
Specifying, validating and generating an agent

behaviour using a Goal Decomposition Tree

Gaële Simon, Bruno Mermet, Dominique Fournier, Marianne Flouret

Université of Le Havre

Abstract. This paper deals with a goal-oriented agent model called
Goal Decomposition Tree (GDT) allowing both to specify and validate
the behaviour of an agent. This work takes place in a global framework
whose goal is to define a process allowing to start from a problem spec-
ification to obtain a validated implementation of a corresponding MAS.
The GDT model has been used to specify a prey-predator system which
has been verified this way.

1 Introduction

Our research deals with methods and models, in order to help multiagent systems
designers to manage the complexity of MAS. We do not aim at developing yet
another agent model: there are already numerous ones. We aim at helping to
develop multiagent systems whose behaviour can be verified. As a consequence,
our approach consists of four steps:

1. an agentification method that helps to determine the set of agents which
must be used to solve a given problem;

2. an agent design model to help to design an agent behaviour that can be
verified;

3. a proof system to prove that the agent model satisfies the main goal of
the agent;

4. an implementation model that can be automatically generated from the
agent design model.

Our aim is to provide a complete MAS design process starting from the
problem specification and ending by a MAS implementation. Our agentification
method and our implementation model have already been presented in other
articles [10, 7]. This paper is focused on the agent model called GDT.

In order to be able to implement and validate an agent, its behaviour must
be clearly and formally specified. In our proposal, this specification is based on
a Goal Decomposition Tree (GDT) which helps to describe how an agent can
manage its goals. It is used

– as a support for agent behaviour validation and proof;
– to guide the implementation of the agent behaviour induced by the tree using

an automaton as in our implementation model called SPACE [7].

102

baldoni




The main contribution of this model is that it can be proven that the specified
agent behaviour is correct according to the main goal of this agent. That’s why
the aim of this model is to provide a declarative description of goals. Several
works have already pointed out the advantage to have a declarative description of
goals [14], [2], [12]. Many multiagent models or systems are essentially focused on
procedural aspects of goals which is important in order to obtain an executable
agent. But the declarative aspect of goals is also very important. Indeed, as it
is said in [14], “by omitting the declarative aspect of goals, the ability to reason
about goals is lost. Without knowing what a goal is trying to achieve, one can not
check whether the goal has been achieved, check whether the goal is impossible”.
In [12], the authors say that declarative goals “provide for the possibility to
decouple plan execution and goal achievement”. A GDT is a partial answer to
these requirements: as it will be shown in next sections, both procedural and
declarative aspects of goals management can be described by a GDT.

Another important aspect of a GDT is that it is intended to be used to
directly generate the behaviour of the agent to which it is associated. Indeed,
as explained in [12], “the biggest role of goals in agents is thus not the ability
to reason about them but their motivational power of generating behaviour”.
Moreover, “A certain plan or behaviour is generated because of a goal”. It is
exactly what a GDT allows to express. Nodes of a GDT correspond to goals the
agent has to solve. As in [14], goals are considered as states of the world the
agent has to reach.

Inside the tree, a goal is decomposed into subgoals using decomposition oper-
ators. The notion of subgoal used here is similar to the one described in [12]: “a
goal can be viewed as a subgoal if its achievement brings the agent closer to its
top goal”. The notion of “closeness” used by van Riemsdjik et al. is specified dif-
ferently by each decomposition operator. In the same paper, authors distinguish
“subgoals as being the parts of which a top goal is composed” and “subgoals
as landmarks or states that should be achieved on the road to achieving a top
goal”. In a GDT, these two kinds of subgoals exist. The fact that a subgoal is
of a particular kind is a direct consequence of the decomposition operator which
has been used to introduce the subgoal. All works on agent goals management
do not use the same notion of subgoal. In [14] or [2], a subgoal is considered as a
logical consequence of a goal. So, in these works, subgoals can be considered as
necessary conditions for the satisfaction of the parent goal. In our vision, sub-
goals are on the contrary sufficient conditions for the satisfaction of the parent
goal. The method TAEMS [13] does not use goals buts tasks. However subtasks
used in TAEMS can be directly compared to subgoals used in our work.

