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Abstract

We study the Adjusted Winner procedure of Brams and Taylor for di-
viding goods fairly between two individuals, and prove several results.
In particular we show rigorously that as the differences between the two
individuals become more acute they both benefit. We introduce a geo-
metric approach which allows us to give alternate proofs of some of the
Brams-Taylor results and which gives some hope for understanding the
many-agent case also. We also point out that while honesty may not
always be the best policy, it is as Parikh and Pacuit [4] point out in the
context of voting, the only safe one. Finally, we show that provided that
the assignments of valuation points are allowed to be real numbers, the
final result is a continuous function of the valuations given by the two
agents and suggest a generalization of the adjusted winner function to
take into account nonlinear utility functions.

1 Introduction

In this paper we study one particular algorithm, or procedure, for settling a
dispute between two players over a finite set of goods. The algorithm we are
interested in is called Adjusted Winner (AW ) and due to Steven Brams and
Alan Taylor [2]. See also [1] for a relevant discussion. Suppose there are two
players, called Ann (A) and Bob (B), and n (divisible2) goods (G1, . . . , Gn)
which must be distributed to Ann and Bob. The goal of the Adjusted Winner
algorithm is to fairly distribute the n goods between Ann and Bob. We begin
by discussing an example which illustrates the Adjusted Winner algorithm.

Suppose Ann and Bob are dividing three goods: G1, G2, and G3. Adjusted
Winner begins by giving both Ann and Bob 100 points to divide among the
three goods. Suppose that Ann and Bob assign these points according to the
following table.

Item Ann Bob
G1 10 7
G2 65 43
G3 25 50

Total 100 100

1Working paper which has been presented at the Stony Brook International Game Theory
Conference, June 2005 and Multiagent Resource Allocation Workshop (MARA), September
2005.

2Actually all we need to assume is that one good is divisible. However, since we do
not know before the algorithm begins which good will be divided, we assume all goods are
divisible. See [2, 3] for a discussion of this fact.



The first step of the procedure is to give G1 and G2 to Ann since she assigned
more points to those items, and item G3 to Bob. However this is not an
equitable outcome since Ann has received 75 points while Bob only received
50 points (each according to their personal valuation). We must now transfer
some of Ann’s goods to Bob. In order to determine which goods should be
transfered from Ann to Bob, we look at the ratios of Ann’s valuations to Bob’s
valuations. For G1 the ratio is 10/7 ≈ 1.43 and for G2 the ratio is 65/43 ≈ 1.51.
Since 1.43 is less than 1.51, we transfer as much of G1 as needed from Ann to
Bob3 to achieve equitability.

However, even giving all of item G1 to Bob will not create an equitable
division since Ann still has 65 points, while Bob has only 57 points. In order
to create equitability, we must transfer part of item G2 from Ann to Bob. Let
p be the proportion of item G2 that Ann will keep. p should then satisfy

65p = 100− 43p

yielding p = 100/108 = 0.9259, so Ann will keep 92.59% of item G2 and Bob
will get 7.41% of item G2. Thus both Ann and Bob receive 60.185 points. It
turns out that this allocation (Ann receives 92.59% of item G2 and Bob receives
all of item G1 and item G3 plus 7.41% of item G2) is envy-free, equitable and
efficient, or Pareto optimal. In fact, Brams and Taylor show that Adjusted
Winner always produces such an allocation [2]. We will discuss these properties
in more detail below.

2 The Adjusted Winner Procedure

Suppose that G1, . . . , Gn is a fixed set of goods, or items. A valuation of
these goods is a vector of natural numbers 〈a1, . . . , an〉 whose sum is 100. Let
α, α′, α′′, . . . denote possible valuations for Ann and β, β′, β′′, . . . denote possible
valuations for Bob. An allocation is a vector of n real numbers where each
component is between 0 and 1 (inclusive). An allocation σ = 〈s1, . . . , sn〉 is
interpreted as follows. For each i = 1, . . . , n, si is the proportion of Gi given
to Ann. Thus if there are three goods, then 〈1, 0.5, 0〉 means, “Give all of item
1 and half of item 2 to Ann and all of item 3 and half of item 2 to Bob.”
Thus AW can be viewed as a function that accepts Ann’s valuation α and
Bob’s valuation β and returns an allocation σ. It is not hard to see that every
allocation produced by AW will have a special form: all components except
one will be either 1 or 0.

