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Abstract

Resource allocation problems are concerned with the allocation of lim-

ited resources among competing activities so as to achieve the best per-

formances. In systems which serve many users, like in networking, there

is a need to respect some fairness rules while looking for the overall ef-

ficiency. The so-called Max-Min Fairness is widely used to meet these

goals. However, allocating the resource to optimize the worst perfor-

mance may cause a dramatic worsening of the overall system efficiency.

Therefore, several other fair allocation schemes are searched and ana-

lyzed. In this paper we show how the scalar inequality measures can

be consistently used in bicriteria models to search for fair and efficient

allocations.

1 Introduction

Resource allocation problems are concerned with the allocation of limited re-
sources among competing activities [4]. In this paper, we focus on approaches
that, while allocating resources to maximize the system efficiency, they also
attempt to provide a fair treatment of all the competing activities [8]. The
problems of efficient and fair resource allocation arise in various systems which
serve many users, like in telecommunication systems among others. In network-
ing a central issue is how to allocate bandwidth to flows efficiently and fairly
[3, 18]. In location analysis of public services, the decisions often concern the
placement of a service center or another facility in a position so that the users
are treated fairly in an equitable way, relative to certain criteria citeogr00. Re-
cently, several research publications relating the fairness and equity concepts to
the multiple criteria optimization methodology have appeared [7, 8, 14].

The generic resource allocation problem may be stated as follows. Each
activity is measured by an individual performance function that depends on
the corresponding resource level assigned to that activity. A larger function
value is considered better, like the performance measured in terms of quality
level, capacity, service amount available, etc. Models with an (aggregated)
objective function that maximizes the mean (or simply the sum) of individual
performances are widely used to formulate resource allocation problems, thus
defining the so-called mean solution concept. This solution concept is primarily
concerned with the overall system efficiency. As based on averaging, it often
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provides solution where some smaller services are discriminated in terms of
allocated resources. An alternative approach depends on the so-called Max-
Min solution concept, where the worst performance is maximized. The Max-
Min approach is consistent with Rawlsian [20] theory of justice, especially when
additionally regularized with the lexicographic order. The latter is called the
Max-Min Fairness (MMF) and commonly used in networking [18]. Allocating
the resources to optimize the worst performances may cause, however, a large
worsening of the overall (mean) performances. Therefore, there is a need to
seek a compromise between the two extreme approaches discussed above.

Fairness is, essentially, an abstract socio-political concept that implies im-
partiality, justice and equity [19, 24], Nevertheless, fairness was frequently quan-
tified with the so-called inequality measures to be minimized [1, 21, 22]. Un-
fortunately, direct minimization of typical inequality measures contradicts the
maximization of individual outcomes and it may lead to inferior decisions. The
concept of fairness has been studied in various areas beginning from political
economics problems of fair allocation of consumption bundles [2, 17, 19] to ab-
stract mathematical formulation [23]. In order to ensure fairness in a system, all
system entities have to be equally well provided with the system’s services. This
leads to concepts of fairness expressed by the equitable efficiency [6, 8, 16]. The
concept of equitably efficient solution is a specific refinement of the Pareto-
optimality taking into account the inequality minimization according to the
Pigou-Dalton approach. In this paper the use of scalar inequality measures in
bicriteria models to search for fair and efficient allocations is analyzed. There
is shown that properties of convexity and positive homogeneity together with
some boundedness condition are sufficient for a typical inequality measure to
guarantee that it can be used consistently with the equitable optimization rules.

