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Abstract

This paper addresses the problem of constructing voting protocols that are hard to
manipulate. We describe a general technique for obtaining a new protocol by com-
bining two or more base protocols, and study the resulting class of (vote-once) hy-
brid voting protocols, which also includes most previously known manipulation-
resistant protocols. We show that for many choices of underlying base protocols,
including some that are easily manipulable, their hybrids are NP-hard to manip-
ulate, and demonstrate that this method can be used to produce manipulation-
resistant protocols with uniqgue combinations of useful features.

1 Introduction

In multiagent systems, the participants frequently have to agree on a joint plan of ac-
tion, even though their individual opinions about the available alternatives may vary.
\oting is a general method of reconciling these differences, and having a better under-
standing of what constitutes a good voting mechanism is an important step in designing
better decision-making procedures. In its most general form, a voting mechanism is a
mapping from a set of votes (i.e., voters’ valuations for all alternatives) to an ordering
of the alternatives that best represents the collective preferences. In many cases, how-
ever, the attention can be restricted to mechanisms that interpret their inputs (votes) as
total orderings of the alternatives/candidates and output a single winner. A classical
example here i®lurality voting, where only the top vote of each voter is taken into
account, and the candidate with the largest number of top votes wins (to specify the
protocol completely, we also need a draw resolution rule for the case where more than
one voter gets this number of votes).

A fundamental problem encountered by all voting mechanisnmsaisipulation
i.e., the situation when a strategizing voter misrepresents his preferences in order to
obtain a more desirable outcome. One can expect that rational agents will engage in
manipulation whenever it is profitable for them to do so; as a result, the output of the
voting mechanism may grossly misrepresent the actual preferences of the agents and
be detrimental to the system as a whole.

Itis well-known [8, 11] that any nondictatorial voting mechanism for three or more
candidates is susceptible to manipulation. However, while there is no information-
theoretic solution to this problem, one can try to discourage potential manipulators by
making manipulation infeasible. This approach is particularly attractive in multiagent
setting, when decisions have to be made in real time, and whether an agent can find a
beneficial manipulation quickly is more important than whether such a manipulation
exists in principle. It turns out that some of the voting protocols that are used in

1An earlier version of this paper appeared in ISAAC’05



practice enjoy this property: it has been shown [1, 2] that second-order Copeland and
Single Transferable Vot&{TV) are NP-hard to manipulate. Furthermore, in a recent
paper [4], Conitzer and Sandholm showed that several protocols, incldirat,

STV, Maximin and Plurality, can be modified so that manipulating them becomes
computationally hard. Their method involves prepending the original protocol by a
pre-round in which candidates are divided into pairs and the voters’ preferences are
used to determine the winner of each pair; the winners of the pre-round participate in
elections conducted according to the original protocol. Different methods for pairing
up the candidates and eliciting the votes give rise to different levels of complexity, such
as NP-hardness, #P-hardness, or PSPACE-hardness.

The advantage of this method of constructing manipulation-resistant protocols is
in preserving some of the properties of the original protocol: for example, if the base
protocol is Condorcet-consistent (see Section 6 for definition), then the modified pro-
tocol is Condorcet-consistent as well. However, for some other desirable features this
is not true, and, generally, eliminating half of the candidates using a set of criteria that
may be very different in spirit from those used by the original protocol, is likely to alter
the outcome considerably, so that the desiderata that motivated the original protocol
may no longer be attainable.

We build upon the ideas of [4] to construct a larger family of protocols that are
hard to manipulate. We observe that their pre-round phase can be viewed as the first
stage of the voting protocol known as Binary CHLj (defined in Section 2). While
this protocol itself is not hard to manipulate (at least, when the schedule is known
in advance), the results of [4] can be interpreted as showing that comiBQivgth
other protocols results in manipulation-resistant schemes. We generalize this idea by
showing that this kind of hardness amplification is not unique®o

We define the class ofvote-once) hybrid voting protocolblyb(Xg,Y). In
Hyb(Xk,Y), after the voters have expressed their preferencateps of protocoK
are performed to eliminate some of the candidates, and then prafasalun on the
rest of the candidates, reusing the votes as restricted to the remaining candidates. In
practice, such a reuse of votes is important, since it allows voters to only express their
preferences once; this feature is desirable both for actual elections, where it is difficult
to get citizens to the voting booths more than once, and for artificial agents, where
round complexity of a protocol may be an issue. Clearly, the protocols of [4] belong
to this family, as doeSTV; therefore, our framework encompasses most of the known
hard-to-manipulate voting mechanisms.