We now give the details of the procedure. Suppose that Ann and Bob
are each given 100 points to distribute among n goods as he/she sees fit. In
other words, Ann and Bob each select a valuation, α = 〈a1, . . . , an〉 and β =
〈b1, . . . , bn〉 respectively. For convenience rename the goods so that

a1/b1 ≥ a2/b2 ≥ · · · ar/br ≥ 1 > ar+1/br+1 ≥ · · · an/bn

3When the ratio is closer to 1, a unit gain for Bob costs a smaller loss for Ann.



Let α/β be the above vector of real numbers (after renaming of the goods).
Notice that this renaming of the goods ensures that Ann, based on her valuation
α, values the goods G1, . . . , Gr at least as much as Bob; and Bob, based on his
valuation β, values the goods Gr+1, . . . , Gn more than Ann does. Then the AW
algorithm proceeds as follows:

1. Give all the goods G1, . . . , Gr to Ann and Gr+1, . . . , Gn to Bob. Let X, Y
be the number of points received by Ann and Bob respectively. Assume
for simplicity that X ≥ Y .

2. If X = Y , then stop. Otherwise, transfer a portion of Gr from Ann to
Bob which makes X = Y . If equitability is not achieved even with all of
Gr going to Bob, transfer Gr−1, Gr−2, . . . , G1 in that order to Bob until
equitability is achieved.

Thus the AW procedure is a function from pairs of valuations to allocations.
Let AW(α, β) = σ mean that σ is the allocation given by the procedure AW
when Ann announces valuation α and Bob announces valuation e

¯
ta. In [2, 3],

it is argued that AW is a “fair” procedure, where fairness is judged according
to the following properties.

Let α = 〈a1, . . . , an〉 and β = 〈b1, . . . bn〉 be valuations for Ann and Bob
respectively. An allocation σ = 〈s1, . . . , sn〉 is

• Proportional if both Ann and Bob receive at least 50% of their valuation.
That is,

∑n
i=1 siai ≥ 50 and

∑n
i=1(1− si)bi ≥ 50

• Envy-Free if no party is willing to give up its allocation in exchange for
the other player’s allocation. That is,

∑n
i=1 s1ai ≥

∑n
i=1(1 − si)ai and∑n

i=1(1− si)bi ≥
∑n

i=1 sibi.

• Equitable if both players receive the same total number of points. That
is

∑n
i=1 siai =

∑n
i=1(1− si)bi

• Efficient if there is no other allocation that is strictly better for one party
without being worse for another party. That is for each allocation σ′ =
〈s′1, . . . , s′n〉 if

∑n
i=1 ais

′
i >

∑n
i=1 aisi, then

∑n
i=1(1 − s′i)bi <

∑n
i=1(1 −

si)bi. (Similarly for Bob).

In order to simplify notation, let VA(α, σ) be the total number of points Ann
receives according to valuation α and allocation σ and VB(β, σ) the total number
of points Bob receives according to valuation β and allocation σ.

It is not hard to see that for two-party disputes, proportionality and envy-
freeness are equivalent. For a proof, notice that

n∑
i=1

aisi +
n∑

i=1

ai(1− si) =
n∑

i=1

aisi +
n∑

i=1

ai −
n∑

i=1

aisi = 100



Then if σ is envy free for Ann, then
∑n

i=1 aisi ≥
∑n

i=1 ai(1 − si). Hence,
2

∑n
i=1 aisi ≥

∑n
i=1 ai = 100. And so,

∑n
i=1 aisi ≥ 50. The argument

is similar for Bob. Conversely, suppose that σ is proportional. Then
since

∑n
i=1 aisi ≥ 50,

∑n
i=1 aisi +

∑n
i=1 aisi ≥ 100 =

∑n
i=1 ai. Then∑n

i=1 aisi +
∑n

i=1 aisi −
∑n

i=1 ai ≥ 0. Hence,
∑n

i=1 aisi −
∑n

i=1 ai(1− si) ≥ 0.
And so,

∑n
i=1 aisi ≥

∑n
i=1 ai(1− si). The proof is similar for Bob.

