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Abstract

This paper presents QuickRank, an efficient algorithm for ranking individuals in
a society, given a network that encodes their relationships, assuming that network
possesses an accompanying hierarchical structure: e.g., the Enron email database
together with the corporation’s organizational chart. The QuickRank design is
founded on the “peer-review” principle, defined herein, and an hypothesis due to
Bonacich. Together, these premises leads to a recursive ranking algorithm which
is scalable, parallelizable, and easily updateable. Moreover, it is also potentially
more resistant to link-spamming than other popular ranking algorithms.

1 Introduction

A fundamental problem in the field of social network analysis is to rank individuals in
a society according to their implicit “importance” (e.g., power or influence), derived
from a network’s underlying topology. More precisely, given a social network, the
goal is to produce a (cardinal) ranking, whereby each individual is assigned a nonneg-
ative real value, from which an ordinal ranking (an ordering of the individuals) can be
extracted if desired. In this paper, we propose a solution to this problem specifically
geared toward social networks that possess an accompanying hierarchical structure.

A social network is typically encoded in a link graph, with individuals represented
by vertices and relationships represented by directed edges, or “links,” annotated with
weights. Given a link graph, there are multiple ways to assign meaning to the weights.
On one hand, one can view the weight on a link from i to j as expressing the distance
from i to j—a quantity inversely related to j’s importance. On the other hand, one
can view each weight as the level of endorsement, or respect, i grants j—a quantity
directly proportional to j’s importance. We adopt this latter interpretation.

Under either interpretation (weights as distances or weights as endorsements), a
social network can be seen as a collection of judgments, one made by each individual
in the society. Correspondingly, we seek a means of aggregating individual judgments
into a single collective ranking. In other words, we consider the aforementioned fun-
damental problem in social network analysis as akin to a key question in voting: how
to aggregate the preferences of many individuals into a single collective persuasion
that reflects the preferences of the population as a whole.

Given a link graph, perhaps the most basic ranking scheme is degree centrality, in
which i’s rank is a combined measure of its indegree, the strength of the endorsements i



receives, and outdegree, the strength of the endorsements i makes. It is straightforward
to compute this metric. However, it could be argued that it is also sensible to take into
account inferred endorsements: e.g., if i endorses j and j endorses k, then i endorses
k in a sense. At the opposite end of the spectrum lie ranking schemes that incorporate
all such inferred endorsements.

Central to these alternatives is a hypothesis due to Bonacich (1972): an individual
is deemed important if he is endorsed by other important individuals. In other words,
the strength of an endorsement should be construed relative to the rank of the individual
making the endorsement. In terms of our voting analogy, Bonacich suggests relating
the collective ranking to the sum of all individual judgments, each weighted by its
respective rank as determined by the collective. The fixed point of this averaging
process—the principal eigenvector of the link graph—defines Bonacich’s metric, also
known as eigenvector centrality. Although intuitively appealing, the computation of
this fixed point can be prohibitive in large networks.

Recently, computer scientists have developed related schemes to rank web pages
based on the Web’s underlying topology. Viewed as a social network, web pages are
individuals and hyperlinks are links. The most prominent approach to ranking web
pages is the PageRank algorithm (Page and Brin, 1998; Page et al., 1998), upon which
the Google search engine is built. PageRank aggregates the information contained
in the Web’s hyperlinks to generate a ranking using a process much like Bonacich’s
method for computing eigenvector centrality.

In this paper, we present QuickRank, an efficient algorithm for computing a rank-
ing in an hierarchical social network. Many social networks are hierarchical. One
apt example already mentioned is the Web, where the individuals are web pages, the
network structure is provided by hyperlinks from one web page to another, and an
explicit hierarchical structure is given by the Web’s domains, subdomains, and so on.
Another fitting example is the Enron email database, where individuals are employ-
ees, the network structure is given by emails from one employee to another, and an
explicit hierarchical structure is given by the corporate hierarchy. Yet another com-
pelling example is a citation index. In this case, the individuals are publications, the
network structure is dictated by the references from one publication to another, and an
explicit hierarchical structure is given by the categorization of publications by fields
(e.g., computer science), subfields (e.g., AI, theory, and systems), and so on.