We show that many other hybrid protocols are NP-hard to manipulate as well.
Specifically, we consider several well-known protocols, suctP@asgality, Borda,
STV, andMaximin, and prove that many hybrids of these protocols are manipulation-
resistant. We do this by formulating some fairly general conditionX andY under
which the protocols of the forrAyb(Xy,, Plurality), Hyb(Xy, STV), or Hyb(STV, Y)
are NP-hard to manipulate. Additionally, we show that a hybrid of a protocol with it-
self may be different from the original protocol — and much harder to manipulate. We
prove that this is, indeed, the case Barda protocol: Hyb(Borday, Borda) is NP-hard
to manipulate, whildorda itself is easily manipulable.

We define a generic closure operation on protocols that makes them closed un-



der hybridization. Interestingly, applying this operation to the easy-to-manipulate
Plurality results in the hard-to-manipulafl'Vv. We conjecture that for many other
basic protocols, their closed versions are NP-hard to manipulate as well. Whenever
this is the case, the closed protocols provide the most faithful manipulation-resistant
approximation to the underlying protocols, which makes them compelling alternatives
to the original protocols.

On the flip side, we demonstrate that hybridization does not always result in hard-
to-manipulate protocols: in particular, the hybrid protocols thatRigeality as their
first component, are almost as easy to manipulate as their second component. Finally,
we demonstrate that our techniques extend to voting protocols that allow voters to rate
the candidates rather than just order them.

The value of our results is not so much in constructing specific new manipulation-
resistant protocols, but rather in providing a general method for doing that, which can
be used with many basic schemes. Since a hybrid inherits some of the properties of
its ingredients, we get hard-to-manipulate protocols with properties not shared by the
schemes from [1, 2, 4]. For example, sif8€ is not Pareto-optimal, all protocols
obtained by the method of [4] are not Pareto-optimal either, while our approach allows
to construct hybrids that have this valuable feature (for definitions, see Section 6).
It has already been argued in [4] that it is desirable to have manipulation-resistant
protocols that can be used in different real-life situations; our method fits the bill.

The use of voting and voting-related techniques is not restricted to popular elec-
tions: the ideas from this domain have been applied in rank aggregation [5, 9], rec-
ommender systems [10], multiagent decision making in Al [7], etc. In many of these
settings, the number of alternatives is large enough to make our results applicable, and,
furthermore, the agents are both sufficiently sophisticated to attempt manipulation and
may derive significant utility from doing so. Therefore, we feel that it is important
to have a better understanding of what makes voting protocols hard to manipulate, as
this will allow us to design more robust decision-making systems that use voting-like
methods.

The rest of the paper is organized as follows. In Section 2 we introduce our nota-
tion, give a precise definition of what it means to manipulate an election, and describe
some well-known voting schemes discussed in the paper. In Section 3, we define hy-
brid protocols and some related notions. In Section 4, we show that certain hybrid
protocols are NP-hard to manipulate. In Section 5, we discuss hybrids obtained by
combining a protocol with itself. In Section 6, we define some desirable properties
of voting protocols, show that many of them are preserved under hybridization, and
demonstrate that our protocols can provide useful combinations of these properties.
In Section 7, we provide examples of hybrids that are easy to manipulate and dis-
cuss limitations and extensions of our approach. Finally, in Section 8, we present our
conclusions and future research directions.

2 Preliminaries and Notation

We assume that there amevoters andn candidates and denote the set of all voters
by V.= {v1,...,v,} and the set of all candidates by = {c¢1,...,c,}. Most
of our complexity results are in terms of andn, i.e., unless specified otherwise,



‘polynomial’ always means ‘polynomial im andn’.

The set of all permutations a' is denoted byII(C); the preference of théh
voter is expressed by a list € II(C): the first element is the voter's most preferred
candidate, etc. In particular, this means that within one voter’s preference list, ties
are not allowed. We writ¢. .., ¢;,...,Cj,...) to denote that a voter prefersto all
candidates irC;, without specifying the ordering of candidates witl@i. For any
subsetC’ C C, let w|c/ be the permutatiom as restricted t@” (i.e., elements not
from C’ are omitted). Note that|c- corresponds to a valid preference in an election
that has the candidate s@t.

