among network users, fair share of airspace and airport
resources among several airlines or Earth observing satellite scheduling and
sharing problems [11].

In spite of the wide range of problems concerned by fairness issues, it often
lacks a theoretical and generic approach. In many Constraint Programming
and Operational Research works, fairness is only enforced by specific heuristic
local choices guiding the search towards supposed equitable solutions. How-
ever, a few works may be cited for their approach of this fairness requirement.
[11] make use of an Earth observation satellite scheduling and sharing problem
to investigate three ways of handling fairness among agents in the context of
constraint satisfaction. More recently [18] proposed a new constraint based on
statistics, which enforces the relative balance of a given set of variables, and can



possibly be used to ensure a kind of equity among a set of agents. Equity is also
studied in Operational Research, with for example [17], who investigate a way
of solving linear programs by aggregating multiple criteria using an Ordered
Weighted Average Operator (OWA) [22]. Depending on the weights used in
the OWA, this kind of aggregators can provide equitable compromises.

Microeconomy and Social Choice theory provide an important literature on
fairness in collective decision making. From this theoretical background we
borrow the idea of representing the agents preferences by utility levels, and we
adopt the leximin preorder on utility profiles for conveying the fairness and
efficiency requirements.

Apart from the fact that it conveys and formalizes the concept of equity
in multiagent contexts, the leximin preorder is also a subject of interest in
other contexts, such as fuzzy CSP [6], and symmetry-breaking in constraint
satisfaction problems [7].

This contribution is organized as follows. Section 2 gives a minimal back-
ground in social choice theory and justifies the interest of the leximin preorder
as a fairness criterion. Section 3 defines the search for leximin-optimality in
a constraint programming framework. The main contribution of this paper is
Section 4, which presents three algorithms for computing leximin-optimal so-
lutions, the first one being entirely original, and the other ones adapted from
existing works. The proposed algorithms have been implemented and tested
within a constraint programming system. Section 5 presents an experimental
comparison of these algorithms1.

2 Background on social choice theory

We first introduce some notations. Calligraphic letters (e.g. X ) will stand for
sets. Vectors will be written with an arrow (e.g.−→x ), or between brackets (e.g.
〈x1, . . . , xn〉). f(−→x ) will be used as a shortcut for 〈f(x1), . . . , f(xn)〉. Vector
−→x ↑ will stand for the vector composed by each element of −→x rearranged in
increasing order. We will write x

↑
i for the ith component of vector −→x ↑. Finally,

the interval of integers between k and l will be written Jk, lK.

2.1 Collective decision making and welfarism

Let N be a set of n agents, and S be a set of admissible alternatives concern-
ing all of them, among which a benevolent arbitrator has to choose one. The
most classical model describing this situation is welfarism (see e.g. [9, 15]): the
choice of the arbitrator is made on the basis of the utility levels enjoyed by the
individual agents and on those levels only. Each agent i ∈ N has an individual
utility function ui that maps each admissible alternative s ∈ S to a numerical

1A similar paper is going to appear in the proceedings of IJCAI’07 with the section 5
based on a different application.



index ui(s). We make here the classical assumption that the individual utili-
ties are comparable between the agents2. Therefore each alternative s can be
attached to a single utility profile 〈u1(s), . . . , un(s)〉. According to welfarism,
comparing two alternatives is performed by comparing their respective utility
profiles.

A standard way to compare individual utility profiles is to aggregate each
of them into a collective utility index, standing for the collective welfare of
the agents community. If g is a well-chosen aggregation function, we thus
have a collective utility function uc that maps each alternative s to a collective
utility level uc(s) = g(u1(s), . . . , un(s)). An optimal alternative is one of those
maximizing the collective utility.

2.2 The leximin order as a fairness and efficiency criterion

The main difficulty of equitable decision problems is that we have to reconcile
the contradictory wishes of the agents. Since generally no solution fully satisfies
everyone, the aggregation function g must lead to fair and Pareto-efficient3

compromises.
The problem of choosing the right aggregation function g is far beyond the