2 Equity and fairness

The generic resource allocation problem may be stated as follows. There is a
system dealing with a set I of m services. There is given a measure of services
realization within a system. In applications we consider, the measure usually
expresses the service quality. In general, outcomes can be measured (modeled)
as service time, service costs, service delays as well as in a more subjective way.
There is also given a set Q of allocation patterns (allocation decisions). For each
service i ∈ I a function fi(x) of the allocation pattern x ∈ Q has been defined.
This function, called the individual objective function, measures the outcome
(effect) yi = fi(x) of allocation x pattern for service i. In typical formulations a
larger value of the outcome means a better effect (higher service quality or client
satisfaction). Otherwise, the outcomes can be replaced with their complements
to some large number. Therefore, without loss of generality, we can assume
that each individual outcome yi is to be maximized which allows us to view the
generic resource allocation problem as a vector maximization model:

max {f(x) : x ∈ Q} (1)



where f(x) is a vector-function that maps the decision space X = Rn into the
criterion space Y = Rm, and Q ⊂ X denotes the feasible set.

Model (1) only specifies that we are interested in maximization of all ob-
jective functions fi for i ∈ I = {1, 2, . . . , m}. In order to make it operational,
one needs to assume some solution concept specifying what it means to max-
imize multiple objective functions. The solution concepts may be defined by
properties of the corresponding preference model. The preference model is com-
pletely characterized by the relation of weak preference, denoted hereafter with
�. Namely, the corresponding relations of strict preference � and indifference
∼= are defined by the following formulas:

y′ � y′′ ⇔ (y′ � y′′ and y′′ 6� y′),

y′ ∼= y′′ ⇔ (y′ � y′′ and y′′ � y′).

The standard preference model related to the Pareto-optimal (efficient) so-
lution concept assumes that the preference relation � is reflexive:

y � y, (2)

transitive:
(y′ � y′′ and y′′ � y′′′) ⇒ y′ � y′′′, (3)

and strictly monotonic:

y + εei � y for ε > 0; i = 1, . . . , m, (4)

where ei denotes the i–th unit vector in the criterion space. The last assumption
expresses that for each individual objective function more is better (maximiza-
tion). The preference relations satisfying axioms (2)–(4) are called hereafter
rational preference relations. The rational preference relations allow us to for-
malize the Pareto-optimality (efficiency) concept with the following definitions.
We say that outcome vector y′ rationally dominates y′′ (y′ �r y′′), iff y′ � y′′

for all rational preference relations �. We say that feasible solution x ∈ Q
is a Pareto-optimal (efficient) solution of the multiple criteria problem (1), iff
y = f(x) is rationally nondominated.

Simple solution concepts for multiple criteria problems are defined by ag-
gregation (or utility) functions g : Y → R to be maximized. Thus the multiple
criteria problem (1) is replaced with the maximization problem

max {g(f(x)) : x ∈ Q} (5)

In order to guarantee the consistency of the aggregated problem (5) with the
maximization of all individual objective functions in the original multiple cri-
teria problem (or Pareto-optimality of the solution), the aggregation function
must be strictly increasing with respect to every coordinate.

The simplest aggregation functions commonly used for the multiple criteria
problem (1) are defined as the mean (average) outcome

µ(y) =
1

m

m
∑

i=1

yi (6)



or the worst outcome
M(y) = min

i=1,...,m
yi. (7)

The mean (6) is a strictly increasing function while the minimum (7) is only
nondecreasing. Therefore, the aggregation (5) using the sum of outcomes al-
ways generates a Pareto-optimal solution while the maximization of the worst
outcome may need some additional refinement. The mean outcome maximiza-
tion is primarily concerned with the overall system efficiency. As based on
averaging, it often provides a solution where some services are discriminated in
terms of performances. On the other hand, the worst outcome maximization,
ie, the so-called Max-Min solution concept is regarded as maintaining equity.
Indeed, in the case of a simplified resource allocation problem with the knap-
sack constraints, the Max-Min solution meets the perfect equity requirement.
In the general case, with possibly more complex feasible set structure, this prop-
erty is not fulfilled. Nevertheless, if the perfectly equilibrated outcome vector
ȳ1 = ȳ2 = . . . = ȳm is nondominated, then it is the unique optimal solution of
the corresponding Max-Min optimization problem [13]. In other words, the per-
fectly equilibrated outcome vector is a unique optimal solution of the Max-Min
problem if one cannot find any (possibly not equilibrated) vector with improved
at least one individual outcome without worsening any others. Unfortunately,
it is not a common case and, in general, the optimal set to the Max-Min aggre-
gation may contain numerous alternative solutions including dominated ones.
The Max-Min solution may be then regularized according to the Rawlsian prin-
ciple of justice [20] which leads us to the lexicographic Max-Min concepts or
the so-called Max-Min Fairness [9, 8].