When describing the preferences of a single votere writec; >, c; to denote
that v prefersc; to ¢;. Similarly, we writeC; >, C; to denote thab prefers all
candidates in the s€t; to all candidates in the sé€t;, without specifying the ordering
of candidates withinC; and C;. When the identity of the voter is clear from the
context, we omit the subscript and writeinstead of-,,.

A voting protocolis a mappingP : II(C) x - - - x II(C') — C that selects a winner
¢ € C based on all voters’ preference lists. In this paper, we consider the following
common voting protocols (in all definitions that mention points, the candidate with the
most points wins):

Plurality: A candidate receives 1 point for every voter that ranks it first.

Borda: For each voter, a candidate receives- 1 point if it is the voter’s top choice,
m — 2 if it is the second choice, ..., Oifitis the last.

Single Transferable Vote (STV): The winner determination process proceeds in
rounds. In each round, a candidate’s score is the number of voters that rank
it highest among the remaining candidates, and the candidate with the lowest
score drops out. The last remaining candidate wins. (A vote transfers from
its top remaining candidate to the next highest remaining candidate when the
former drops out.)

Maximin: A candidate’s score in a pairwise election is the number of voters that
prefer it over the opponent. A candidate’s number of points is the lowest score
it gets in any pairwise election.

Binary Cup (BC): The winner determination process consist$lof m | rounds. In
each round, the candidates are paired; if there is an odd number of candidates,
one of them gets a bye. The candidate that wins the pairwise election between
the two (or got a bye) advances into the next round. The schedule of the cup
(i.e., which candidates face each other in each round) may be known in advance
(i.e., before the votes are elicited) or it may depend on the votes.

Voting Manipulation

We say that a voter; canmanipulatea protocolP if there is a permutatiomlg. e II(C)
such that for some values of € I1(C), i = 1,...,n, we have ()P(71,...,m,) = ¢
(i) P(m1,...,mj—1, T, Tjg1, - -+, ) = ¢ # ¢ (ii) v; ranksc” abovec. We say that
v; manipulatesP constructivelyif v; ranks¢’ first anddestructivelyotherwise. All



results in this paper are on constructive manipulation; in what follows, we omit the
word ‘constructive’. A votew; manipulatesP efficientlyif there is a polynomial time
algorithm that given preference lists, . .. , m, for which suchr’; exists, can find one
suchr’.

J

3 Hybrid Protocols

In this section, we formally defin@ote-once) hybrid protocoldntuitively, a hybrid of

two protocolsX andY executes several stepsXto eliminate some of the candidates,
and then rung% on the remaining set of candidates. To make this intuition precise,
however, we have to define how to interpret the first protdcas a sequence of steps.
While there is no obvious way to do this for an arbitrary protocol, most well-known
protocols, including the ones described in Section 2, admit such an interpretation. In
particular, we suggest the following definitions:

e ForSTV, astepis a single stage of the protocol. That is, a stef DY consists
of eliminating a candidate with the least number of first-place votes and trans-
ferring each vote for this candidate to the highest remaining candidate on that
ballot.

e For Binary Cup (BC), astepis a single stage of the protocol as well, i.e., it
consists of pairing up the candidates and eliminating the ones who lose in the
pairwise comparison.

e For point-based protocols, such Rlsrality, Borda, or Maximin, we first com-
pute the scores of all candidates, order them by their scores from the lowest to
the highest, and definesdepto consist of eliminating the first (i.e., the lowest
ranked) remaining candidate in this sequence. Note that the scores are not re-
computed between the steps. (A similar approach can be applied to any voting
protocol that can be extended to a preference aggregation rule, i.e., a function
that maps votes to total orderings of the candidates. In this case, the order in
which the candidates are eliminated is obtained by inverting the output of the
preference aggregation rule.)

Definition 1. A hybrid protocolHyb(Xj, Y) consists of tw@hasesSuppose that the
voters’ preference lists are described by theuple (7, ..., m,). In the first phase,
the protocol executek steps ofX(m,...,m,); suppose thafS is the set of candi-
dates not eliminated in the first phase. In the second phase, the protocol appbes
(mls,...,mnls), .., the preference lists restricted to the remaining$eif candi-
dates.

It is easy to extend this definition to hybri&tyb(x,(jl), Xffz), . ,X;(ft), Y) of three
or more protocols.