As we sketch the key ideas behind the QuickRank algorithm in this introductory
section, we allude to the sample hierarchical social network shown in Figure 1, a net-
work of web pages within a domain hierarchy. The web pages, indicated by gray
rectangles, are the individuals in this society. Social relationships between these indi-
viduals (i.e., hyperlinks between web pages) are shown as dashed lines with arrows.
The domain hierarchy is drawn using solid lines with domains and subdomains as inte-
rior nodes, indicated by solid black circles, and web pages as leaves (gray rectangles).

Up to normalization, a ranking is a probability distribution. Given any normal-
ized ranking (i.e., probability distribution) of the individuals in an hierarchical social
network, by conditioning that global distribution on a particular subcommunity (e.g.,
CS), we can derive a conditional ranking of only those individuals within that sub-
community (e.g., Pr[page 1 | CS], Pr[page 2 | CS], etc.). Likewise, from the respective



Figure 1: A sample hierarchical social network.

marginal probability of each subcommunity, we can infer what we call a marginal
ranking1 of subcommunities themselves (e.g., Pr[AI | CS], Pr[theory | CS], etc.). Con-
versely, it is straightforward to recover the global ranking by combining the conditional
and marginal rankings using the chain rule. For example, Pr[page 1] = Pr[page 1 | AI]
Pr[AI | CS] Pr[CS].

Hence, to compute a global ranking of the individuals in an hierarchical social
network, it suffices to compute marginal rankings at all interior nodes (i.e., rank the
children of all interior nodes), and combine those marginal rankings via the chain rule.
To facilitate recursive implementation, QuickRank localizes the computation of each
marginal ranking: any links to or from leaves outside the subtree at hand are ignored in
such computations. Beyond this computational motivation, localizing marginal rank-
ing computations can be motivated by the following “peer-review principle:” endorse-
ments among peers (i.e., members of the same subcommunity) should be taken at face
value, while other endorsements should be considered as only approximate.

Intuitively, it is plausible that ranking information among individuals in a tightly-
knit community would be more reliable than ranking information among individuals
who are only loosely connected. Recall the citation index, a natural example of an
hierarchical social network. When a researcher cites a topic in his area of expertise,
he is likely to select the most appropriate references. In contrast, if for some reason
a researcher with expertise in one area (e.g., computer science) is citing a result in
another (e.g., sociology), he may choose only somewhat relevant references. Hence,
we contend that the peer-review principle, which justifies localized marginal ranking
computations, befits at least some application areas.

1Viewing each interior node as the root of a subtree, we informally refer to the ranking of the children
of an interior node as a marginal ranking, although such a ranking is technically a conditional marginal
ranking, conditioned on the subcommunity defined by that subtree.



To fully implement the peer-review principle it is necessary to define some notion
of approximate endorsements. To this end, we interpret an endorsement by an individ-
ual i in community A for another individual j 6= i in another community B 6= A as
comprising part of an endorsement by A of B. More precisely, we aggregate endorse-
ments by individuals in A for individuals in B into an endorsement by A of B by first
scaling the endorsements from each i to each j by i’s marginal rank, and then summing
the resulting weighted endorsements. If we were to replace the target j of an endorse-
ment by any other j ′ ∈ B, the resulting aggregate endorsement remains unchanged. In
this sense, the original endorsement is viewed as “fuzzy” or “approximate.” Moreover,
by interpreting links originating at i as i’s judgment, this aggregation process can be
seen as an application of Bonacich’s hypothesis (to obtain endorsements of each j ∈ B

by A) followed by a summation over all j ∈ B (to obtain an endorsement of B).
Together, the principle of peer review and Bonacich’s hypothesis lead to the Quick-

Rank algorithm, which we illustrate on the example in Figure 1. We begin by restrict-
ing the link graph to, say, the AI subdomain, thereby constructing a local link subgraph.
Next, we apply any “flat” ranking scheme (e.g., degree and eigenvector centrality and
PageRank) to this link subgraph to produce a marginal ranking of the pages in the AI
subdomain (i.e., a distribution over 1 and 2). Then, we scale the links from 1 to 4 and
2 to 3 by the marginal ranks of 1 and 2, respectively, to generate links from AI to 4 and
3. Finally, we sum these results to produce an aggregate link from AI to theory.

Repeating this procedure for the theory and systems subdomains, we “collapse”
each of the CS subdomains into a leaf, and substitute these subdomains for their cor-
responding web pages in the link graph. We then proceed recursively, constructing a
local link subgraph, and computing a marginal ranking of the CS subdomains. Com-
bining this marginal ranking with the marginal rankings of the web pages in each CS
subdomain yields a single marginal ranking of all the web pages in the CS domain. We
repeat this process until the entire hierarchy has been collapsed into a single node, at
which point we obtain a ranking of all pages in the edu.brown domain.