A decomposition operator encapsulates a set of mechanisms corresponding to
a typical goals management behaviour ([2], [12], [14]). Each operator is specified
by different kinds of semantics:

– a goal decomposition semantics describing how a goal can be decomposed
into subgoals with this operator;

– a semantics describing how to deduce the “type” of the parent goal knowing
the types of its subgoals;

103



– a semantics associating an automata composition pattern to each operator.
These patterns are used incrementally to build the complete automaton de-
scribing the agent behaviour;

– a semantics associating a local proof schema. This schema is used to ver-
ify the agent behaviour (ie. to prove that its goals management behaviour
satisfies its main goal). This semantics is described in [4].

The section 2 defines the notion of goal as it is used in this work and describes
the typology of goals which has been used. The section 3 describes the set of
operators which can be used to decompose a goal into subgoals inside the GDT.
For each operator, the two first semantics described before are given. The sec-
tion 4 defines more precisely a Goal Decomposition Tree and shows how a GDT
can be built using the tools described in the two previous sections. Last but not
least, the section 5 presents a synthetic comparison of the proposed model with
well-known goal-oriented models.

2 Goals and typology of goals

In the context of a Goal Decomposition Tree, every goal is at least defined by a
name and a satisfaction condition. The name is used to make the work of the de-
signer easier. According to the type of each goal, additional information are also
used to completely specify the goal. Satisfaction conditions are used to specify
goals formally with respect to the declarative requirement for goals described in
the previous section. A goal is considered to be achieved if its satisfaction con-
dition is logically true. Satisfaction conditions are expressed using a temporal
logic formalism which is a subset of TLA [6]. More precisely, primed variables
have been used. For example, if x is a variable, the notation x in a satisfaction
condition corresponds the value of x before the resolution of the goal to which
the condition is associated. On the contrary, the notation x′ corresponds to the
value of x after the resolution of the goal. Let notice that more complex tempo-
ral logic formula are also used to specify decomposition operators described in
section 3. These logical formula are then used during the proof process.

These variables are supposed to be attributes maintained by the agent. Thus,
specifying goals of an agent helps also to define the set of variables defining the
view of the agent on its environment. For example, in [9], the authors describe
a case study where two robots are collecting garbage on Mars. One of the two
robots, named R1, must move in order to discover pieces of garbage which must
be picked up. As a consequence, for R1, to be in a location where there is a
piece of garbage corresponds to a goal. The satisfaction condition of this goal
can be defined by: garbage = true where garbage is supposed to be an internal
variable of the agent which describes its perception of its current location. This
variable is supposed to be updated each time the agent moves i.e. each time its
coordinates (x,y) (which are also internal variables of the agent) are modified.

A typology of goals has been defined in order to distinguish more precisely
different ways to manage goals decomposition. The type of a goal has conse-
quences on the solving process of this goal, on the design of its corresponding

104



behaviour automaton and on the proof process of the behaviour implied by its
resolution by the agent.

The first criterion to distinguish goals corresponds to the situation of the goal
in the tree. This leads naturally to distinguish two first kinds of goals: elementary
and intermediate goals.

Elementary goals: they correspond to the leaves of the tree that’s why they
are not decomposed into subgoals. Furthermore, they are not only defined by a
name and a satisfaction condition but also by a set of actions. The execution
of these actions are supposed to achieve the goal ie to make its satisfaction
condition true. Notice that these actions are related to the capabilities of the
agent as described in [2]. They correspond to the procedural aspect of goals
described in the previous section. As satisfaction conditions, they are based on
variables of the agents. The aim of an action is to modify these variables. For
example, for the robot R1 described in section 2, moving one step right can
be an elementary goal. Its satisfaction condition is: x′ = x + 1 ∧ y′ = y. The
corresponding actions are: x := x + 1; garbage := containsGarbage(x, y). It
is supposed that containsGarbage is a function associated to the environment
allowing the agent to know if there is a piece of garbage at its current location.

Intermediate goals: They correspond to the nodes of the tree which are not leaf
ones. They are specified by a name, a satisfaction condition and also a Local
Decomposition Tree (LDT). A LDT contains a root node corresponding to the
intermediate goal and a decomposition operator which creates as many branches
(and subgoals) as needed by the operator. It describes how the intermediate goal
can be decomposed into subgoals, and sometimes in which context, in order to
be achieved. The number and the order of subgoals to be achieved in order to
solve the parent goal depends on the chosen operator (see next section for more
details).