4 Hardness Results

4.1 Hardness ofSTV-Based Hybrids

In this subsection, we show that hybriHgb(STVy,Y) andHyb(X;,STV) are NP-
hard to manipulate for many “reasonable” voting protocsland Y, including the



caseX,Y € {Plurality, Borda, Maximin, BC}.

Theorem 1. A hybrid of the formHyb(STV,, Y) is NP-hard to manipulate as long as

Y satisfies the following condition: Whenever there is a candidatdo receiveds
first-place votes and — K second-place votes, while all other candidates receive at
mostK — 1 first-place votey declaresc the winner.

The proof appears in the full version of the paper.

Corollary 1. The hybrids of the formilyb(STVy,Y), whereY € {Plurality, Borda,
Maximin, BC, STV}, are NP-hard to manipulate.

The proof of this corollary is straightforward since all these voting protocols satisfy
the required property.

Theorem 2. A hybrid of the formHyb (X, STV) is NP-hard to manipulate iX sat-
isfies the following condition for some unbounded nondecreasing fungtiorand
infinitely manyK: Suppose that all but one voter rank soffecandidates:, . .., cx

after all other candidates, and all other candidates receive at least 2 first-place
votes. Then aftef(K) steps ofX, the set of eliminated candidates is a subset of

{c1,..., ¢k}

Sketch.Setk = f(K). Denote the set of candidates in the construction of [2{ iy
letC” = {ecy,...,cx} andC = C"UC". Modify the votes of all honest voters in that
construction so that they rarfk aboveC”. The reduction of [2] has the property that
each candidate i’ gets more than first-place votes. Hence, the set of candidates
eliminated ink rounds ofX is a subset of””’; furthermore, the remaining candidates
from C” will be the first candidates eliminated BY'V. Hence, no matter how the ma-
nipulator ranks the candidatesdt’, it has no effect on the execution of the protocol.
Therefore, his vote can be interpreted as a vote in the ori§ifgland vice versa. [J

Corollary 2. The hybrids of the forniyb(X,,STV), whereX € {Plurality, Borda,
Maximin, BC}, are NP-hard to manipulate.

Proof. It is easy to see thalurality, Maximin and BC satisfy the condition of the
theorem. FoBorda, it is satisfied whenever the number of voters exceeds the number
of candidates; in the construction of [2], the number of voters is larger3f@h, so

we can sef = |C’|. O

Our proofs that hybrids usingTV as their first or second component are NP-hard
to manipulate rely on some specific properties of the reduction constructed in [2]. In
the full version of the paper, we provide black-box constructions, i.e., ones that work
with any NP-hardness proof.

4.2 Hybrids of the Form Hyb(Xj,, Plurality)

In this subsection, we prove thBlyb(Xy, Plurality) is hard to manipulate whenever
X satisfies Property 1. While this property might seem artificial, we show that it is
possessed by at least two well-known protocols, nanilyla andMaximin.



Property 1. For any setG = {¢1,...,gn}, any collectionS = {s1,...,sp} of

subsets of7, and anyK < M, there are somé&’, ¥’ < M, andT, T > 3N, such that
it is possible to construct in polynomial time a seflof- N (T — 2) + 3N votes over
the set of candidateS” U C”" U {p}, whereC’ = {c},...,cy}, C" ={c{,..., 4},

so that

e there areT’ voters who ranlp first;
e foreachi =1,..., N, there areT" — 2 voters who rank first;

e for eachi = 1,..., N, there are3 voters who rank aIIc;-’ such thatg; € s;
abovec;, and rankc; above all other candidates;

e for any additional voter, when it is tallied with all other votes, the set of candi-
dates eliminated in the firdt' rounds is a subset @f"”’ of sizeM — K

e forany subsef’ C S, |S’| = M — K, one can design in polynomial time a vote
mg that, when tallied with other votes, guarantees that the set of candidates
eliminated in the firsk’ rounds is exactlyfc; | s; € S'}.

Theorem 3. A hybrid of the formrHyb(Xj, Plurality) is NP-hard to manipulate con-
structively whenevek satisfies Property 1.

Proof. We give a reduction that is based on the NP-hard problem@&VER. Recall
that SET COVER can be stated as follows: Given a groundGet {g1,...,gn}, @
collectionS = {s1,...,sn} Of subsets of7, and an integef, does there exist a
K-cover ofG, i.e., a subse$’ of S, 8" = {s1,...,sk}, such that for every, € G
there is ars; € S’ such thay; € s;?