scope of this paper. We only describe the two classical ones corresponding to
two opposite points of view on social welfare4: classical utilitarianism and egal-
itarianism. The rule advocated by the defenders of classical utilitarianism is
that the best decision is the one that maximizes the sum of individual utilities
(thus corresponding to g = +). However this kind of aggregation function can
lead to huge differences of utility levels among the agents, thus ruling out this
aggregator in the context of equitable decisions. From the egalitarian point of
view, the best decision is the one that maximizes the happiness of the least sat-
isfied agent (thus corresponding to g = min). Whereas this kind of aggregation
function is particularly well-suited for problems in which fairness is essential, it
has a major drawback, due to the idempotency of the min operator, and known
as “drowning effect” in the community of fuzzy CSP (see e.g.[4]). Indeed, it
leaves many alternatives indistinguishable, such as for example the ones with
utility profiles 〈0, . . . , 0〉 and 〈1000, . . . , 1000, 0〉, even if the second one appears
to be much better than the first one. In other words, the min aggregation
function can lead to non Pareto-optimal decisions, which is not desirable.

The leximin preorder is a well-known refinement of the order induced by the
min function that overcomes this drawback. It is classically introduced in the
social choice literature (see [15]) as the social welfare ordering that reconcile
egalitarianism and Pareto-efficiency, and also in fuzzy CSP [6]. It is defined as
follows:

2In other words, they are expressed using a common utility scale.
3A decision is Pareto-efficient if and only if we cannot strictly increase the satisfaction

of an agent unless we strictly decrease the satisfaction of another agent. Pareto-efficiency is
generally taken as a basic postulate in collective decision making.

4Compromises between these two extremes are possible. See e.g. [16, page 68] or [22]
(OWA aggregators).



Definition 1 (leximin preorder [15]) Let −→x and −→y be two vectors of Nn.
−→x and −→y are said leximin-indifferent (written −→x ∼leximin

−→y ) if and only if
−→x ↑ = −→y ↑. The vector −→y is leximin-preferred to −→x (written −→x ≺leximin

−→y ) if

and only if ∃i ∈ J0, n− 1K such that ∀j ∈ J1, iK, x
↑
j = y

↑
j and x

↑
i+1 < y

↑
i+1. We

write −→x �leximin
−→y for −→x ≺leximin

−→y or −→x ∼leximin
−→y . The binary relation

�leximin is a total preorder.

In other words, the leximin preorder is the lexicographic preorder over ordered
utility vectors. For example, we have 〈4, 1, 5, 1〉 ≺leximin 〈2, 2, 1, 2〉.

A known result is that no collective utility function can represent the leximin
preorder5, unless the set of possible utility profiles is finite. In this latter case, it
can be represented by the following non-linear functions: g1 : −→x 7→ −

∑n

i=i n−xi

(adapted for leximin from a remark in [7]) and g2 : −→x 7→ −
∑n

i=1
x
−q
i , where q >

0 is large enough [15]. The major drawback of using this kind of representation
is that it rapidly becomes unreasonable to use it when the upper bound of
the possible values of −→x increases. Moreover, it hides the semantics of the
leximin preorder, and hinders the computational benefits we could possibly
take advantage of.

In the following, we will use the leximin preorder as a criterion for ensuring
fairness and Pareto-efficiency, and we will seek the non-dominated solutions in
the sense of the leximin preorder. Those solutions will be called leximin-optimal.
This problem will be expressed in the next section in a CP framework.

3 Leximin and Constraint programming

The constraint programming framework is an effective and flexible tool for mod-
eling and solving many different combinatorial problems such as planning and
scheduling problems, resource allocation problems, or configuration problems.
This paradigm is based on the notion of constraint network [14]. A constraint
network consists of a set of variables X = {x1, . . . , xp}, a set of associated do-
mains D = {dx1

, . . . , dxp
}, dxi

being the set of possible values for xi, and a set
of constraints C, where each C ∈ C specifies a set of allowed tuples R(C) over a
set of variables X(C). We will also suppose that all the domains are in N, and
use the following notations: x = min(dx) and x = max(dx).

An instantiation v of a set S of variables is a function that maps each
variable x ∈ S to a value v(x) of its domain dx. If S = X , this instantiation
is said to be complete, otherwise it is partial. If S′ ( S, the projection of an
instantiation of S over S′ is the restriction of this instantiation to S′ and is
written v↓S′ . An instantiation is said to be consistent if and only if it satisfies
all the constraints. A complete consistent instantiation of a constraint network
is called a solution. The set of solutions of (X ,D, C) is written sol(X ,D, C).

Given a constraint network, the problem of determining whether it has a
solution is called a Constraint Satisfaction Problem (CSP) and is NP-complete.