The second criterion used to define goals is related to the goals satisfiabil-
ity. Using this criterion, two kinds of goals are again distinguished: Necessarily
Satisfiable goals (NS) and Not Necessarily Satisfiable goals (NNS).

Necessarily Satisfiable goals (NS): This kind of goals ensures that, once all what
must be done to solve the goal has been executed, the satisfaction condition of
the goal is always true (the goal is achieved).

Not Necessarily Satisfiable goals (NNS): this set of goals is complementary to
the previous one. It is the more prevalent case. For this kind of goal, one can not
be sure that the goal will be achieved after its actions or its decomposition (and
the subgoals associated to this decomposition) have been executed or satisfied.
This kind takes into account that some actions or some decompositions can only
be used in certain execution contexts. If these contexts are not set when the goal
is to be solved, these actions or decompositions become useless.

Information about the satisfiability of a goal is essential not only for the agent
to manage its goals but also for the automaton design and the proof process.
However, this criterion is not involved in the solving process of a goal. Moreover,
using this criterion may help to simplify the tree . Indeed, as it will be shown

105



in the next section, all the operators do not accept all kinds of goals from this
criterion point of view.

The third and last criterion used to distinguish goals is related to the evalu-
ation of the satisfaction condition. Using this criterion, two other kinds of goals
can be defined: Lazy goals (L) and Not Lazy goals (NL).

Lazy goals (L): when a goal is considered to be a lazy one, its satisfaction
condition is evaluated before considering its actions (for an elementary goal) or
its decomposition (for an intermediate one). If the satisfaction condition is true,
the goal is considered to be achieved which implies that the set of actions or the
decomposition associated to the goal are not used. If the satisfaction condition
is false, the set of actions or the decomposition are executed. As a consequence,
primed variables can not be used in the satisfaction condition associated to a
lazy goal.

Not Lazy goals (NL): this set of goals is complementary to the previous one. For
a not lazy goal, the associated set of actions or decomposition is always executed
even if the satisfaction condition is already true. This condition is not evaluated
at the beginning of the process, unlike lazy goals.

This criterion can be compared to the requirement for goals management
described in [14]: “...given a goal to achieve condition s using a set of proce-
dures (or recipes or plans) P , if s holds, then P should not be executed”. This
requirement corresponds to the solving process of a lazy goal whose satisfaction
condition is already satisfied at the beginning of the process.

As a conclusion, in the context of a GDT, each goal can be characterised by
three criteria which can be combined independently. Figure 1 summarizes the
graphical notations introduced for the two last criteria. Each criterion has two
possible values which implies that eight effective kinds of goals can be used in
the tree.

L

Lazy goal

NL

Not Lazy goal Not Necessarily Satisfiable goal Necessarily Satisfiable goal

Fig. 1. NS, NNS, L and NL goals

Formally, a goal is described by a 6-tuple < name, sc, el, ns, lazy, LDT or

actions > with:

– name: string,
– sc (satisfaction condition): temporal logic formula,
– el (elementary): boolean,
– ns (necessarily satisfiable): boolean,
– lazy: boolean,
– set of actions (actions) or Local Decomposition Tree (LDT).

106



From this definition, the process of goal solving in the GDT can be described
by the algorithm given in figure 2. The solve function used in this algorithm
describes how the tree must be walked during the solving process.

boolean solve(G) :

if (G.lazy)

then

if (G.sc)

then return(true);

endif

endif

if (G.el)

then execute(G.actions);

else satisfy(G.LDT);

endif

return(G.sc);

Fig. 2. Algorithm for solving a goal in a GDT

The execute function consists in executing sequentially the set of actions
associated to the goal. The satisfy function is a recursive one and uses itself the
solve function which just has been defined. The satisfy function is detailed in the
next section which also describes each operator which can be used in a GDT.

3 Decomposition operators

In this section, available decomposition operators are described. For each opera-
tor, the two first semantics are given that is to say the decomposition semantics
and the goals types composition semantics. The goals types composition seman-
tics is based only on one criterion defining goals types: their satisfiability mode
(NS or NNS). Indeed, the other criteria have not a direct influence on decompo-
sition operators.