Overview This paper purports to contribute to the literature on social network anal-
ysis by introducing the QuickRank algorithm. As suggested by the previous example,
QuickRank is parameterized by a “BaseRank” procedure (i.e., a flat ranking scheme,
such as degree centrality) used to compute marginal rankings. We begin in the next
section by precisely defining BaseRank procedures and identifying desirable prop-
erties of such procedures. In Section 3, we present pseudocode for the QuickRank
algorithm. We also consider to what extent QuickRank preserves our previously iden-
tified desirable properties of BaseRank procedures. Then, in Section 4, we provide
sample QuickRank calculations. Our first example illustrates the distinction between
stand alone “BaseRanks” and “QuickRanks,” the rankings output by these schemes. A
further example shows how QuickRank is potentially more resistant to link-spamming
than corresponding BaseRank procedures. We conclude in Section 5. A discussion of
related work is deferred to the QuickRank technical report, currently in preparation.



2 A Unified View of Flat Ranking Algorithms

QuickRank is parametized by a flat (i.e., non-hierarchical) ranking algorithm, or a
“BaseRank” procedure. In this section, we precisely define a BaseRank procedure,
and we formulate the four flat ranking schemes mentioned in the introduction as such.
We also present four desirable properties of BaseRank procedures, and discuss to what
extent the four aforementioned ranking schemes satisfy these properties.

2.1 Preliminary Definitions

A social network encodes relationships among individuals in a society. Such a network
can be represented by a link graph. Individuals i, j ∈ I are represented as vertices,
and the fact that individual i relates to individual j is represented by a directed link
from vertex i to vertex j, augmented by a nonnegative real-valued weight indicating
the strength of i’s relationship to j.

A judgment is a nonnegative, real-valued vector indexed on I. We define an equiv-
alence relation on judgments with r1 and r2 equivalent if cr1 = r2. For our purposes,
a ranking is such an equivalence class 〈r〉 (although we often refer to a ranking by
any representive of the class). A ranking has exactly one representative that is a prob-
ability distribution, which can be obtained by normalizing any other representative.
Further, a ranking represents a consistent estimate of the relative merit of pairs of in-
dividuals: i.e., for all pairs of individuals i and j, the ranking of i relative to j, namely
ri

rj
∈ [0,∞], is well-defined.
A link graph is a nonnegative, real-valued square matrix indexed on I. We restrict

attention to the case where the weights in the link graph may reasonably be interpreted
as endorsements, rather than distances.2 A judgment graph is a link graph further con-
strained to have positive diagonal entries. Each column in a judgment graph represents
the judgment of one individual. The requirement that the diagonal be positive can be
interpreted to mean that individuals are required to judge others relative to themselves.
Whereas rankings are scale invariant, judgments are scale dependent.

In the introduction, we presented ranking schemes as operating on link graphs.
That was a convenient oversimplification. More precisely, they map a judgment graph
and a prior ranking to a posterior ranking. We view the inference of a judgment graph
from a link graph as a preprocessing step. This step might consist of inserting self-
loops: replacing zeros on the diagonal with ones. In the case of the Web or a citation
database, for example, such self-loops would model each web page or publication as
implicitly referring to (i.e., endorsing) itself.

Analogously, we define a BaseRank procedure as a higher-order function that takes
a judgment graph to a mapping which infers a posterior ranking from a prior. When
used within the QuickRank algorithm, we require that the posterior ranking output by
the BaseRank procedure be normalized to a probability distribution. The prior ranking
may be viewed as the persuasion of the “center” (i.e., the implementer of the ranking

2It seems conceivable that QuickRank can be suitably modified to handle the distance interpretation by
redefining the peer-review notion of approximation as aggregating by taking a minimum instead of summing,
but we have not yet explored any applications of this sort.



scheme). A BaseRank procedure then is a means of aggregating the judgments of the
individuals in the society, and the center, into a single collective posterior ranking.

Given a judgment graph R and a prior ranking 〈r〉, Bonacich’s hypothesis suggests
that we may infer a collective judgment as r′ = Rr. In this way, individual j’s pos-
terior position is the sum of each individual i’s conception of j, weighted by the prior
rank of i. By ignoring scale in r′, we can infer the posterior ranking 〈r′〉. Note that
the result of these two inference steps is well-defined, in that 〈r′〉 depends only on 〈r〉
and not on r itself. We use the term linear to describe a BaseRank procedure whose
mapping from a prior ranking to a posterior abides by Bonacich’s hypothesis.