Returning to AW , it is easy to see the AW only produces equitable alloca-
tions (equitability is essentially built in to the procedure). Brams and Taylor
go on to show that AW , in fact, satisfies all of the above properties.

Theorem 1 (Brams and Taylor [2]) AW produces an allocation of the
goods based on the announced valuations that is efficient, equitable and envy-
free.

A formal proof of this Theorem is provided in [2]. For completeness, we in-
clude here a proof that AW is proportional (and hence envy-free). Effiency is
discussed in the next section.

Lemma 2 For all α, β, VAW (α, β) ≥ 50.

Proof Suppose not. That is suppose that VAW (α, β) < 50. Then the goods
can be reordered so that

a1 + · · ·+ par = (1− p)br + · · ·+ bn < 50

Hence a1 + · · ·+par +(1−p)br + · · ·+bn < 100. Now since for each j = 1, . . . , r,
aj ≥ bj , we have

100 > a1 + · · ·+ par + (1− p)br + · · ·+ bn + par + (1− p)br + · · ·+ bn

≥ b1 + · · ·+ pbr + (1− p)br + · · ·+ bn

This is a contradiction since b1 + · · ·+ pbr + (1− p)br + · · ·+ bn = 100. �

In fact, we can show something more — AW gives each agent 50 points precisely
when the agents input the same valuations.

Lemma 3 For all α, β, α = β iff VAW (α, β) = 50

Proof (⇒) Suppose that α = β. Let G1, G2, . . . be the order of goods induced
by the AW procedure. Now the AW procedure will distribute the goods so
that

a1 + a2 + · · ·+ par = (1− p)br + br+1 + · · · bn

Since α = β, for each j = r, . . . , n, bj = aj . Hence, we have

a1 + a2 + · · ·+ par = (1− p)ar + ar+1 + · · · an



Now, since
∑n

i=1 ai = 100,

a1 + a2 + · · ·+ par = (1− p)ar + 100− (a1 + · · ·+ ar)

Thus 2(a1+a2+· · ·+par) = 100 and so a1+· · ·+par = 50. Hence, VAW (α, β) =
50.

(⇐) Suppose that VAW (α, β) = 50. Suppose that α 6= β. Then there exist i
and j such that ai > bi and aj < bj . The AW procedure produces an allocation
where (after renaming the goods)

a1 + · · ·+ par = (1− p)br + · · ·+ bn = 50

Furthermore, the procedure ensures that i ≤ r. WLOG we can assume i = 1
by simply choosing the i that maximizes the ratio ai/bi. Using basic algebra,
we have

a1 + a2 + · · ·+ ar−1 + br+1 + br+2 + · · · bn = 100− par − (1− p)br

Since a1 > b1 and for each k = 2, . . . , r − 1, ak ≥ bk, we have

100− par − (1− p)br = a1 + a2 + · · ·+ ar−1 + br+1 + br+2 + · · · bn

> b1 + b2 + · · ·+ br−1 + br+1 + · · ·+ bn

Hence,
100− par − pbr > b1 + b2 + · · · bn = 100

This is a contradiction since p, ar, br > 0. �

3 A Geometrical Interpretation of AW

In this section and the one on continuity, it will be useful to think of both
valuations and allocations as vectors in n-space, and to use vector notation
where such notation will assist our geometric intuition.

Notice that the AW procedure only produces allocations in which all com-
ponents, except possibly one, are either 1 or 0. In this section, we show that
this is not an accident. We will be working in Rk for k ≥ 1. An allocation
is a vector ~x ∈ Rk where each component is a non-negative real less than or
equal to 1. Thus the set of all possible allocations is a hypercube in Rk. Let
Ck = {~x | ∀i 0 ≤ xi ≤ 1} be this hypercube of dimension k (we will leave out
the k when possible).