In order to ensure fairness in a system, all system entities have to be equally
well provided with the system’s services. This leads to concepts of fairness ex-
pressed by the equitable rational preferences [6, 11]. First of all, the fairness
requires impartiality of evaluation, thus focusing on the distribution of outcome
values while ignoring their ordering. That means, in the multiple criteria prob-
lem (1) we are interested in a set of outcome values without taking into account
which outcome is taking a specific value. Hence, we assume that the preference
model is impartial (anonymous, symmetric). In terms of the preference relation
it may be written as the following axiom

(yπ(1), yπ(2), . . . , yπ(m)) ∼= (y1, y2, . . . , ym) for any permutation π of I (8)

which means that any permuted outcome vector is indifferent in terms of the
preference relation. Further, fairness requires equitability of outcomes which
causes that the preference model should satisfy the (Pigou–Dalton) principle of
transfers. The principle of transfers states that a transfer of any small amount
from an outcome to any other relatively worse–off outcome results in a more
preferred outcome vector. As a property of the preference relation, the principle
of transfers takes the form of the following axiom

yi′ > yi′′ ⇒ y − εei′ + εei′′ � y for 0 < ε < yi′ − yi′′ (9)



The rational preference relations satisfying additionally axioms (8) and (9) are
called hereafter fair (equitable) rational preference relations . We say that out-
come vector y′ fairly (equitably) dominates y′′ (y′ �e y′′), iff y′ � y′′ for all
fair rational preference relations �. In other words, y′ fairly dominates y′′, if
there exists a finite sequence of vectors yj (j = 1, 2, . . . , s) such that y1 = y′′,
ys = y′ and yj is constructed from yj−1 by application of either permutation of
coordinates, equitable transfer, or increase of a coordinate. An allocation pat-
tern x ∈ Q is called fairly (equitably) efficient or simply fair if y = f(x) is fairly
nondominated. Note that each fairly efficient solution is also Pareto-optimal,
but not vice verse.

In order to guarantee fairness of the solution concept (5), additional re-
quirements on the class of aggregation (utility) functions must be introduced.
In particular, the aggregation function must be additionally symmetric (impar-
tial), i.e. for any permutation π of I ,

g(yπ(1), yπ(2), . . . , yπ(m)) = g(y1, y2, . . . , ym) (10)

as well as be equitable (to satisfy the principle of transfers)

g(y1, . . . , yi′ − ε, . . . , yi′′ + ε, . . . , ym) > g(y1, y2, . . . , ym) (11)

for any 0 < ε < yi′ − yi′′ . In the case of a strictly increasing function satisfying
both the requirements (10) and (11), we call the corresponding problem (5) a
fair (equitable) aggregation of problem (1). Every optimal solution to the fair
aggregation (5) of a multiple criteria problem (1) defines some fair (equitable)
solution.

Note that both the simplest aggregation functions, the sum (6) and the
minimum (7), are symmetric although they do not satisfy the equitability re-
quirement (11). To guarantee the fairness of solutions, some enforcement of
concave properties is required. For any strictly concave, increasing utility func-
tion u : R → R, the function g(y) =

∑m

i=1 u(yi) is a strictly monotonic and
equitable thus defining a family of the fair aggregations. Various concave utility
functions u can be used to define such fair solution concepts. In the case of
the outcomes restricted to positive values, one may use logarithmic function
thus resulting in the Proportional Fairness (PF) solution concept [5]. Actually,
it corresponds to the so-called Nash criterion which maximizes the product of
additional utilities compared to the status quo. For a common case of upper
bounded outcomes yi ≤ y∗ one may maximize power functions −∑m

i=1 (y∗−yi)
p

for 1 < p < ∞ which corresponds to the minimization of the corresponding p-
norm distances from the common upper bound y∗ [7].