2.2 Sample BaseRank Procedures

We now describe how the four ranking schemes mentioned in the introduction (i.e.,
indegree, outdegree, eigenvector centrality and PageRank) can be viewed BaseRank
procedures. We assume that the link graph has been preprocessed, with self-loops
inserted as necessary, to yield an “initial” judgment graph. Since the inference step
is fixed, the key step in a linear BaseRank procedure is the way in which a “final”
judgment graph is inferred from the initial judgment graph. The degree centrality
metrics and PageRank are examples of linear BaseRank procedures, as is eigenvector
centrality under certain assumptions (see Theorem 2.2).

The indegree and outdegree of individual i are defined respectively, as follows:
given an initial judgment graph R,

IN(i) =
∑

j

Rij OUT(i) =
∑

j

Rji (1)

Both these centrality metrics can be understood as linear BaseRank procedures that
infer a posterior ranking from a uniform prior. Indegree is simply the identity func-
tion: the initial and final judgment graphs are identical. Outdegree is the transpose
operation: the initial and final judgment graphs are transposes of one another.

The PageRank algorithm is parameterized by a value ε ∈ (0, 1) and a distribution v,
often referred to as a “personalization vector.” In a preprocessing step, the columns of
the judgment graph are normalized to yield a Markov matrix M . PageRank operates
on the convex combination of M with the rank one Markov matrix vJ t (where J

ambiguously denotes any vector of all 1’s), namely Mε = (1 − ε)M + εvJ t. This
matrix is easily seen to be regular (i.e., possessing a single closed class, cf. Wicks and
Greenwald (2005)), hence with a unique stable distribution v∞. Moreover, Haveliwala
and Kamvar (2003) have shown that Mε has a second largest eigenvalue of 1 − ε, so
that limk→∞ Mk

ε v0 = v∞, for any initial distribution v0, with convergence as (1−ε)k.
This result follows alternatively by writing v∞ as the limit of a geometric series:

Theorem 2.1 If M is a Markov matrix and Mε = (1− ε)M + εvJ t, then

v∞ = lim
k→∞

Mk
ε v0 = ε

∞
∑

i=0

(1− ε)iM iv (2)



This theorem implies that PageRank is a linear BaseRank procedure, which takes
an initial judgment graph M to a final judgment graph ε

∑∞
i=0

(1 − ε)iM i. The prior
ranking corresponds to the personalization vector and the posterior ranking is a dis-
counted sum of all the inferred rankings (including the prior).

Unlike degree centrality and PageRank, which we have shown are linear BaseRank
procedures, eigenvector centrality is not. Given a judgment graph R and an prior
ranking v0, the algorithm infers a sequence of posterior rankings vn+1 = Rvn

‖Rvn‖1

. It
can be shown that this sequence eventually converges to a fixed point v∞, which can be
interpreted as the collective ranking. Moreover, this iterative process can be expressed
as a linear inference v∞ = Rαv0

‖Rαv0‖1

, where α, and hence Rα, depend on the support of
v0. In particular, eigenvector centrality is a piecewise-linear BaseRank procedure. In
the special case where the judgment graph is strongly-connected (i.e., R is irreducible),
eigenvector centrality is linear, because Rα is constant (i.e., independent of α) and v∞
is independent of v0. Formally,

Theorem 2.2 If a judgment graph R ≥ 0 is irreducible with non-zero diagonal, there
exists a unique ranking v > 0, such that ‖v‖1 = 1 and Rv = ρ(R)v, where ρ(R) is the
magnitude of the largest eigenvalue of R. Moreover, for any v0 ≥ 0, if vn+1 = Rvn

‖Rvn‖1

,

limn→∞ vn = v. That is, v∞ = v and for all α, Rα = vJ t.

2.3 Generalized Proxy Voting

If we view each individual’s rank as a collection of proxy (i.e., infinitely divisible
and transferable) votes, then a judgment graph may be interpreted as a proxy-vote
specification indicating how each individual is willing to assign his proxy votes to
others. Given a prior ranking (i.e., an initial allocation of proxy votes), the posterior
inferred by a linear BaseRank procedure is a reallocation based on the results of a
single round of proxy voting. More generally, in generalized proxy-voting (GPV),
individuals cast their votes repeatedly over time (i.e., each posterior serves as a prior
in the next round), until ultimately, the sequence of posteriors is averaged into a final
vote count: i.e., a final ranking.