Before describing each operator, let precise what means a goal decomposition.
Let A be the goal to be decomposed and Op the decomposition operator to be
used. As almost all available operators are binary, Op is also supposed to be
binary (but it does not modify the semantics of the decomposition). Let B and
C be the subgoals introduced by the use of Op to decompose A. As described
in the previous section, Op(B,C) corresponds to the Local Decomposition Tree
associated to A. The semantics of this decomposition is that the satisfaction of
Op(B,C) (i.e. the LDT) implies the satisfaction of A. But what does mean the
satisfaction of Op(B,C)? It corresponds exactly to the decomposition semantics
of each operator. Indeed this semantics describes how many subgoals must be
achieved and in which order to be able to satisfy the parent goal. In other words,
the satisfy function used in the solving algorithm given previously is different
for each operator. So in the sequel, for each operator, the satisfy function is
instantiated. Let us notice that, for all operators, this function uses the solve
function in order to evaluate the satisfaction of subgoals.

107



3.1 And operator

This operator corresponds to the well-known logical operator adapted to a tem-
poral context. Its decomposition semantics states that if a goal A can be de-
composed in And(B,C), then A can be satisfied (its satisfaction condition is
true) if B and C can be satisfied. This two subgoals can be solved in any order.
If at least one of these two goals can not be achievedd, the parent goal A is
considered to be not achieved. Figure 3 gives the satisfy function corresponding
to this behaviour.

boolean satisfy(And(B,C)) :

goal chosenGoal, remainingGoal;

chosenGoal,remainingGoal := choose(B,C);

if (solve(chosenGoal))

then return(solve(remainingGoal));

else return false;

endif

Fig. 3. And satisfaction algorithm

The choose operator chooses randomly one of the two subgoals which is
returned as first result. The other goal is returned as the second result of the
function.

Figure 4 shows the semantics of this operator as far as goals types com-
position is concerned. This figure shows that the two subgoals can be either
necessarily satisfiable either not necessarily satisfiable. According to the And

operator decomposition semantics, if at least one of the subgoals is not neces-
sarily satisfiable, the parent goal is automatically not necessarily satisfiable. It
is necessarily satisfiable otherwise.

and and andand

Fig. 4. And composition semantics

3.2 Or operator

This operator corresponds to the standard logical operator (in the same way as
AND before).

Figure 5 shows the semantics of this operator as far as goals types composition
is concerned. This figure shows that the two subgoals can be either necessarily
satisfiable either not necessarily satisfiable. In summary, if at least one of the

108



subgoals is necessarily satisfiable, the parent goal is automatically necessarily
satisfiable. It is not necessarily satisfiable otherwise.

or or or or

Fig. 5. Or composition semantics

3.3 SeqAnd operator
This operator corresponds to a ”sequential And” operator. Indeed, the main
difference with the And operator is that the two subgoals must be solved in the
order specified by the operator. The figure 6 gives the satisfy function corre-
sponding to this behaviour. The composition semantics is the same as the And

operator’s one.

boolean satisfy(SeqAnd(B,C)) :

if (solve(B))

then return (solve(C));

else return(false);

endif

Fig. 6. SeqAnd satisfaction algorithm

3.4 SeqOr operator
The difference between SeqOr and Or is the same as the one between SeqAnd

and And described in the previous section. The figure 7 gives the satisfy function
associated to SeqOr. Its composition semantics is the same as the Or operator’s
one.

boolean satisfy(SeqOr(B,C)) :

if (solve(B))

then return (true);

else return(solve(C));

endif

Fig. 7. SeqOr satisfaction algorithm

3.5 SyncSeqAnd operator
This operator is a synchronized version of the SeqAnd operator. Unlike SeqAnd,
this operator ensures that the two subgoals (if they are both solved) are solved
without any interruption by another agent. This operator must not be used too
much. The agentification method we have proposed [3] is designed to limit cases
where this kind of operators must be used by reducing shared variables. Its de-
composition semantics, goals types composition semantics and the corresponding
satisfaction algorithm are the same as the SeqAnd operator’s ones.

109



3.6 SyncSeqOr operator

The difference between SyncSeqOr and SeqOr is the same as the one between
SyncSeqAnd and SeqAnd described in the previous section. This operator is a
synchronized version of the SeqOr operator.