A valuation is a vector ~P ∈ Rk where
∑k

i=1 Pi = 100. Let · denote the
dot product, that is ~x · ~P =

∑k
i=1 xiPi. Now, let ~P and ~Q be two fixed vectors

(Ann’s valuation and Bob’s valuation). As we want to ensure that Ann and
Bob both receive the same valuation, we are interested in the hyperplane H~P , ~Q
generated by the following equation

~x · ~P = (~1− ~x) · ~Q



Since ~1 · ~Q = 100, we have

~x · (~P + ~Q) = ~x · ( ~Q + ~P ) = ~x · ~Q + (~1− ~x) · ~Q = ~1 · ~Q = 100

Thus H~P , ~Q = {~x | ~x · (~P + ~Q) = 100}. Again we will leave out the subscripts
when possible.

For a fixed ~P and ~Q, wanting efficency, we can ask for the allocations ~x that
maximize ~x · ~P (subject to the above constraints): Let I = Ck ∩ H~P , ~Q. Define

the function f : I → R by f(~x) = ~x · ~P . Then, since I is a closed and bounded
subset of Rk (hence compact by the Heine-Borel Theorem), f has a maximum
value on I = Ck ∩H~P , ~Q. Let m be this maximum value, so that for each ~x ∈ I,
f(~x) ≤ m and the set M = {~x | f(~x) = m} 6= ∅.

We claim that there is a point of M which lies on an edge of the hypercube
Ck. More formally,

Theorem 4 There is a point ~x ∈ M with all components either 1 or 0 except
possibly one. I.e., ∃j such that ∀i, if i 6= j then xi = 1 or xi = 0.

Proof We will show that
(∗) if ~x ∈ M with 0 < xi < 1 and 0 < xj < 1 for i 6= j, then there is a point
~x′ ∈M with xl = x′l for all l 6= i, j and either x′i = 1 or x′j = 1.

To see that this statement implies the theorem, take an arbitrary element
~x ∈M (such an element exists since M is nonempty). Now, each time that (∗)
is used, the number of strictly fractional components (not 0 or 1) decreases by
one. Thus when we are finished there will be at most one fractional component
left.

To prove (∗) WLOG we may assume that i = 1 and j = 2. Thus we have

x1P1 + x2P2 +
k∑

i=3

xiPi = m

where m is the maximum of the function f . Now we must show that either
there is 0 ≤ x′1 ≤ 1

x′1P1 + P2 +
k∑

i=3

xiPi = m

or there is 0 ≤ x′2 ≤ 1 such that

P1 + x′2P2 +
k∑

i=3

xiPi = m

Now if we set x′1 = x1P1+x2P2−P2
P1

, and x′2 = 1 then it is not hard to see

that x′1P1 + P2 +
∑k

i=3 xiPi = m. Similarly, if we set x′′2 = x1P1+x2P2−P1
P2

and
x′′1 = 1. But to show that one of the other of these assignments work, we still
need to show that either 0 ≤ x′1 ≤ 1 or 0 ≤ x′′2 ≤ 1.



Since x1 and x2 are both between 0 and 1, x1P1 + x2P2 < P1 + P2. Thus
using basic algebra, x′1 < 1 and x′′2 < 1.

Suppose that x′1 < 0 and x′′2 < 0. Then since P1 and P2 are both positive
real numbers, x1P1 + x2P2 − P2 < 0 and x1P1 + x2P2 − P1 < 0. Therefore,
x1P1 + x2P2 < P2 and x1P1 + x2Px < P1 and so x1P1 + x2P2 < 1

2P1 + 1
2P2 .

Thus
1
2
P1 +

1
2
P2 +

k∑
i=3

xiPi > x1P1 + x2P2 +
k∑

i=3

xiPi = m

which is a contradiction since we could clearly have used 1
2 , 1

2 as our values, and
m is the maximum. �

This proof shows that there exists an efficient and equitable allocation that
only splits one item. Of course, this is not the same as proving that the algo-
rithm adjusted winner actually produces such an outcome. This is what Brams
and Taylor show in [2].

4 Continuity

Intuitively, as a function from pairs of vectors to real numbers, AW is continu-
ous. That is, “minor changes” in the valuations produces small changes in the
points assigned to the agents by AW . In this section we make this statement
precise.