Construct the set of votes based @n S, and K so that it satisfies Property 1.
Let £k = K/, and letp be the manipulator's preferred candidate. We show that the
manipulator can get elected undeHyb(Xy, Plurality) if and only if he can find a set
cover forG. Indeed, aftek rounds ofX, all candidates i’ U {p} survive, as well as
exactly K candidates fron®”’. We show thap wins if and only if thesek” candidates
correspond to a set cover 6f Observe that any surviving candidate frarfi has at
most3N < T first-place votes, so he cannot win in the last stage. Now, consider a
candidate”; € C’. Suppose that the corresponding element is not covered, i.e/, all
such thatg; € s; are eliminated. Then after the end of the first phaséasT + 1
first-place vote, while hasT first-place votes, so in this capeannot win.

On the other hand, suppose that for gny G there is ars; € S such thay; € s;
andc’/ is not eliminated in the first phase. Then at the beginning of the second phase
eachc, € C’ hasT — 2 first-place votes, while hasT first-place votes, so in this case
p wins.

Hence, manipulating this protocol is equivalent to finding a set cover ofsize]

Corollary 3. The protocolsHyb(Borday, Plurality) and Hyb(Maximiny, Plurality)
are NP-hard to manipulate.



Proof. Let the voters who rank first, rank the candidates ii” above those irC"”,

and the voters who ran¥ first, rank the candidates U C’ above those i©”’. For
large enouglT’, this guarantees that boorda andMaximin scores of the candidates

in C’" U {p} are much higher than those of the candidate§'in so none of the can-
didates inC’ U {p} can be eliminated in the first phase. On the other hand, we still
have enough flexibility to ensure that all candidate€’ih have the sam&orda (or
Maximin) score with respect to the honest voters’ preferences. Then, for both proto-
cols, the manipulator can get ady — K candidates fron”’ eliminated by putting
them on the bottom of his vote and ranking the remainiigandidates above the
candidates irC’ U {p}. Thus, bothBorda andMaximin satisfy all conditions in the
statement of Theorem 3. O

Together with our results on STV and the results of [4], the constructions of this
section provide a wide choice of manipulation-resistant protocols. In the next sec-
tion, we add to our repertoire two more protocols that are hard to manipulate, namely,
Hyb(Borday,, Borda) andHyb(Maximiny, Borda).

5 Hybrid of a Protocol with Itself

We say that a protocol ieybrid-proof if a hybrid of several copies of this protocol

has the same outcome as the original protocol. While some protocols, sttVas

Binary Cup, have this property, for many other protocols, especially score-based ones,
this is not the case. To see this, note that in a hybrid protocol, the scores of all surviving
candidates are recomputed in the beginning of the second phase, while in the original
protocol they are computed only once. As a result, in a hybrid of, say, two copies of the
Plurality protocol, one candidate may gain a lot of first-place votes from voters who
rank him right after the candidates that were dropped in the first phase, while some
other candidate may get no extra votes at all; a similar phenomenon hapndan
andMaximin.

Nevertheless, any protocol can be modified to be hybrid-proof. For an arbitrary
protocolX, define aclosed protocoK by X = Hyb(Xy, ..., X;), where the number of
copies ofX; is such thaK selects a single winner; a stepXforresponds to a single
copy ofX;.

Proposition 1. For any protocolX, the closed protocoX is hybrid-proof.

We omit the proof.

Interestingly,Hyb(Plurality,, ..., Plurality,,) = STV: the vote transfer mecha-
nism can be viewed as recomputing each candid&tkality score. Observe that
while Plurality has particularly bad manipulation resistance properties (see, e.g., Sec-
tion 7),STV is NP-hard to manipulate. This leads us to conjecture that for many other
base protocols, the new protocols obtained in this manner are NP-hard to manipulate.
Whenever this is the case, the closed protocols provide the most faithful manipulation-
resistant approximation to the underlying protocols, which makes them compelling
alternatives to the original protocols. This conjecture is supported by the fact that for
some easy-to-manipulate protocols, a hybrid of just two copies of the protocol is NP-
hard to manipulate; increasing the number of copies should make the manipulation



harder, not easier. As an illustration, we prove that a hybrid of two instand&srdd
is NP-hard to manipulate.