5In other words there is no g such that −→x �leximin
−→y ⇔ g(−→x ) ≤ g(−→y ). See [15].



The CSP can be classically adapted to become an optimization problem in the
following way. Given a constraint network (X ,D, C) and an objective variable
o ∈ X , find the value M of do such that M = max{v(o) | v ∈ sol(X ,D, C)}. We
will write max(X ,D, C, o) for the subset of those solutions that maximize the
objective variable o.

Expressing a collective decision making problem with a numerical collective
utility criterion as a CSP with objective variable is straightforward: consider
the collective utility as the objective variable, and link it to the variables rep-
resenting individual utilities with a constraint. However this cannot directly
encode our problem of computing a leximin-optimal solution, which is a kind of
multicriteria optimization problem. We introduce formally the MaxLeximinCSP

problem as follows :

Definition 2 (Problem MaxLeximinCSP)
Input: a constraint network (X ,D, C); a vector of variables −→u = 〈u1, . . . , un〉 ∈
Xn, called the objective vector.
Output: “Inconsistent” if sol(X ,D, C) = ∅. Otherwise a solution v̂ such that
∀v ∈ sol(X ,D, C), v(−→u ) �leximin v̂(−→u ).

We describe in the next section several generic constraint programming al-
gorithms that solve this problem. The second one is entirely original, and the
other ones are based on existing works that are adapted to fit with our problem.

4 Proposed algorithms

4.1 Using a sorting constraint

Our first algorithm is directly based on the definition 1 of the leximin preorder,
which requires to sort the vectors to be compared before performing a lexico-
graphic comparison. We can therefore introduce, using additional variables, the
sorted version of the objective vector. This can be done naturally in the CP
paradigm by introducing a vector of variables −→y and enforcing the constraint
Sort(−→u ,−→y ) which is defined as follows:

Definition 3 (Constraint Sort) Let −→x and −→x ′ be two vectors of variables of
the same length, and v be an instantiation. The constraint Sort(−→x ,−→x ′) holds
on the set of variables being either in −→x or in −→x ′, and is satisfied by v if and
only if v(−→x ′) is the sorted version of v(−→x ) in increasing order.

This constraint has been particularly studied in two works, which both in-
troduce a filtering algorithm for enforcing bound consistency on this constraint.
The first algorithm comes from [1] and runs in O(n log n) (n being the size of
−→x ). [13] designed a simpler algorithm that runs in O(n) plus the time required
to sort the interval endpoints of −→x , which can asymptotically be faster than
O(n log n).



The algorithm 1 intuitively works as follows : having introduced the sorted
version −→y of the objective vector −→u , it successively maximizes the components
of this vector, provided that the leximin-optimal solution is the solution that
maximizes y1, and, given this maximal value, maximizes y2, and so on until yn.

Algorithm 1: Solving the MaxLeximinCSP using a sorting constraint.

input : A const. network (X ,D, C); 〈u1, . . . , un〉 ∈ X
n

output: A solution to the MaxLeximinCSP problem

if solve(X ,D, C) =”Inconsistent” return “Inconsistent”;
X ′ ← X ∪ {y1, . . . , yn};
D′ ← D ∪ {dy1

, . . . , dyn} with dyi
= Jminj(uj), maxj(uj)K;

C′ ← C ∪ {Sort(−→u ,−→y )};
for i← 1 to n do

bv(i) ←maximize(X ′,D′, C′, yi);
dyi
← {bv(i)(yi)};

return bv(n)↓X ;

In the algorithm 1 (and in the following ones also), the functions solve and
maximize (the detail of which is the concern of solving techniques for con-
straints satisfaction problems) respectively return one solution v ∈ sol(X ,D, C)
(or “Inconsistent” if such a solution does not exist), and an optimal solution
v̂ ∈ max(Xi,Di, Ci, yi) (or “Inconsistent” if sol(Xi,Di, Ci) = ∅). We assume –
contrary to usual constraint solvers – that these two functions do not modify
the input constraint network.

Proposition 1 If the two functions maximize and solve are both correct and
both halt, then algorithm 1 halts and solves the MaxLeximinCSP problem.

Proof: If sol(X ,D, C) = ∅ and if solve is correct, then algorithm 1 obviously
returns “Inconsistent”. We will suppose in the following that sol(X ,D, C) 6= ∅ and
we will use the following notations: Si and S ′

i are the sets of solutions of (X ′,D′, C′)
respectively at the beginning and at the end of iteration i.