For this section assume that there are k goods. We will think of AW as a
function that takes two vectors of real numbers and returns a real number, i.e.,
AW : Rk ×Rk → R where AW(α, β) = VA(α, AW (α, β)). Of course, stated this
way AW is only a partial function on Rk ×Rk (only defined on pairs of vectors
whose components add up to 100).

Two notions of continuity relevant for our study. The first is the standard
notion of continuity and it amounts to AW being continuout in the number of

points received. Given v ∈ Rk, the Euclidean norm of v is ||v|| =
√∑k

i=1 v2
i .

We say that F : Rk ×Rk → R is continuous in its frist argument provided for
a fixed v ∈ Rk, for all ε > 0 there exists a δ > 0 such that ||x− y|| < δ implies
|F (x, v)−F (y, v)| < ε. Similarly for “continuity in its second argument”. As we
will see below, AW is continuous in both of its arguments. The second notion
of continuity involves the set of items received by each agent. Thus we think of
AW as a funciton from pairs of vectors of real number to allocations.

Definition 1 A function F from Rk × Rk to allocations is said to be item
continuous in the first argument if for a fixed v ∈ Rk, for all ε > 0 there
exists v1, v2 ∈ Rk×Rk with F (v1, v) = σ, F (v2, v) = σ′ and ||v1−v2|| < ε, then
for all i = 1, . . . , k, σi = 1 iff σ′i = 1 and σi = 0 iff σ′i = 0.

In other words, small changes in valuations allocates the same set of items
to the agents. As we see below, AW is not item continuous. We now show that
AW is continuous in both arguments. The result follows from the next Lemma.



Suppose that α is Ann’s valuation, β is Bob’s valuation and σ is the alloca-
tion produced by AW (that is AW(α, β) = σ). Let r be the ratio ai/bi where
Gi is the item that is divided by the procedure. Define I = {l | al/bl = r}, i.e.,
I is the set of indices of the goods that have the same ratio as the item which
is divided by the procedure.

Lemma 5 Suppose that α, β, σ and I are defined as above. Suppose that
y1, y2, y3 where y2 is Ann’s value of the item being split and y1, y3 is Ann’s
value of all other items in I. Suppose that we choose another item from I to
split, call this allocaiton σ′. Say z1, z2, z3 are integers where z2 is Ann’s value
of the (new) item being split and z1, z3 are Ann’s values for all other items in
I. Then VA(α, σ) = VA(α, σ′), i.e., Ann (and hence Bob) receives the same
number of points.

Proof Let X be the value of allocation out side I that will be allocated to
Bob by his valuation. Let Y be the value of allocation out side I that will be
allocated to Ann by her valuation. Then

VA(α, σ) = X + ry1 + pry2 = Y + y3 + (1− p)y2

where p is the percentage that Bob will get from the item that correspond to
y2. On the other hand

VA(α, σ′) = X + rz1 + qrz2 = Y + z3 + (1− q)z2

where q is the percentage that Bob will get from the item that correspond to
z2. Also note that y1 + y2 + y3 = z1 + z2 + z3. Let S = y1 + y2 + y3.

Let A = ry1 + pry2 and let B = y3 + (1− p)y2 then A/r + B = S and that
gives us A = r(S − B). Substitute in the above equation we get VA(α, σ) =
X + r(S − B) = Y + B then (Y + B)(1 + r) = X + rS + rY and that give us
VA(α, σ) = Y + B = (X + rS + rY )/(1 + r).

In a similar argument, Let A′ = ry1 + pry2 and let B′ = y3 + (1− p)y2 then
A′/r+B′ = S and that gives us A′ = r(S−B′). Substitute in the above equation
we get VA(α, σ′) = X +r(S−B′) = Y +B′ then (Y +B′)(1+r) = X +rS +rY
and that give us VA(α, σ) = Y + B′ = (X + rS + rY )/(1 + r). Thus we
VA(α, σ) = VA(α, σ′).