Theorem 4. The hybridHyb(Bordag, Borda) is NP-hard to manipulate.

Proof. We give a reduction from EACT COVER BY 3-SETS, which is stated as fol-
lows: Given a ground se&& = {g1,...,9nx}, N = 3L, and a collectionS =
{s1,...,sm} of 3-element subsets @, does there exist an exact set coverhf
i.e., asubse$’ of S, S" = {s1,...,sn/3} such that for every; € G there is a unique
s; € S’ such thay; € s;?

We construct two sets of vote¥s, |V/| = 2N+2, andV”, |[V"| = (M+1)(N+1)
and defing/ = V' UV”. LetC? = {cf,...,c% } andC® = {5, ...,c5,}, and let the
set of candidates b&@ = C9 U C* U {¢y} U p, wherep is the manipulator’s preferred
candidate.

Foreach = 1,..., N — 1, there are 2 voters i’ who rank the candidates as

g 9 9 ) g s g s s
(cli1sClior s cpyel, el _1,CF el ,C*\ Cf o) Q)

whereC? = {c | gi € s;}. Also, there are 2 voters who rank the candidates as

(pvc?acgv"'70?\[_130]5\/76?\/705\C]S\fch) ) (2)
where C%, = {¢; | gnv € s;}, a voter who ranks the candi-
dates as(c{,c,...,c%,co,p,C®), and a voter who ranks the candidates as
(cf,¢5,....,c%,p, o, C?).

InV”, foreachi =1,..., N — 1, there aré\/ + 1 voters who rank the candidates
as
(cf+1,cl»g+2,...,cgv,p,c£17,...,Cf,CO,CS) , 3)
M + 1 voters who rank the candidates(@sc{, ¢, ..., %, co, C*), andM + 1 voters
who rank the candidates &g, ¢, . .., %, p, co, C*).

Setk = M — N/3. We can set the voters’ preferences over the candidat€$ in
so that everyone i6’® has the samBorda score, in which case the manipulator’s vote
will determine whichk of them will be eliminated in the first phase.

Suppose that the manipulator votes so that the set of candidatesCffowho
survive the first phase corresponds to an exact set covgr ©hen for each candidate
¢/ and anyj = 1,..., N, there are two voters i’ who rank him in thejth position
and two voters i’ who rank him in thg N + 2)nd position (these two voters prefer
c; to ¢!, wheres; is the set in the set cover that contaips Hence, theBorda score
of each candidate i with respect td/’ is 7" F 7} 2t +2(m — k — N —2).

On the other hand, thBorda score ofp with respect toV’’ is Z;”:jfj,; N2t +
(m—k—N-1)+ (m—k— N —2), and the score aof is lower that the score of
any candidate ii? U {p}, so in this case wins.

Conversely, suppose that the set of candidates fr6rwho survive the first phase
does not correspond to a set cover(af Consider an element;, € G that is not
covered. All voters in”’ preferc! to all surviving candidates i6'® U {c¢}, which
means that hi8orda score is higher than that pf O



Using the same construction, one can showltydt Maximiny, Borda) is NP-hard
to manipulate for infinitely many values &f we omit the details.

6 Properties of Voting Protocols
Voting protocols are evaluated based on various criteria, such as

(1) Pareto-optimality a candidate who is ranked lower than some other candidate
by every voter never wins;

(2) Condorcet-consistencyf there is a candidate who is preferred to every other
candidate by a majority of voters, this candidate should be the winner of the
election;

(3) Monotonicity with the relative order of the other candidates unchanged, ranking
a candidate higher should never cause the candidate to lose, nor should ranking
a candidate lower ever cause the candidate to win.

In the context of this paper, a natural addition to this lidgtasdness of manipulation

Most voting schemes based on pairwise comparisons, in particBfarand
Maximin, are Condorcet-consistent, while f6V, or positional methods, such as
Plurality or Borda, this is not the case. One can prove tRAirality, Borda, Maximin,
andBC are monotone, whil8 TV is not. All basic voting protocols considered in this
paper excepBC are Pareto-optimal.