We have obviously ∀i ∈ J1, n− 1K Si+1 = S ′
i, which proves that if Si 6= ∅, then the

call to maximize at line 1 does not return “Inconsistent”, and Si+1 6= ∅. Thus bv(n)

is well-defined, and obviously (bv(n))↓X is a solution of (X ,D, C).

We note bv = bv(n) the instantiation computed by the last maximize in al-

gorithm 1. Suppose that there is an instantiation v ∈ sol(X ,D, C) such that

bv(−→u ) ≺leximin v(−→u ). We define v+ the extension of v that instantiates each yi

to v(−→u )↑i . Then, due to constraint Sort, bv(−→y ) and v+(y) are the respective sorted

version of bv(−→u ) and v+(u). Following definition 1, there is an i ∈ J0, n − 1K such

that ∀j ∈ J1, iK, bv(yj) = v+(yj) and bv(yi+1) < v+(yi+1). Due to line 1, we have

bv(yi+1) = bv(n)(yi+1) = bv(i+1)(yi+1). Thus v+ is a solution in max(X ′,D′, C′, yi+1)

with objective value v+
(i+1)(yi+1) strictly greater than bv(i+1)(yi+1), which contradicts

the hypothesis about maximize. �



4.2 Using a cardinality combinator

Our second algorithm is based on an alternative definition of the sorting of the
objective vector. In fact, it can be noticed that, given two vectors of numbers
−→x and −→x ′, −→x ′ is the sorted version of −→x in increasing order if and only if for
all i, x′

i is the maximal value such that at least n− i + 1 values from vector −→x
are greater than or equal to x′

i.
Like the first algorithm, this algorithm works by successively computing the

sorted components of the leximin-optimal objective vector, but contrary to the
first one, this new algorithm does not explicitely introduce the sorted version
of the objective vector. This new algorithm informally works as follows. It
first computes the maximal value y1 such that there is a solution v with ∀i,
y1 ≤ v(ui), or in other words

∑
i(y1 ≤ v(ui)) = n, where by convention the

value of (y1 ≤ v(ui)) is 1 if the inequality is satisfied and 0 otherwise6. Then,
after having fixed this value for y1, it computes the maximal value y2 such that
there is a solution v with

∑
i(y2 ≤ v(ui)) ≥ n− 1, and so on until the maximal

value yn such that there is a solution v with
∑

i(yn ≤ v(ui)) ≥ 1.
To enforce the constraint on the yi, we make use of the meta-constraint

AtLeast, derived from a cardinality combinator introduced by [21], and present
in most CP systems:

Definition 4 (Meta-constraint AtLeast) Let Γ be a set of p constraints,
and k ∈ J1, pK be an integer. The meta-constraint AtLeast(Γ, k) holds on the
union of the scopes of the constraints in Γ, and allows a tuple if and only if at
least k constraints from Γ are satisfied.

Due to its genericity, this meta-constraint cannot provide very efficient fil-
tering procedures. Fortunately, in our case where each constraint in Γ is of the
form xi ≥ y, bound-consistency can be enforced using algorithm 2.

Algorithm 2: Enforcing bound-consistency on the AtLeast meta-
constraint with linear constraints.

input : A vector of variables 〈x1, . . . , xn〉, a variable y, an integer k ≤ n.
output: The domain reductions of 〈x1, . . . , xn〉 and y to enforce bound

consistency on AtLeast({x1 ≥ y, . . . , xn ≥ y}, k), or “Inconsistent”

y ← (sup(−→x ))
↑

n−k+1 ; /* where sup(−→x ) = 〈x1, . . . , xn〉 */1

if
P

i
(xi < y) > n− k return “Inconsistent”;2

if
P

i
(xi < y) = n− k3

forall i such that xi ≥ y do xi ← max(y, xi)4

This algorithm runs in O(n), since the selection of the n− k + 1st lowest
value of sup(−→x ) can be done in O(n) [2]. We can notice that this algorithm is
well-suited for event-based implementation of constraint programming: in case
of an update of one of the xi, only line 1 needs to be run ; in case of an update

6This convention is inspired by the constraint modeling language OPL [20].



of y, only lines 2 and 3 need to be run ; any other update do not need the
algorithm to be run. The procedure can also benefit from storing the ordered

vector (sup(−→x ))
↑

and updating it when one of the xi changes. By doing so, we

can access (sup(−→x ))
↑

n−k+1
in O(1).