Fig. 1 presents the structure of fair dominance for two-dimensional outcome
vectors. For any outcome vector ȳ, the fair dominance relation distinguishes set
D(ȳ) of dominated outcomes (obviously worse for all fair rational preferences)
and set S(ȳ) of dominating outcomes (obviously better for all fair rational
preferences). However, some outcome vectors are left (in white areas) and
they can be differently classified by various specific fair rational preferences.
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Figure 1: Structure of the fair dominance: D(ȳ) – the set fairly dominated by
ȳ, S(ȳ) – the set of outcomes fairly dominating ȳ.

The MMF fairness assigns the entire interior of the inner white triangle to the
set of preferred outcomes while classifying the interior of the external open
triangles as worse outcomes. Isolines of various utility functions split the white
areas in different ways. One may notice that the set D(ȳ) of directions leading
to outcome vectors being dominated by a given ȳ is, in general, not a cone and
it is not convex. Although, when we consider the set S(ȳ) of directions leading
to outcome vectors dominating given ȳ we get a convex set.

3 Inequality measures and fair consistency

Inequality measures were primarily studied in economics [22] while recently
they become very popular tools in Operations Research. Typical inequality
measures are some deviation type dispersion characteristics. They are trans-
lation invariant in the sense that %(y + ae) = %(y) for any outcome vector y

and real number a (where e vector of units (1, . . . , 1)), thus being not affected
by any shift of the outcome scale. Moreover, the inequality measures are also
inequality relevant which means that they are equal to 0 in the case of perfectly
equal outcomes while taking positive values for unequal ones.

The simplest inequality measures are based on the absolute measurement of
the spread of outcomes, like the mean absolute difference

Γ(y) =
1

2m2

m
∑

i=1

m
∑

j=1

|yi − yj | (12)



or the maximum absolute difference

d(y) = max
i,j=1,...,m

|yi − yj |. (13)

In most application frameworks better intuitive appeal may have inequality
measures related to deviations from the mean outcome like the mean absolute
deviation

δ(y) =
1

m

m
∑

i=1

|yi − µ(y)|. (14)

or the maximum absolute deviation

R(y) = max
i∈I

|yi − µ(y)|. (15)

Note that the standard deviation σ (or the variance σ2) represents both the
deviations and the spread measurement as

σ(y) =

√

1

m

∑

i∈I

(yi − µ(y))2 =

√

1

2m2

∑

i∈I

∑

j∈I

(yi − yj)2. (16)

Deviational measures may be focused on the downside semideviations as
related to worsening of outcome while ignoring upper semideviations related to
improvement of outcome. One may define the maximum (downside) semidevi-
ation

∆(y) = max
i∈I

(µ(y) − yi) (17)

and the mean (downside) semideviation

δ̄(y) =
1

m

∑

i∈I

(µ(y) − yi)+ (18)

where (.)+ denotes the nonnegative part of a number. Similarly, the standard
(downside) semideviation is given as

σ̄(y) =

√

1

m

∑

i∈I

(µ(y) − yi)2+. (19)

In economics one usually considers relative inequality measures normalized
by mean outcome. Among many inequality measures perhaps the most com-
monly accepted by economists is the Gini coefficient, which is the relative mean
difference. One can easily notice that direct minimization of typical inequality
measures (especially the relative ones) may contradict the optimization of indi-
vidual outcomes resulting in equal but very low outcomes. As some resolution
one may consider a bicriteria mean-equity model:

max {(µ(f(x)),−%(f(x))) : x ∈ Q} (20)