�

5 Discontinuity on the Set of Items

For the rest of this section, assume we have k goods. Let α, β be Ann’s and Bob’s
valuations respectively. Define VΣ(α, β, σ) = VA(α, σ) + VB(β, σ) = Σsiai +
Σ(1− si)bi. For simplicity we will write VΣ(σ) instead of VΣ(α, β, σ) when α, β
are clear in the context. Consider the following example.

Assume we have four items and given this valuation v1 by both player to
be:



Ann Bob
G1 25+ε/2 25-ε/2
G2 25+ε/2 25-ε/2
G3 25-ε/2 25+ε/2
G4 25-ε/2 25+ε/2

Clearly, Ann will get the first two items and Bob will get the last two items.
Let us consider this valuation v2 by both player to be:

Ann Bob
G1 25-ε/2 25+ε/2
G2 25-ε/2 25+ε/2
G3 25+ε/2 25-ε/2
G4 25+ε/2 25-ε/2

According to AW, Ann will get the last two items and Bob will get the first two
instead. Note that ||v1−v2|| = ε. In fact, we have the following straightforward
proposition.

Proposition 6 Assume we have k goods. For any ε > 0 there are valuations
v1 and v2 such that:

• ||v1 − v2|| = ε

• ∀i we have σ1(i) = 1 iff σ2(i) = 0

• ∀i we have σ1(i) = 0 iff σ2(i) = 1

Proof We have two cases. First, assume that k is even. Then define v1 as
following: Ann’s and Bob’s valuation are ai = 100/k + ε/2, bi = 100/k − ε/2
for i ≤ k/2, i.e. for the first half of the goods, and ai = 100/k − ε/2, bi =
100/k + ε/2 for i > k/2. Define v2 as following: Ann’s and Bob’s valuation are
ai = 100/k − ε/2, bi = 100/k + ε/2 for i ≤ k/2, i.e. for the first half of the
goods, and ai = 100/k + ε/2, bi = 100/k − ε/2 for i > k/2. Then these v1, v2

satisfies all the three properties. The case when k is odd is similar. �

6 The Distance Between Announced Alloca-
tions

In this section we formalize the intuition that the more the valuations differ,
the more points each agent will receive. Since AW only produces equitable allo-
cations, we can think of the function AW as a function from pairs of valuations
to real numbers. Let VAW (α, β) denote the total points that AW allocates to
each agent – say Ann, (according to the announced valuations α and β). For-
mally, VAW (α, β) is defined to be VA(α, AW(α, β)). Of course, we coild define
it in terms of Bob’s valuation, but they are equal so it does not matter which
definition is used.



Given an allocation α for Ann, if Ann increases any component then she
must decrease another component as the sum of the components must be 100.
Now if Ann wants to accentuate the difference between her allocation and Bob’s
allocation, then she will only increase points on goods that she values more than
Bob. Let α, α′ and β, β′ be two valuations for Ann and Bob, respectively. We
say that (α, β) ≺A

ij (α′, β′) if

1. β = β′

2. αi > βi, αj < βj , α′i = αi + 1 and α′j = αj − 1.

3. for all k 6= i, j, α′k = αk

Similarly, we define ≺B
ij with respect to Bob’s valuation. The intuition is that if

(α, β) ≺A
ij (α′, β′), then the pair (α′, β′) represents a situation in which Ann has

“increased” by 1 unit the difference between α and β. We say (α, β) ≺ (α′, β′)
if there is a sequence of pairs of valuations linearly ordered by the ≺A

ij ,≺B
ij

relations (with varying i, j) that begins with (α, β) and ends with (α′, β′). Thus
≺ is the transitive closure of the union of the relations ≺A

ij and ≺B
ij . It is not

hard to see that ≺ is a (non-reflexive) partial order. The main theorem of this
section is

Theorem 7 If (α, β) ≺ (α′, β′), then VAW (α, β) < VAW (α′, β′).

We return to the proof of the main theorem of this section (Theorem 7).
The proof of the theorem is an easy consequence of the following fact.

Lemma 8 Suppose that (α, β) ≺A
ij (α′, β′), then VA(α, AW(α, β)) <

VA(α′,AW(α′, β′)).