3.7 Case operator

This operator decomposes a goal into subgoals according to conditions defined
by logical expressions. These logical expressions use the same variables as satis-
faction conditions. The decomposition semantics of this operator states that the
disjunction of the logical expressions corresponding to the two conditions must
be true when the parent goal is decomposed. The principle is that if a condi-
tion is true, the corresponding subgoal must be solved. The satisfaction of the
parent goal depends on the satisfaction of the chosen subgoal. This semantics is
summarised by the associated satisfy function given in figure 8.

boolean satisfy(Case(A,B,conda)):

if (conda)

then return(solve(A))

else return(solve(B))

Fig. 8. Case satisfaction algorithm

As far as the composition semantics of the operator is concerned, there are
four possible trees as shown in figure 9. If subgoals are both necessarily satis-
fiable, the parent goal is necessarily satisfiable. If at least one of the subgoals
is not necessarily satisfiable, the parent goal is not necessarily satisfiable. It is
very important to notice that the property of being ”necessarily satisfiable” is
a little bit different in the context of the case operator. Indeed, here, a subgoal
is necessarily satisfiable only if its associated condition is true. For the other
operators, when a goal is declared to be necessarily satisfiable, it is true in any
context. This characteristic is particularly useful for the proof process.

B1 B2
case case

B1 B2
casecase

B2

A

B1

A
condB2 condB2condB1 condB1

A
condB2condB1

B1 B2

A
condB2condB1

Fig. 9. Case operator composition semantics

3.8 Iter operator

This operator is an unary one. The main difference between this operator and the
others is that its behaviour depends on the satisfaction condition of the parent
goal. The decomposition semantics of this operator states that the parent goal

110



will be satisfied after several satisfaction steps of the subgoal. In other words,
the satisfaction condition of the subgoal must be true several times in order the
satisfaction condition of the parent goal to become true.

This operator is very important because it takes into account a progress
notion inside a goal solving process. For example, let suppose that the satisfaction
condition of the parent goal A is ”to be in (x, y) location”. Let suppose that the
agent can only move one step at a time. As a consequence, the solving of A

must be decomposed into n solving of the subgoal ”move one step”, n being the
number of steps between the current location of the agent and the desired final
location.

This operator can only be used when the satisfaction of the subgoal implies
a progress in the satisfaction of the parent goal. In other words, each time the
subgoal is satisfied, the satisfaction of the parent must be closer. However, some-
times it is possible that the subgoal can not be satisfied (because the context
of the agent has changed for example). In this case, the satisfaction degree of
the parent goal stays at the same level and the subgoal must be solved again.
The important characteristic of this operator is that the satisfaction level of the
parent goal can not regress after a satisfaction step of the subgoal, even if this
step has failed. If it is the case, it means that the Iter operator should not have
been used. The proof schema associated to the Iter operator helps to verify this
property.

The overall behaviour of the operator described in the previous paragraph is
summarised by the associated satisfy function given in figure 10.

boolean satisfy(Iter(sc,B)) :

boolean satisfied;

repeat

repeat

satisfied = solve(B);

until (satisfied or sc)

until (sc)

return true;

Fig. 10. Iter satisfaction algorithm

The goals types composition semantics of this operator is summarised in
figure 11. It shows that the subgoal can be either necessarily satisfiable either not.
However, the parent goal is always necessarily satisfiable. Indeed, the behaviour
of the operator implies that the solving process of the subgoal stops when the
satisfaction condition of the parent goal is true which implies that this one is
necessarily satisfiable.

3.9 Comparison with other works

Other works on goals management of an agent propose mechanisms to express
relations between goals or subgoals. In this paragraph, two of them are detailed

111



iter

A

B

iter

A

B

Fig. 11. Iter composition semantics

in order to be precisely compared with GDT. In GOAL [2], the authors propose
a global logical framework in order to formalise the goal management behaviour
of an agent. In this framework, the state of an agent is defined by a mental state
< B,G > which consists of the beliefs and goals of the agent. Beliefs and goals
are modelled by logical formula: B(F ) is a belief and G(F ) is a goal, F being a
logical formula.

In this framework, a goal cannot be deduced from the set of beliefs. When
a goal is achieved, it (and all of its logical consequences) is removed from the
goals base. Then it is added to the set of beliefs.