which takes into account both the efficiency with optimization of the mean
outcome µ(y) and the equity with minimization of an inequality measure %(y).
For typical inequality measures bicriteria model (20) is computationally very
attractive since both the criteria are concave and LP implementable for many
measures. Unfortunately, for any dispersion type inequality measures the bicri-
teria mean-equity model is not consistent with the outcomes maximization, and
therefore is not consistent with the fair dominance. When considering a simple
discrete problem with two allocation patterns P1 and P2 generating outcome
vectors y′ = (0, 0) and y′′ = (2, 8), respectively, for any dispersion type inequal-
ity measure one gets %(y′′) > 0 = %(y′) while µ(y′′) = 5 > 0 = µ(y′). Hence,
y′′ is not bicriteria dominated by y′ and vice versa. Thus for any dispersion
type inequality measure %, allocation P1 with obviously worse outcome vector
than that for allocation P2 is a Pareto-optimal solution in the corresponding
bicriteria mean-equity model (20).

Note that the lack of consistency of the mean-equity model (20) with the
outcomes maximization applies also to the case of the maximum semideviation
∆(y) (17) used as an inequality measure whereas subtracting this measure from
the mean µ(y) − ∆(y) = M(y) results in the worst outcome and thereby the
first criterion of the MMF model. In other words, although a direct use of the
maximum semideviation in the mean-equity model may contradict the outcome
maximization, the measure can be used complementary to the mean leading us
to the worst outcome criterion which does not contradict the outcome maxi-
mization. This construction can be generalized for various (dispersion type)
inequality measures. Moreover, we allow the measures to be scaled with any
positive factor α > 0, in order to avoid creation of new inequality measures as
one could consider %α(X) = α%(X) as a different inequality measure. For any
inequality measure % we introduce the corresponding underachievement func-
tion defined as the difference of the mean outcome and the (scaled) inequality
measure itself, i.e.

Mα%(y) = µ(y) − α%(y). (21)

This allows us to replace the original mean-equity bicriteria optimization (20)
with the following bicriteria problem:

max{(µ(f(x)), µ(f(x)) − α%(f(x))) : x ∈ Q} (22)

where the second objective represents the corresponding underachievement
measure Mα%(y) (21). Note that for any inequality measure %(y) ≥ 0 one
gets Mα%(y) ≤ µ(y) thus really expressing underachievements (comparing to
mean) from the perspective of outcomes being maximized.

We will say that an inequality measure % is fairly α-consistent if

y′ �e y′′ ⇒ µ(y′) − α%(y′) ≥ µ(y′′) − α%(y′′) (23)

The relation of fair α-consistency will be called strong if, in addition to (23),
the following holds

y′ �e y′′ ⇒ µ(y′) − α%(y′) > µ(y′′) − α%(y′′). (24)



Theorem 1 If the inequality measure %(y) is fairly α-consistent (23), then ex-
cept for outcomes with identical values of µ(y) and %(y), every efficient solution
of the bicriteria problem (22) is a fairly efficient allocation pattern. In the case
of strong consistency (24), every allocation pattern x ∈ Q efficient to (22) is,
unconditionally, fairly efficient.

Proof. Let x0 ∈ Q be an efficient solution of (22). Suppose that x0 is not fairly

efficient. This means, there exists x ∈ Q such that y = f(x) �e y0 = f(x
0
).

Then, it follows µ(y) ≥ µ(y0), and simultaneously µ(y) − α%(y) ≥ µ(y0) −
α%(y0), by virtue of the fair α-consistency (23). Since x0 is efficient to (22) no
inequality can be strict, which implies µ(y) = µ(y0) and and %(y) = %(y0).

In the case of the strong fair α-consistency (24), the supposition y = f(x) �e

y0 = f(x
0
) implies µ(y) ≥ µ(y0) and µ(y) − α%(y) > µ(y0) − α%(y0) which

contradicts the efficiency of x0 with respect to (22). Hence, the allocation
pattern x0 is fairly efficient.

4 Fair consistency conditions

Typical dispersion type inequality measures are convex, i.e. %(λy′+(1−λ)y′′) ≤
λ%(y′)+(1−λ)%(y′′) for any y′,y′′ and 0 ≤ λ ≤ 1. Certainly, the underachieve-
ment function Mα%(y) must be also monotonic for the fair consistency which
enforces more restrictions on the inequality measures. We will show further that
convexity together with positive homogeneity and some boundedness of an in-
equality measure is sufficient to guarantee monotonicity of the corresponding
underachievement measure and thereby to guarantee the fair α-consistency of
inequality measure itself.