Proof To see this, note that when Ann increased some valuations by 1, where
it already exceeded Bob’s valuation for that item, then she gets that item in
the initial allocation both before this change and after the change. Hence Ann
receives more points in her first allocation, and Bob must be compensated for
this fact in the final allocation. Thus Bob’s final score will increase. But since
both Ann and Bob receive the same final score, they will both benefit. We
postpone the details and the arithmetic to the final version of the paper. �

7 NonLinear Utility Functions

There are two assumptions about the agent’s utility functions that are needed
for the previous discussions. First of all, the agents utilities are assumed to be
additive. That is the utility of a set of goods is the sum of the utilities assigned
to each individual good. Second, the utility function for each individual good
is assumed to be linear. In this section we consider situations in which this
second assumption is dropped.



The intuition for dropping the linearity assumption is that there are many
situations in which agents mare share a good but each may get more utility
than can be described by a linear utility function. For example, suppose that
Ann and Bob both assign 100 points to a car. The AW procedure would force
Ann and Bob to split the car in half. Thus both receive 50 points. Suppose
that both Ann and Bob only want to use the car on weekends. Some weekends
Bob uses the car and some weekends Ann uses the car. If It is not always the
case that they both need to use the car at the same time, then it is possible
that each agent can actually receive more than 50 points. Suppose that on
only half of the weekends is there a conflict between Ann and Bob over the use
of the car. Thus both Ann and Bob get to use the car 75% of the time they
need to. This can be interpreted as both Ann and Bob receiving 75 points.

Another good example is roommates. When two roommates share an apart-
ment, they are not getting half of the value of that apartment. They are still
both are getting to use the Kitchen, the bathroom and the living as if they are
living by themselves. It is not the case the roommates always need to use the
same resources at the same time.

The following example illustrates the type of situations we have in mind.
Suppose that Ann and Bob have the following valuation:

Item Ann Bob
G1 30 20
G2 30 20
G3 20 30
G4 20 30

Total 100 100

In this case, AW will give the first two items to Ann and the last two items
to Bob and they both receive 60 points. Now assume that both agents’ partial
utility function of each item is given by the equation 2x−x2 (x is the percentage
of the good that the agent receives). Thus for good G1, the total number of
points that Ann receives from (x × 100)% of G1 is 60x − 30x2 for Ann and
40x− 20x2 for Bob. If Ann gets 60% of the first two items and 40% of the last
two items, and Bob gets 40% of the first two items and 60% of the last two
items, then they both end up with 76 points.

We propose a generalization of the adjusted winner procedure that takes
into account the fact that agents’ may have nonlinear utilities.

Formulation: Each player will supply two numbers for each items: his/her
valuation of getting 100% of the item and his/her valuation of getting 50%.
They we can compute the function that will represent each player. For example
see the valuations below:



Item Ann 100% Ann 50% Bob 100% Ann 50%
G1 30 20 20 15
G2 30 20 50 30
G3 40 30 30 20
Total: 100 70 100 65

Using these values, we can approximate the agents’ (quadratic) valuation
function. Then, using standard techniques, find the maximal total utility sub-
ject to the constraint that the agents’ total valuations are the same. The details
are left for the full version of the paper.

More formally, let Γ = {G1, . . . , Gk} be a set of goods. It is assumed that
goods are divisible, as such it is possible for an agent to receive a portion of a
good. If p ∈ [0, 1], let (p,G) represent the situation where the agent receives
(p× 100)% of G. Since agents may receive portions of goods, we define utility
functions as

u : [0, 1]× Γ → [0, 100]

where u(p, G) = r means that the agent assigns utility r to receiving (p×100)%
of G. Assuming linearity implies that u(p, G) = pu(1, G). Of course any closed
interval would work here since we can always normalize. Since Γ is finite, we
can think of a utility function u as a tuple 〈uG1 , uG2 , . . . , uGk

〉 where uGi :
[0, 1] → [0, u(1, Gi)].