To analyze whether properties (1)—(3) are preserved under hybridization, we have
to extend these definitions to multi-step protocols. We say that a multi-step protocol is
strongly Pareto-optimaf whenever every voter ranks belowcs, ¢, is eliminated be-
fore ¢, andstrongly monotond ranking a candidate higher does not affect the relative
order of elimination of other candidates and cannot result in him being eliminated at an
earlier step; the definition of Condorcet consistency remains unchanged. It is easy to
see that multi-step versions of Pareto-optimal protocols that we consider are strongly
Pareto-optimal, at least for some draw resolution rules. However, not all monotone
protocols are strongly monotone: for exampleBisrda, moving a candidate several
positions up changes other candidates’ scores in a non-uniform way.

Proposition 2. For any voting protocolX and Y and anyk > 0, if both X andY
are Condorcet-consistent, sottyb(X,Y); if X is strongly Pareto-optimal (strongly
monotone) and is Pareto-optimal (monotone), thetyb(Xy,Y) is Pareto-optimal
(monotone).

We omit the proofs.

The construction proving th&C is not Pareto-optimal can be easily modified to
show that any protocol of the fortyb(BCy,Y) is not Pareto-optimal for somk,
whereY € {Plurality, Borda, Maximin,STV}. Hence, prior to this work, the only
Pareto-optimal mechanisms that were known to be NP-hard to manipulat&Wwere
and the variants of the Copeland protocol that were described in [1]. Our results imply
thatHyb(Borday, Plurality), Hyb(Maximing, Plurality), andHyb(Borday, Borda) also
combine these two properties.



Furthermore, except f&TV, all previous hard-to-manipulate protocols involved
methods that use pairwise comparisons, and such methods have been criticized for re-
lying too much on the number of victories rather than their magnitude. On the other
hand, bottHyb(Borday, Plurality) andHyb(Borday, Borda) are based purely on posi-
tional methods, which do not suffer from this flaw, avidximin (and hence, hybrids of
Maximin with positional methods) also takes into account the magnitude of victories.

7 Limitations and Extensions

7.1 Hybrids That Are Easy to Manipulate

Unfortunately, our method of obtaining hard-to-manipulate protocols is not universal:
if the protocol used in the first phase does not provide the manipulator with sufficiently
many choices, the resulting hybrid protocol is almost as easy to manipulate as its sec-
ond component. In particular, this appliesRtrality protocol.

Theorem 5. Suppose that a protoctf satisfies the following property for any can-
didatec: Given other voters’ preference profiles, the manipulator can in polynomial
time find a beneficial manipulation that rank§rst or infer that no such manipulation
exists. Then there is a polynomial-time algorithm that can constructively manipulate
the hybridHyb(Plurality,, Y) for anyk.

Proof. For the first phase of the protocol, the only choice that the manipulator has
to make is which candidate to rank first; the rest of his vote will have no effect on
the elimination process. Hence, he can tryralloptions. Suppose that when the
manipulator ranks; first, the set of candidates that survive the first phasg .isThe
manipulator can deduce the honest voters’ preferences(qvef ¢; ¢ C;, he simply

has to construct a beneficial manipulatiofa;, of Y and, in his vote, rank; first and
order the candidates ifi; as suggested by|¢,. If ¢; € C;, in constructing a beneficial
manipulation ofY he is restricted to orderings that rankfirst. By our assumptions,

he can find a solution to this problem in polynomial time. O

Corollary 4. There are polynomial-time algorithms that can constructively manipu-
late Hyb(Plurality,,, Y), whereY € {Borda, Maximin, BC, Plurality } for anyk.

The property ofPlurality that makes it an unsuitable candidate for the first phase
of a hybrid protocol is that by altering his vote, the manipulator can obtain at most
m different outcomes of the first phase, so he can go over all of them and pick the
one that produces best results. It is not clear whether any other protocol for which
changing a single vote leads to polynomially many different outcomes is just as bad:
each outcome imposes specific restrictions on the manipulator’s vote in the second
phase, and finding a manipulation that satisfies them may be harder than manipulating
the original protocol.

7.2 Other Measures of Complexity

In their paper [4], Conitzer and Sandholm prove that under some pre-round schedul-
ing algorithms, many protocols become #P-hard or PSPACE-hard to manipulate when
preceded by 8C pre-round, and [6] shows that one can make manipulation as hard as



inverting one-way functions. However, since other protocols that we consider do not
have the flexibility provided by th&C scheduling step, the problem of manipulating
the hybrids whose first component is B, but some other protocol from our list, is
inherently in NP. Consequently, a proof that these hybrids are #P-hard or PSPACE-
hard to manipulate will lead to a collapse of the polynomial hierarchy, and hence is
unlikely.