We say that (dispersion type) inequality measure %(y) ≥ 0 is ∆-bounded if
it is upper bounded by the maximum downside deviation, i.e.,

%(y) ≤ ∆(y) ∀y. (25)

Moreover, we say that %(y) ≥ 0 is strictly ∆-bounded if inequality (25) is a strict
bound, except from the case of perfectly equal outcomes, i.e., %(y) < ∆(y) for
any y such that ∆(y) > 0.

Theorem 2 Let %(y) ≥ 0 be a convex, positively homogeneous and translation
invariant (dispersion type) inequality measure. If α%(y) is ∆-bounded, then
%(y) is fairly α-consistent in the sense of (23).

Proof. The relation of fair dominance y′ �e y′′ denotes that there exists a
finite sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1−εkei′+εkei′′ ,
0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for k = 1, 2, . . . , t and there exists a permutation π

such that y′
π(i) ≥ yt

i for all i ∈ I . Note that the underachievement function

Mα%(y), similar as %(y) depends only on the distribution of outcomes. Further,
if y′ ≥ y′′, then y′ = y′′ + (y′ − y′′) and y′ − y′′ ≥ 0. Hence, due to concavity



and positive homogeneity, Mα%(y′) ≥ Mα%(y′′) + Mα%(y′ −y′′). Moreover, due
to the bound (25), Mα%(y′−y′′) ≥ µ(y′−y′′)−∆(y′−y′′) ≥ µ(y′−y′′)−µ(y′−
y′′) = 0. Thus, Mα%(y) satisfies also the requirement of monotonicity. Hence,
Mα%(y′) ≥ Mα%(yt). Further, let us notice that yk = λȳk−1 + (1 − λ)yk−1

where ȳk−1 = yk−1 − (yi′ −yi′′)ei′ +(yi′ −yi′′)ei′′ and λ = ε/(yi′ −yi′′). Vector
ȳk−1 has the same distribution of coefficients as yk−1 (actually it represents
results of swapping yi′ and yi′′). Hence, due to concavity of Mα%(y), one gets
Mα%(yk) ≥ λMα%(ȳk−1) + (1 − λ)Mα%(yk−1) = Mα%(yk−1). Thus, Mα%(y′) ≥
Mα%(y′′) which justifies the fair α-consistency of %(y).

For strong fair α-consistency some strict monotonicity and concavity prop-
erties of the underachievement function are needed. Obviously, there does not
exist any inequality measure which is positively homogeneous and simultane-
ously strictly convex. However, one may notice from the proof of Theorem 2
that only convexity properties on equally distributed outcome vectors are im-
portant for monotonous underachievement functions.

We say that inequality measure %(y) ≥ 0 is strictly convex on equally dis-
tributed outcome vectors, if

%(λy′ + (1 − λ)y′′) < λ%(y′) + (1 − λ)%(y′′)

for 0 < λ < 1 and any two vectors y′ 6= y′′ representing the same out-
comes distribution as some y, i.e., y′ = (yπ′(1), . . . , yπ′(m)) π′ and y′′ =
(yπ′′(1), . . . , yπ′′(m)) for some permutations π′ and π′′, respectively.

Theorem 3 Let %(y) ≥ 0 be a convex, positively homogeneous and translation
invariant (dispersion type) inequality measure. If %(y) is also strictly convex on
equally distributed outcomes and α%(y) is strictly ∆-bounded, then the measure
%(y) is fairly strongly α-consistent in the sense of (24).