Assuming additivity, given a utility function u, we define the function u on
the set of subsets of Γ as follows. Let ∆ ⊆ Γ, then

u(∆) =
∑
G∈∆

u(G)

In order to simplify notation, we will write u(∆) instead of u(∆).
Let u be the utility function of Ann and v the utility function of Bob. The

AW procedure asks Ann and Bob to represent their utility functions as vectors
whose sum of the components is 100. Given Ann’s valuation α = 〈a1, . . . , ak〉,
AW approximates Ann’s utility function as follows: each uGi is the straight
line going through (0,0) and (1, ai). Given Bob’s valuation β = 〈b1, . . . , bk〉,
AW approximates his utility function as follows: each vGi

is the straight line
from (0, bi) to (1, 0). Viewed in this light, AW is a function that accepts two
linear utility functions and returns an allocation which is equitable, envy-free
and efficient with respect to its two arguments.

More generally, let F be any function from pairs of utility functions to the set
of allocations. We will show that under suitable conditions, there is a function
F such that F (u, v) is envy-free, equitable and efficient. Furthermore, F (u, v)
will produce an allocation which is more efficient than the allocation produced
by AW .

Definition 1 Suppose that u is a utility functions, G a good and x, y ∈ [0, 1].

• u is strictly monotonic with respect to Gi if x < y implies uG(x) <
uG(y)



• u is strictly anti-monotonic with respect to G if x < y implies
uG(x) > uG(y)

• u is strictly concave with respect to G if for all λ ∈ [0, 1], uGλx +
(1− λ)y) > λuG(x) + (1− λ)uG(y)

• u is strictly convex with respect to G if for all λ ∈ [0, 1], uG(λx +
(1− λ)t) < λu(x) + (1− λ)uG(x)

We say that u is strictly monotonic if u is strictly monotonic with respect to
G for each good G. Similarly for the other properties. The following fact is
straightforward.

Fact: If u is strictly monotonic with respect to G, v is anti-monotonic with
respect to G and uG and vG intersect, then they interesect at a unique point.

Definition 2 Let u and v be two utility functions. We say that u and v are
complementary with respect to G if

1. uG is monotonic;

2. vG is anti-monotonic; and

3. uG(0) = vG(1) and uG(1) = vG(0).

We say u and v are complementary utility functions of u and v are complemen-
tary with respect to G for each good G. Finally, we say that a utility function
is continuous if uG is continuous for each good G. The following lemma shows
that for one good, if we assume the agents’ utility functions are complementary,
continuous and concave then we can find an allocation which is better for both
agents than the allocation produced by AW .

Lemma 9 Suppose that u and v are continuous and complementary utility
functions with respect to G. Then if uG and vG are concave, there exists a
unique point x0 such that uG(x0) = vG(x0) and uG(x0) ≥ (uG(0) + uG(1))/2
(vG(x0) ≥ (uG(0) + uG(1))/2).

Proof By assumption uG is strictly monotonic, continuous and concave; vG

is continuous, strictly anti-monotonic and concave; and uG(0) = vG(1) and
uG(1) = vG(0). It is easy to see that there must be a unique point x0 such
that uG(x0) = vG(x0). We must show uG(x0) ≥ (uG(0) + uG(1))/2. Suppose
uG(x0) < (uG(0) + uG(1))/2. Then since uG is concave,

(∗) vG(x0) = uG(x0) < (uG(0) + uG(1))/2 ≤ uG(1/2)

Furthermore since, uG(0) = vG(1) and uG(1) = vG(0) and vG is concave.

(∗∗) vG(x0) = uG(x0) < (uG(0) + uG(1))/2 = (vG(1) + vG(0))/2 ≤ vG(1/2)

There are three cases to consider:



1. x0 < 1/2. Then since vG is anti-monotonic, vG(x0) > vG(1/2). But this
contradicts (∗∗)

2. x0 > 1/2. Then since uG is monotonic, uG(x0) > uG(1/2). But this
contradicts (∗).

3. x0 = 1/2. This contradicts both (∗) and (∗∗).

�

With one good, the AW procedure splits the good in half giving each agent
50 points. Thus the above theorem shows that under suitable assumptions
about the utility function, there exists an envy-free, equitable and efficient
allocation which is better for both parties than the one produced by AW . Can
a similar argument be constructed for any number of goods?
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