It can also be noticed that since all of the constraints of Γ are linear, the
meta-constraint AtLeast can be expressed using a set of linear constraints,
therefore allowing our algorithm to be processed with a linear solver. The
classical idea [8, p.11] is to express our constraint AtLeast by introducing n

0–1 variables {δ1, . . . , δn}, and a set of linear constraints {x1+δ1y ≥ y, . . . , xn+
δny ≥ y,

∑n

i=1
δi ≤ n− k}.

This second approach is presented in algorithm 3.

Algorithm 3: Solving the MaxLeximinCSP using a cardinality constraint.

input : A const. network (X ,D, C); 〈u1, . . . , un〉 ∈ X
n

output: A solution to the MaxLeximinCSP problem

if solve(X ,D, C) =”Inconsistent” return “Inconsistent”;1

(X0,D
′
0, C0)← (X ,D, C);2

for i← 1 to n do3

Xi ← Xi−1 ∪ {yi};4

Di ← D
′
i−1 ∪ {dyi

} with dyi
= Jminj(uj), maxj(uj)K;5

Ci ← Ci−1 ∪ {AtLeast({yi ≤ u1, . . . , yi ≤ un}, n− i + 1)};6

bv(i) ←maximize(Xi,Di, Ci, yi);7

D′
i ← Di with dyi

← {bv(i)(yi)};8

return bv(n)↓X ;9

The following example illustrates the behavior of thea1 a2 a3

o1 3 3 3
o2 5 9 7
o3 7 8 1

algorithm. It is a simple resource allocation problem,
where 3 objects must be allocated to 3 agents, with the
following constraints: each agent must get one and only
one object, and one object cannot be allocated to more

than one agent (i.e. a perfect matching agent/objects). A utility is associated
with each pair (agent,object) with respect to the array above.

This problem has 6 feasible solutions
(one for each permutation of J1, 3K),
producing the 6 utility profiles shown
in the columns of the array aside.

p1 p2 p3 p4 p5 p6

u1 3 3 5 5 7 7
u2 9 8 3 8 3 9
u3 1 7 1 3 7 3

The algorithm runs in 3 steps: Step 1: After having introduced one variable
y1, we look for the maximal value ŷ1 of y1 such that each (at least 3) agent gets
at least y1. We find ŷ1 = 3. The variable y1 is fixed to this value, implicitly
removing profiles p1 and p3. Step 2: After having introduced one variable
y2, we look for the maximal value ŷ2 of y2 such that at least 2 agents get
at least y2. We find ŷ2 = 7. The variable y2 is fixed to this value, implicitly
removing profile p4. Step 3: After having introduced one variable y3, we look
for the maximal value ŷ3 of y3 such that at least 1 agent gets at least y3. We



find ŷ3 = 9. Only one instantiation maximizes y3: p6. Finally, the returned
leximin-optimal allocation is: a1 ← o3, a2 ← o2 and a3 ← o1.

Proposition 2 If the two functions maximize and solve are both correct and
both halt, then algorithm 3 halts and solves the MaxLeximinCSP problem.

The complete proof of this proposition can be found in the article published
in the proceedings of IJCAI’07. We just give here a proof sketch.

Proof sketch: The proposition can be proved using the following steps.

• We first prove the initial remark : if −→x is a vector of size n, then at least n−i+1
components of −→x are greater than or equal to x

↑
i .

• Then we must prove that if the initial constraint network has a solution then
bv(n) is well-defined and not equal to “Inconsistent”.

• We then prove that bv(n)(
−→y ) is equal to bv(n)(

−→u )↑ if (X ,D, C) has a solution.

• By putting things together, we can finally prove that bv(n)↓X is really the leximin-
optimal solution, using the fact that if there was a better solution (in the sense
of the leximin preorder), the call to maximize at some iteration would have
eliminated the solution actually returned by the algorithm. �

4.3 Using a multiset ordering constraint

Our third algorithm computing a leximin-optimal solution is probably the most
intuitive one. This algorithm proceeds in a pseudo branch and bound manner:
it computes a first solution, then it tries to improve it by specifying that the
next solution has to be better (in the sense of the leximin preorder) than the
current one, and so on until the constraint network becomes inconsistent. This
approach is based on the following constraint:

Definition 5 (Constraint Leximin) Let −→x be a vector of variables,
−→
λ be a

vector of integers, and v be an instantiation. The constraint Leximin(
−→
λ ,−→x )

holds on the set of variables belonging to −→x , and is satisfied by v if and only if
−→
λ ≺leximin

−−→
v(x).