Proof. The relation of weak fair dominance y′ �e y′′ denotes that there exists
a finite sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′ +
εkei′′ , 0 ≤ εk ≤ yk−1

i′ − yk−1
i′′ for k = 1, 2, . . . , t and there exists a permutation

π such that y′
π(i) ≥ yt

i for all i ∈ I . The strict fair dominance y′ �e y′′ means

that y′
π(i) > yt

i for some i ∈ I or at least one εk is strictly positive. Note

that the underachievement function Mα%(y) is strictly monotonous and strictly
convex on equally distributed outcome vectors. Hence, Mα%(y′) > Mα%(y′′)
which justifies the fair strong α-consistency of the measure %(y).

The specific case of fair 1-consistency is also called the mean-complementary
fair consistency. Note that the fair ᾱ-consistency of measure %(y) actually
guarantees the mean-complementary fair consistency of measure α%(y) for all
0 < α ≤ ᾱ, and the same remain valid for the strong consistency properties. It
follows from a possible expression of µ(y)−α%(y) as the convex combination of
µ(y)− ᾱ%(y) and µ(y). Hence, for any y′ �e y′′, due to µ(y′) ≥ µ(y′′) one gets
µ(y′)−α%(y′) ≥ µ(y′′)−α%(y′′) in the case of the fair ᾱ-consistency of measure
%(y) (or respective strict inequality in the case of strong consistency). There-
fore, while analyzing specific inequality measures we seek the largest values α
guaranteeing the corresponding fair consistency.



As mentioned, typical inequality measures are convex and many of them
are positively homogeneous. Moreover, the measures such as the mean absolute
(downside) semideviation δ̄(y) (18), the standard downside semideviation σ̄(y)
(19), and the mean absolute difference Γ(y) (12) are ∆-bounded. Indeed, one
may easily notice that yi − µ(y) ≤ ∆(y) and therefore δ̄(y) ≤ 1

m

∑

i∈I ∆(y) =

∆(y), σ̄(y) ≤
√

∆(y)2 = ∆(y) and Γ(y) = 1
m2

∑

i∈I

∑

j∈I (max{yi, yj} −
µ(y)) ≤ ∆(y). Actually, all these inequality measures are strictly ∆-bounded
since for any unequal outcome vector at least one outcome must be below the
mean thus leading to strict inequalities in the above bounds. Obviously, ∆-
bounded (but not strictly) is also the maximum absolute downside deviation
∆(y) itself. This allows us to justify the maximum downside deviation ∆(y)
(17), the mean absolute (downside) semideviation δ̄(y) (18), the standard down-
side semideviation σ̄(y) (19) and the mean absolute difference Γ(y) (12) as fairly
1-consistent (mean-complementary fairly consistent) in the sense of (23).

We emphasize that, despite the standard semideviation is a fairly 1-
consistent inequality measure, the consistency is not valid for variance, semi-
variance and even for the standard deviation. These measures, in general, do
not satisfy the all assumptions of Theorem 2. Certainly, we have enumerated
only the simplest inequality measures studied in the resource allocation con-
text which satisfy the assumptions of Theorem 2 and thereby they are fairly
1-consistent. Theorem 2 allows one to show this property for many other mea-
sures. In particular, one may easily find out that any convex combination of
fairly α-consistent inequality measures remains also fairly α-consistent. On the
other hand, among typical inequality measures the mean absolute difference
seems to be the only one meeting the stronger assumptions of Theorem 3 and
thereby maintaining the strong consistency.

As mentioned, the mean absolute semideviation is twice the mean absolute
upper semideviation which means that αδ(y) is ∆-bounded for any 0 < α ≤ 0.5.
The symmetry of mean absolute semideviations δ̄(y) =