While historically PageRank has been viewed in terms of a “random-surfer”
model (cf. Page et al. (1998)), Theorem 2.1 suggests that it may be more aptly
viewed as a GPV mechanism with a discount factor γ ∈ [0, 1). In particular, for
a given prior ranking v, the posterior computed by PageRank can be expressed as
(1 − γ)−1

∑∞
i=0

γiM iv. Notice that this is just the average of the inferred rankings
M iv, where i is distributed geometrically with mean γ. It is natural to generalize to
allow weighting by arbitrary distributions,

∑∞
i=0

αiM
iv, or even as the limit of such,

limN→∞

∑N

i=0
αi,NM iv. Formally, we define a generalized proxy-voting mechanism

as a (linear) BaseRank procedure that takes an initial judgment graph M into a final
judgment graph limN→∞

∑N

i=0
αi,NM i.

Observe that all the flat ranking schemes mentioned above, except outdegree, are
not only linear BaseRank procedures, but can be seen as GPV mechanisms as well.
Indegree is a trivial instance of GPV with αi,N = δi,1. By Theorem 2.1, Page-
Rank is a GPV mechanism with αi,N = ε(1 − ε)i. Finally, if we restrict atten-



tion to irreducible judgment graphs, eigenvector centrality is a GPV mechanism, with

αi,N =

{

1

N+1
if 0 ≤ i ≤ N

0 otherwise
. This final claim follows Theorem 2.2 and the well-

known fact that limi→∞ si = limk→∞
1

k

∑k−1

i=0
si. Although outdegree, which takes

R to Rt is linear, it is not a GPV mechanism.

2.4 Axioms

Next, we identify two types of judgment graphs that have natural interpretations, and
on which a particular behavior for a BaseRank procedure seems preferred. First, con-
sider the identity matrix I as a judgment graph—the identity graph—in which each
individual ranks himself infinitely superior to all others. Such a ranking graph pro-
vides no basis for modifying a prior ranking. Thus, on this input, it seems reasonable
that a BaseRank procedure should act as the identity function (i.e., posterior = prior).

Second, consider the case of a consensus graph, that is, a judgment graph xyt,
where x is a distribution and yi is individual i’s arbitrary scaling factor. In other
words, a consensus graph is a rank 1 matrix: everyone agrees on the ranking x, up to
a multiple. Since there is consensus among the individuals in the society, we contend
that any prior ranking should be ignored. A BaseRank procedure should simply return
the consensus x. We restate these two properties succinctly, as follows:

Identity: BaseRank(I) = id

Consensus: BaseRank(xyt) = x

Another important issue associated with ranking schemes is that of manipulation
via “link spamming.” The goal of link spamming is to game a ranking system by creat-
ing many false nodes, sometimes called sybils (Cheng and Friedman, 2006), that link
to some node n, thereby attempting to influence the rank of node n. Web spamming is
a particularly popular form of link spamming (Gyongyi and Garcia-Molina, 2004).

A judgment graph inhabited by sybils takes the following form: M ′ =
[

M N

0 M

]

, where M is the original judgment graph (i.e., without the sybils), N

describes the links from the sybils to existing members of the society, and M describes
the links among sybils. Since sybils are new to the community, and hence unknown its
original members, we assume that there are no links from those members to sybils.

Observe that generalized proxy-voting mechanisms are spam-resistant in the fol-
lowing sense: Given a prior ranking which places no weight on sybils, the posterior
ranking computed with respect to the modified judgment graph M ′ is, for all intents
and purposes, equivalent to the posterior ranking computed with respect to the original
judgment graph M . That is,



Property Indegree Outdegree Eigenvector PageRank
Linear Yes Yes No Yes
GPV Yes No Yes Yes
Identity Yes Yes Yes Yes
Consensus Yes Yes Yes No

Table 1: Some properties of ranking schemes.

Theorem 2.3 If M ′ =

[

M N

0 M

]

, v′ =

[

v

0

]

, and BaseRank(·) =

limN→∞

∑N

i=0
αi,N (·)

i, then BaseRank(M ′)v′ =

[

BaseRank(M)v

0

]

.