Although this constraint does not exist in the literature, the work of [7]
introduces an algorithm for enforcing generalized arc-consistency on a quite
similar constraint: the multiset ordering constraint, which is, in the context of
multisets, the equivalent of a leximax7 constraint on vectors of variables. At
the price of some slight modifications, the algorithm they introduce can easily
be used to enforce the latter constraint Leximin.

Proposition 3 If the function solve is correct and halts, then algorithm 4
halts and solves the MaxLeximinCSP problem.

The proof is rather straightforward, so we omit it.

7The leximax is based on an increasing reordering of the values, instead of a decreasing
one for leximin.



Algorithm 4: Solving the MaxLeximinCSP using a constraint Leximin.

input : A const. network (X ,D, C); 〈u1, . . . , un〉 ∈ X
n

output: A solution to the MaxLeximinCSP problem

bv ← null; v ← solve(X ,D, C);1

while v 6= “Inconsistent′′ do2

bv ← v;3

C ← C ∪ {Leximin(bv(−→u ),−→u )};4

v ← solve(X ,D, C);5

if bv 6= null then return bv else return “Inconsistent”;6

4.4 Other approaches

In the context of fuzzy constraints, two algorithms dedicated to the computation
of leximin-optimal solutions have been published by [4]. These algorithms work
by enumerating, at each step, all the subsets of fuzzy constraints (corresponding
to our agents) having a property connected to the notion of consistency degree.

[5, p. 162] describes two very simple algorithms for solving the closely related
“Lexicographic Max-Ordering” problem (in our terms, finding the “leximax-
optimal”). They however do not seem realistic in the context of combinatorial
problems, since they are based on an enumeration of all utility profiles.

5 Experimental results

Combinatorial auctions[3, 19] – auctions in which bidders place unrestricted
bids for bundles of goods – are subject of increasing study in the recent years.
Their central problem is the Winner Determination Problem (WDP), which
has been extensively studied. It definitely corresponds to an utilitarian point
of view, namely maximizing the revenue of the auctioneer, which is the sum of
the selected bids, whoever receive them. Even if fairness does not seem to be a
relevant issue in combinatorial auctions, the WDP can however inspire us a fair
resource allocation problem with indivisible goods, where the agents express
their preferences over bundles of items:

Definition 6 (Fair CA instance) Given a set of agents N and a set of ob-
jects O, a bid b is a triple 〈s(b), p(b), a(b)〉 ∈ 2O ×N×N (a bundle of objects,
a price and an agent). Given a set of non-intersecting bids W and an agent i,
the utility of i regarding W is ui(W) =

∑
{p(b) | b ∈ W and a(b) = i}. A fair

combinatorial auctions instance is defined as follows:
Input: A set of n agents N , a set of objects O and a set of bids B.
Output: A set of non-intersecting bids W ⊆ B such that there is no W ′ ⊆ B
with 〈u1(W ′), . . . , un(W ′)〉 ≻leximin 〈u1(W), . . . , un(W).

The algorithms 3, 1, 4 and the first algorithm from [4] have been imple-
mented and tested on CA instances using the constraint programming tool



kind
Algorithm 1 (Sort) Algorithm 3 (AtLeast)

avg min max N% avg min max N%

1 122.6 4.5 482.7 100% 121.2 5.1 470.1 100%
2 394.8 162.5 600 80% 158.6 82.8 350.6 100%
3 480 66 600 30% 480.8 64 600 30%
4 600 600 600 0% 506.6 196.2 600 30%
5 12.1 5.6 23 100% 4.8 2.6 7.9 100%
6 78.8 47.9 156.4 100% 68.5 44.1 131.6 100%

Algorithm 4 (Leximin) Algorithm from [4] Sum-optimal

avg min max N% avg min max N% avg min max N%

380 42.4 600 60% 488 32.6 600 20% 485 158 600 40%
479 161 600 50% 600 600 600 0% 485 158 600 40%
600 600 600 0% 600 600 600 0% 600 600 600 0%
600 600 600 0% 600 600 600 0% 600 600 600 0%
62.4 26.4 128 100% 600 600 600 0% 19.4 2.1 49.1 100%
94.7 26.4 203 100% 600 600 600 0% 18.8 3.7 45.7 100%

Table 1: CPU times (in sec.) and percentage of instances solved within 10
minutes (each algorithm tested on 10 instances of each kind).