∑

i∈I (yi − µ(y))+ =
∑

i∈I(µ(y) − yi)+ can be also used to derive some ∆-boundedness relations
for other inequality measures. In particular, one may find out that for m-
dimensional outcome vectors of unweighted problem, any downside semidevia-
tion from the mean cannot be larger than m− 1 upper semideviations. Hence,
the maximum absolute deviation satisfies the inequality 1

m−1R(y) ≤ ∆(y),

while the maximum absolute difference fulfills 1
m

d(y) ≤ ∆(y). Similarly, for
the standard deviation one gets 1√

m−1
δ(y) ≤ ∆(y). Actually, ασ(y) is strictly

∆-bounded for any 0 < α ≤ 1/
√

m − 1 since for any unequal outcome vector
at least one outcome must be below the mean thus leading to strict inequalities
in the above bounds. These allow us to justify the mean absolute semidevia-
tion with 0 < α ≤ 0.5, the maximum absolute deviation with 0 < α ≤ 1

m−1 ,

the maximum absolute difference with 0 < α ≤ 1
m

and the standard deviation
with 0 < α ≤ 1√

m−1
as fairly α-consistent within the specified intervals of α.

Moreover, the α-consistency of the standard deviation is strong.
The fair consistency results for basic dispersion type inequality measures



Table 1: Fair consistency results for the basic inequality measures
Measure α–consistency

Mean absolute semideviation δ̄(y) (18) 1
Mean absolute deviation δ(y) (14) 0.5
Maximum semideviation ∆(y) (17) 1
Maximum absolute deviation R(y) (15) 1/(m − 1)
Mean absolute difference Γ(y) (12) 1 strong
Maximum absolute difference d(y) (13) 1/m
Standard semideviation σ̄(y) (19) 1
Standard deviation σ(y) (16) 1/

√

m − 1 strong

considered in resource allocation problems are summarized in Table 1 where α
values for unweighted as well as weighted problems are given and the strong
consistency is indicated. Table 1 points out how the inequality measures can
be used in resource allocation models to guarantee their harmony both with
outcome maximization (Pareto-optimality) and with inequalities minimization
(Pigou-Dalton equity theory). Exactly, for each inequality measure applied
with the corresponding value α from Table 1 (or smaller positive value), every
efficient solution of the bicriteria problem (22), ie. max{(µ(f(x)), µ(f(x)) −
α%(f(x))) : x ∈ Q}, is a fairly efficient allocation pattern, except for outcomes
with identical values of µ(y) and %(y). In the case of strong consistency (as for
mean absolute difference or standard deviation), every solution x ∈ Q efficient
to (22) is, unconditionally, fairly efficient.

5 Conclusions

The problems of efficient and fair resource allocation arise in various systems
which serve many users. Fairness is, essentially, an abstract socio-political con-
cept that implies impartiality, justice and equity. Nevertheless, in operations
research it was quantified with various solution concepts. The equitable opti-
mization with the preference structure that complies with both the efficiency
(Pareto-optimality) and with the Pigou-Dalton principle of transfers may be
used to formalize the fair solution concepts. Multiple criteria models equiva-
lent to equitable optimization allows to generate a variety of fair and efficient
resource allocation patterns [16].

In this paper we have analyzed how scalar inequality measures can be used
to guarantee the fair consistency. It turns out that several inequality measures
can be combined with the mean itself into the optimization criteria generalizing
the concept of the worst outcome and generating fairly consistent underachieve-
ment measures. We have shown that properties of convexity and positive homo-
geneity together with being bounded by the maximum downside semideviation
are sufficient for a typical inequality measure to guarantee the corresponding
fair consistency. It allows us to identify various inequality measures which can
be effectively used to incorporate fairness factors into various resource alloca-



tion problems while preserving the consistency with outcomes maximization.
Among others the standard semideviation turns out to be such a consistent
inequality measure while the mean absolute difference is strongly consistent.

Our analysis is related to the properties of solutions to resource allocation
models. It has been shown how inequality measures can be included into the
models avoiding contradiction to the maximization of outcomes. We do not an-
alyze algorithmic issues for the specific resource allocation problems. Generally,
the requirement of convexity necessary for the consistency, guarantees that the
corresponding optimization criteria belong to the class of convex optimization,
not complicating the original resource allocation model with any additional
discrete structure. Many of the inequality measures, we analyzed, can be im-
plemented with auxiliary linear programming constraints. Nevertheless, further
research on efficient computational algorithms for solving the specific models is
necessary.
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