For the entire class of voting protocols considered in this paper, manipulation is
easy when the number of candidatess very small. This applies both to the standard
protocols likeSTV and to the new hybrid protocols. Indeed, since there areahly
possible ballots for the manipulator, he can go over all of them in order to determine
which of them produces the best outcome.

7.3 Utility-Based Voting

In previous sections, we investigated voting schemes that required each voter to submit
a total ordering of the candidates. However, in many settings a voter may be essentially
indifferent between some of the alternatives, but have a strong opinion on the relative
merit of other alternatives. In this case, his preference may be better reflected by a
utility vectoru = (u1,...,u,), where0 < wu; < 1 is theutility that this voter
assigns to candidatg. To guarantee fairness, the utility vectors are normalized, i.e.,
we require that eithes; = 0 for all j or Zj u; = 1. In addition, we require that all

u; are rational numbers whose representation size is polynomieaind.

The definitions of a voting protocol and manipulation can be modified in a straight-
forward manner. A hybrid of two utility-based protocols is a protocol that perfdrms
steps of the first protocol, re-normalizes the utility vectors (restricted to the surviving
candidates) and executes the second protocol on the remaining candidates.

The most natural voting protocol for the utility-based frameworKiighestScore,
which computes the total score of each candidate, i.e., the sum of utilities assigned
to this candidate by all voters, and selects the candidate with the highest total score.
However, this protocol is hot manipulation-resistant.

Proposition 3. There is a polynomial-time algorithm that can manipulate
HighestScore.

Fortunately, it turns out that the techniques we use for ordering-based protocols are
applicable in this setting, too.

A stepof HighestScore is naturally defined as eliminating the candidate with the
lowest score; consequently, the hybrid protoklgb(HighestScore,,, HighestScore)
consists of eliminating: candidates with the lowest score, renormalizing the utility
vectors, and choosing the candidate with the highest score among the remaining can-
didates.

Theorem 6. Hyb(HighestScore,,, HighestScore) is NP-hard to manipulate.

Another way to increase resistance to manipulation is to use the method of [4],
i.e., prependighestScore with a pre-round. A technical difficulty that arises here is
that in [4], the pre-round winners are determined on the basis of comparisons, while
in our setting, this information may not be available (utility vectors allow for draws).



This can be resolved either by requiring the voters to submit an ordering together with
their utility vector (clearly, the two should be consistent) or by determining the winner
of each pre-round pair by comparing their scores. Both approaches result in hybrid
protocols that are NP-hard to manipulate.

8 Conclusions and Future Work

Our work places the results of [3, 4] within a more general paradigm of hybrid voting
schemes. The advantage of our approach is that it works for a wide range of protocols:
while some voting procedures are inherently hard to manipulate, they may not satisfy
the intuitive criteria of a given setting. On the other hand, a hybrid of two protocols
retains many of their desirable properties, and sometimes may combine the best of both
worlds. All of the voting protocols described in Section 2, as well as many others,
are used in different contexts; while it would be unreasonable to expect that all of
them will be replaced, say, TV just because it is harder to manipulate, hybrids of
these protocols with similar ones or even with themselves may be eventually preferred
to the original protocols. Moreover, our results on utility-based voting suggest that
our techniques can be useful for a wider class of problems and can be viewed as a
contribution to the more general task of constructing computationally strategy-proof
mechanisms.

While we proved that many specific hybrid protocols are hard to manipulate
(though some are not), our goal is not to give a complete list of such protocols, or
investigate all possible protocol combinations; indeed, given the variety of voting algo-
rithms used in practice, this task seems infeasible. Rather, our work should be viewed
as a step towards understanding what makes protocols hard to manipulate, and whether
a protocol at hand can be modified to have this property. We believe that the conditions
we suggest in our hardness reductions apply in many cases not mentioned in the paper;
simplifying these conditions, or replacing them with necessary and sufficient criteria
is an interesting open problem.

Another important issue not addressed in this paper is that of designing efficient
protocols with high average-case manipulation complexity. However, even asking this
guestion properly, i.e., coming up with a natural distribution of voter’s preferences with
respect to which the average-case hardness is computed is itself a difficult task: clearly,
in most scenarios one cannot expect preferences to be uniformly distributed. Initial
results in this direction can be found in [6]; however, this topic should be explored
further.
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