For example, since PageRank is a GPV mechanism, we apply Theorem 2.3 to
show that the posterior ranking of non-sybils is unaffected by their presence, if we
assign sybils a prior rank of 0. In other words, if sybils can be detected a priori, then
PageRank may be rendered immune to such an attack. Although the corresponding
Markov matrix need not be irreducible for such a “personalization” vector, we con-
clude from Theorem 2.1 that the Markov process converges for all prior rankings v0.
Note that this conclusion follows specifically from our interpretation of PageRank as
a GPV mechanism, as opposed to the traditional “random surfer” model.

Table 1 summarizes how each of the four ranking schemes discussed in this section
behave with respect to the four properties of BaseRank procedures discussed in this
section. PageRank does not satisfy the consensus property because it is always biased
to some degree by the prior ranking. However, using the notation introduced above, if
we instead define Mε = (1− ε)M + εMvJ t, the resulting algorithm satisfies all four
properties. This modified PageRank corresponds to a linear BaseRank procedure with
final judgment graph ε

∑∞
i=0

(1 − ε)iM i+1, that is, the posterior is a discounted sum
of all inferred rankings excluding the prior.

Fundamentally, QuickRank’s design is based on the two key ideas discussed in the
introduction, namely the peer-review principle and Bonacich’s hypothesis. However,
as QuickRank is parameterized by a BaseRank procedure, it is also designed to pre-
serve the Identity and Consensus properties. In the next section, we detail the algorithm
and argue informally that it indeed preserves these two properties of BaseRank pro-
cedures, although it fails to preserve linearity. When we present sample calculations
in Section 4, we note that QuickRank preserves the spam-resistance of its BaseRank
procedure, and we illustrate its potential to resist spam even further.



3 QuickRank: The Algorithm

QuickRank operates on a hierarchical social network, that is a judgment3 graph R

whose vertices are simultaneously leaves of a tree T . At a high level, QuickRank first
ranks the leaves using the link information contained in the local subgraphs; it then
propagates those local4 rankings up the tree, aggregating them at each level, until they
have been aggregated into a single global ranking. Ultimately, a node’s QuickRank is
the product of its own local rank and the local rank of each of its ancestors. QuickRank
is parameterized by a BaseRank procedure, which it uses to compute local rankings. It
also takes as input a prior ranking of the leaves. It outputs a posterior distribution.

Although we present QuickRank pseudocode (see Algorithm 1) that is top-down
and recursive, like many algorithms that operate on trees, the simplest way to visualize
the QuickRank algorithm is bottom-up. From this point of view, QuickRank repeatedly
identifies “collapsible” nodes in T , meaning the root nodes of subtrees of depth 1,
and collapses them into leaf nodes (i.e., subtrees of depth 0) until there are no further
opportunities for collapsing: i.e., until T itself is a leaf node. Collapsing node n entails:
(i) computing a local ranking at n, that is a ranking of n’s children, and (ii) based on
this local ranking, aggregating the rankings and the judgments of n’s children into a
single ranking and a single judgment, both of which are associated with n.

Note that QuickRank is a well-defined algorithm: that is, the order in which local
rankings are computed does not impact the global ranking. This property is immediate,
since QuickRank propagates strictly local calculations up the tree in computing its
global output. Moreover, the collapse operation replaces a subtree of depth 1 with a
subtree of depth 0 so that QuickRank is guaranteed to terminate.

Data Structures Algorithm 1 takes as input Tn, subtree of T rooted at node n, and
returns two data structures: (i) a ranking of all leaves (with support only on Tn) and
(ii) a judgment, which is the average of all judgments of Tn’s leaves, weighted by
the ranking computed in (i). At leaf node n, the ranking is simply the probability
distribution with all weight on n, denoted en, and the judgment is given by Rn.

Computing Local Rankings Recall that the main idea underlying QuickRank is to
first compute local rankings, and to then aggregate those local rankings into a single
global ranking. Given a collapsible node n, a local ranking is a ranking of n’s children.
To compute such a ranking, QuickRank relies on a BaseRank procedure.

There are two inputs to this BaseRank procedure. The first is n’s local (i.e.,
marginal) prior ranking. The second is a local judgment graph M . For j and k both
children of node n, the entry of M in the row corresponding to k and the column cor-
responding to j is the aggregation of all endorsements from leaves in Tj to leaves in
Tk, equal to the sum of all entries in the jth judgment corresponding to leaves of Tk.