Choco [10]. The test instances have been generated using CATS [12], which
aims at making realistic and economically motivated bids for combinatorial
auctions, e.g by simulating some kind of relations such as substitutabilities
and complementarities between the goods. We used six different kind of in-
stances (see [12] for the definitions of the different kinds of relationships be-
tween the goods): (1) 5 agents, 200 objects, 200 bids, arbitrary relationships,
(2) 30 agents, 200 objects, 200 bids, arbitrary relationships, (3) 5 agents, 200
objects, 200 bids, regions-based relationships, (4) 30 agents, 200 objects, 200
bids, regions-based relationships, (5) 20 agents, 200 objects, 100 bids, arbitrary
relationships, (6) 20 agents, 50 objects, 200 bids, arbitrary relationships.

The running times of the tests are shown in table 1. They show that the
most efficient algorithm on these kinds of instances is algorithm 3, followed by
algorithm 1. Conversely, algorithm 4 and the algorithm from [4] are inefficient.
It is interesting to notice that, whereas the algorithms 1 and 4 are affected by
the increasing of the number of agents (see e.g kinds 1 and 2), the running time
of algorithm 3 only slightly increases (in spite of the fact that the number of
calls to maximize is exactly the number of agents). For each instance, we also
solved the WDP using our contraint programming model, which is – due to the
genericity of the CP framework – far less efficient than the dedicated algorithms.
It is surprising to see that solving the WDP using our CP model requires much
more time than solving the MaxLeximinCSP with algorithm 3. This is rather
counterintuitive since, all other parameters being equal, the running time tends
to decrease with the number of agents, and solving the WDP in our constraint
programming framework comes down to solve the MaxLeximinCSP on a one-
agent instance.



These results must however be considered with care, since they are subject
to our implementation of the algorithms. For example, not every optimizations
given in [13] for the constraint Sort have been implemented yet. The also
depend on our modeling of the combinatorial auctions problem: we used a bid-
centered modeling (that is, the decision variables are the bid allocations), with
binary exclusion constraint to model the incompatibilities between the bids.

Anyway, it is interesting to notice that the performances of the algorithms
have been dramatically increased by using the following variable choice heuris-
tics. Choose as the next bid to allocate the first among the non-instantiated
ones, according to the lexicographic increasing order on the two following cri-
teria: 1) the current utility of the bid’s owner, 2) the price of the bid. In other
words, the next bid that the algorithm will try to select is the one with the
highest price among those of the currently unhappiest agent.

It is also of interest to compare the quality of the leximin-optimal solution
and the sum-optimal solution in term of fairness. One visual indicator of the
fairness level of a solution is its Lorenz curve [15]. Formally, given a vector

〈u1, . . . , un〉, its Lorenz curve is the following vector: 〈u↑
1, u

↑
1 + u

↑
2, · · ·

∑n

i=1
u
↑
i 〉.

For a perfectly equitable utility vector, the Lorenz curve is a regular staircase
line from the origin (0, 0) to the point (n,

∑
i ui). On the opposite, a perfectly

unfair utility vector (all agents having ui = 0 except one) is very far from the
regular staircase line. So the unfairness of a utility vector can be appreciated
by the “distance” of the Lorenz curve to the regular staircase8. The Lorenz
curve of a vector is always convex9, and the less convex a Lorenz curve is, the
fairer the vector is. Figure 1 shows the Lorenz curves of the utility vectors of
the sum- and leximin-optimal solutions in a CA instance with 20 agents.

6 Conclusion

The leximin preorder cannot be ignored when dealing with optimization prob-
lems in which some kind of fairness must be enforced between utilities of agents
or equally important criteria. This paper brings a contribution to the com-
putation of leximin-optimal solutions of combinatorial problems. It describes,
within a constraint programming framework, three generic algorithms solving
this problem, the second one being entirely new. These algorithms have been
tested on combinatorial auctions instances. The experimental results show that
our algorithm is better than the others in all of the tested cases.
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