Aggregating Rankings and Links To aggregate the rankings of n’s m children into
a single ranking associated with n, QuickRank averages the rankings r1, . . . , rm ac-

3As above, we assume the link graph has been preprocessed to form a judgment graph.
4Whereas in the introduction, we used the term marginal, we now use the term local to refer to the ranking

of a node’s children. The salient point here is: this ranking is computed using strictly local information.



cording to the weights specified by the local ranking r. If we concatenate the m rank-
ings into a matrix Q =

[

r1 · · · rm
]

, then the aggregation of rankings can be
expressed simply as Qr. Also associated with each child j of a collapsible node n is a
judgment lj . These judgments are aggregated in precisely the same way as rankings.

Algorithm 1 QuickRank(node n)
1: if n.isLeaf() then
2: return 〈n.getJudgment(), en〉
3: else
4: m = n.numChildren()
5: for j = 1 to m do
6: 〈lj , rj〉 ← QuickRank(n.getChild(j))
7: for k = 1 to m do
8: Mkj = Sum(lj , n.getChild(k))
9: end for

10: end for
11: P =

[

l1 . . . lm
]

12: Q =
[

r1 . . . rm
]

13: r = BaseRank(M , n.getLocalPriorRanking())
14: return 〈Pr, Qr〉
15: end if

We now argue that if the BaseRank procedure satisfies the Identity and Consensus
properties, then so, too, does QuickRank. First, notice that, when restricted to any
subcommunity (i.e., square, diagonal block), an identity or consensus graph yields the
same type of graph again. Moreover, aggregating links in such a community within
the original graph (i.e., summing rows and averaging columns) also results in the same
type of graph. Consequently, if QuickRank employs a BaseRank procedure with the
Identity property, it will output the prior distribution on the identity graph, since the
prior local rankings will remain unchanged at each level in the hierarchy.

Now consider a consensus graph with ranking x s.t. ‖x‖1 = 1. Restriction to a
subcommunity gives a consensus graph on the corresponding conditional distribution
of x. Likewise, aggregation produces a consensus graph on the corresponding marginal
distribution of x. If QuickRank employs a BaseRank algorithm with the consensus
property on a consensus graph, it will gradually replace the prior distribution at the
leaves with the conditional distributions of x, until it finally outputs x itself.

We conclude this section by pointing out that, even if the BaseRank procedure is
linear, QuickRank may not be expressible as a linear inference. Normalizing local
rankings to form distributions can introduce non-linearities. In the next section, we
provide sample QuickRank calculations.



4 Examples

We now present two examples that verify our intuition regarding QuickRank and illus-
trate some of its novel features. Recall that QuickRank, as it operates on an hierarchical
social network (HSN), is parameterized by a prior ranking and a BaseRank procedure.

First, consider the HSN shown in Figure 2a. The hierarchy is drawn using solid
lines. The link graph is indicated by dotted lines between the numbered leaves. All
weights are assumed to be 1. Computing QuickRanks for this HSN, varying the Base-
Rank procedure among indegree, eigenvector centrality, and PageRank,5 but always
assuming a uniform prior ranking, leads to the rankings, cardinal and ordinal, shown
in Table 2. The values in the posterior distributions have been rounded; hence, the
ordinal rankings more precisely reflect the exact values in those distributions.

Figure 2: Two examples of hierarchical social networks.

Table 2: BaseRanks and QuickRanks from Figure 2a and uniform prior.

Indegree Eigenvector PageRank
cardinal {0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.13} {0.19, 0.08, 0.16, 0.14, 0.22, 0.10, 0.12} {0.14, 0.32, 0.11, 0.09, 0.14, 0.09, 0.11}

Flat
ordinal 5 > 1 = 2 = 3 = 4 = 6 = 7 5 > 1 > 3 > 4 > 7 > 6 > 2 2 > 1 > 5 > 3 > 7 > 6 > 4

cardinal {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.18} {0, 0, 0.41, 0, 0.59, 0, 0} {0.04, 0.14, 0.25, 0.04, 0.41, 0.06, 0.06}
QuickRank

ordinal 5 > 3 > 7 > 6 > 1 = 2 > 4 5 > 3 > 1 = 2 = 4 = 6 = 7 5 > 3 > 2 > 7 > 6 > 1 > 4

For each BaseRank procedure, we list two pairs of rankings: that which results
from ignoring the hierarchy, and that which results from exploiting it using QuickRank.
When we ignore the hierarchy, all three algorithms rank leaf 1 above (or equal to) 3.
However, since 1 defers to 3 (i.e., 1 endorses 3, but not vice versa), based on our peer-
review principle, 3 should be ranked higher than 1. This outcome indeed prevails in
the QuickRanks, for all three BaseRank procedures.

As an added benefit, QuickRank can be more resistant to link spamming than Base-
Rank procedures that do not exploit hierarchies. To demonstrate this phenomenon, in
Figure 2b, we introduce a sybil, leaf 8, into our original example to try and raise the
rank of 6 by recommending it highly. Note the multiplicity of links from 8 to 6.

5The results of ranking with outdegree are not qualititatively different, but are omitted for lack of space.



Table 3: Figure 2b with Indegree as BaseRank.

Uniform Prior Weighted Prior
cardinal {0.10, 0.10, 0.10, 0.10, 0.10, 0.35, 0.10, 0.05} {0.13, 0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.0}

Flat
ordinal 6 > 1 = 2 = 3 = 4 = 5 = 7 > 8 6 > 1 = 2 = 3 = 4 = 5 = 7 > 8

cardinal {0.09, 0.09, 0.18, 0.06, 0.28, 0.14,0.11, 0.06} {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.19, 0.0}
QuickRank

ordinal 5 > 3 > 6 > 7 > 1 = 2 > 4 = 8 5 > 3 > 7 > 6 > 1 = 2 > 4 > 8

Applying QuickRank with indegree as BaseRank to this example yields the rank-
ings shown in Table 3. Using a uniform prior, the sybil is able to raise the rank of 6
over 7 and 6 over 4, whether we exploit the hierarchy (i.e., use QuickRank) or not (i.e.,
compute indegrees directly). QuickRank cannot prevent this outcome, since the sybil
is an accepted member of 4’s and 7’s community. However, the influence of the sybil
is somewhat mitigated under QuickRank. Since the resulting ranking must respect the
hierarchy, the effect of the sybil is to raise the ranks of both 5 and 6 (i.e., both values
in the posterior distribution). No amount of link spam from a sybil outside their local
community can increase the rank of 6 relative to 5.

Moreover, if one is able to identify sybils a priori, by setting the prior ranks of
sybils to zero, one can reduce their influence even further. If we use a prior ranking
which is weighted against the sybil, say uniform over 1-7 and zero on 8, Table 3
shows that indegree produces the same rankings as in Table 2, that is, without the
sybil, whether we exploit the hierarchy or not. In general, Theorem 2.3 states that any
BaseRank procedure which is a GPV mechanism will necessarily exhibit this same
behavior. QuickRank is not a GPV scheme (recall that QuickRank is nonlinear but
that GPV schemes are linear). Still, QuickRank preserves the spam-resistance property
characteristic of GPV mechanisms.

5 Conclusion

Social network, or link, analysis is regularly applied to information networks to com-
pute rankings (Garfield, 1972; Kleinberg, 1998; Page and Brin, 1998; Page et al., 1998)
and to social networks (Bonacich, 1972; Hubbell, 1965; Katz, 1953; Wasserman and
Faust, 1994) to determine standing. We discuss two examples of information networks
with inherent hierarchical structure: the Web and citation indices. Social networks,
like the Enron email database, also exhibit hierarchical structure. Simon (1962) sug-
gests that such hierarchies are ubiquitous:

Almost all societies have elementary units called families, which may be grouped
into villages or tribes, and these into larger groupings, and so on. If we make a
chart of social interactions, of who talks to whom, the clusters of dense interaction
in the chart will identify a rather well-defined hierarchic6 structure.

6Simon’s use of the terminology “hierarchic” is slightly broader than our use of “hierarchical structure,”



Still, to our knowledge, link analysis procedures largely ignore any hierarchical
structure accompanying an information or social network. In this paper, we introduced
QuickRank, a link analysis technique for ranking individuals that exploits hierarchical
structure. The foundational basis for QuickRank is the peer-review principle, which
implies that the relative ranking between two individuals be determined by their local
ranks in the smallest community to which they both belong. This principle, together
with an hypothesis due to Bonacich, leads to a recursive algorithm which is scalable,
parallelizable, and easily updateable.

For a large-scale network such as the Web, we anticipate that QuickRank will yield
substantial computational gains over standard ranking methods (e.g., calculating Page-
Ranks via the power method). Moreover, it appears more resistant to link-spamming
than other popular ranking algorithms on contrived examples, although it remains to
verify this claim empirically.
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