The behaviour of the agent is specified by a set of conditional actions. A
conditional action is a pair φ → do(a) where φ is a condition (a logical formula)
and a is an action. There are three kinds of actions:

– beliefs management actions: theses actions allow to manage the set of beliefs:
• ins(φ) adds B(φ) to the set of beliefs,
• del(φ) deletes B(φ) from the set of beliefs;

– goal management actions: these actions allow to explicitly manage goals:
• adopt(φ) adds G(φ) to the set of goals,
• drop(φ) deletes G(φ) from the set of goals;

– basic actions: these actions are described by a semantic functionτ , a partial
function that modifies the set of beliefs of the agent.

For instance, here is how our SeqAnd operator could be translated in Goal.
Let suppose that A is a goal that is decomposed in SeqAnd(X,Y), That is to say
SeqAnd(X,Y) ⇒ A.

The behaviour of the agent corresponding to the resolution of the goal A can
then be described by the following conditional actions:

– G(A) ∧ ¬B(X) → do(adopt(X)) (if A must be solved and X is not yet
believed, then X becomes a goal of the agent);

– G(A) ∧ B(X) ∧ ¬B(Y ) → do(adopt(Y )) (if A must be solved and X has
already been achieved (and is thus a belief), then Y becomes a goal of the
agent);

– G(A)∧B(X)∧B(Y ) → do(ins(A)) (if A must be solved and X and Y have
been achieved, then A is achieved and can be added to the set of beliefs of
the agent. It will also be removed from the set of goals of the agent because
Goal agents implement the blind commitment strategy).

Of course, it is assumed that there are also rules to solve goals X and Y which
are not detailed here. However, with our model, X and Y are removed from the
set of goals remaining to solve by the agent after the resolution of A. This can
not be expressed in GOAL because conditional actions can not be combined, for
instance to be sequentialised. More generally, the hierarchical structure of our

112



model allows a progressive specification of the agent behaviour which is more
difficult with Goal. Last but not least, more elements can be proven with our
model than with GOAL. For example, relations between goals like ”ITER” can
not be proven with GOAL. Last but not least, our model allows to perform
proofs using first order logic which is not the case with GOAL.

Our decomposition operators can also be compared to the Quality Accumu-
lation Functions (QAF) proposed in TAEMS [13]. TAEMS is a modelling lan-
guage allowing to describe activities of agents operating in environments where
responses by specific deadlines may be required. That’s why TAEMS represents
agent activities in terms of task structures at multiple levels of abstraction, each
with a deadline. A task is described by a name, an arrival time, an earliest start
time and a deadline. A task structure is a graph where tasks can be decomposed
into subtasks using QAFs. A QAF specifies how the quality of a task can be
computed using qualities of its substasks. The quality of a task evaluates the
level of completion of the task. Let notice that an important difference between
QAF and decomposition operators is that QAF are used in a bottom-up process
whereas decomposition operators are used in a top-down process. Indeed, sub-
tasks must have been completed (even with a 0 quality) before the QAF can be
used to compute the quality of the supertask. On the contrary, a decomposition
operator is used to choose and order the subgoals to be solved in order to satisfy
the parent goal.

4 The GDT design process

A Goal Decomposition Tree (GDT) specifies how each goal can be solved by an
agent. More precisely, the root node of the tree is associated to the main goal of
the agent, i.e. the one which is assigned to the agent by the used agentification
method ([10] [15]). If this goal is achieved by the agent, the agent is considered
to be satisfied from the multiagent system point of view. The tree describes how
this goal can be decomposed in order to be achieved using a solution which must
be the most adapted to the agent context as possible. Notice that the overall
tree can be seen as a collection of local plans allowing to solve each goal. A
local plan corresponds to a Local Decomposition Tree associated to a subgoal.
The main difference with plans used in [1] is that, in a GDT, they are organised
hierarchically. A GDT is very close to the tasks graph used in TAEMS [13].
This graph describes relationships between tasks an agent may have to achieve.
Nevertheless, tasks are not goals because their satisfaction is not evaluated by a
satisfaction condition (or a predicate) but by a quality measure. In TAEMS, a
graph, instead of a tree, is needed because relations between goals, different from
decomposition ones, can be expressed. For example, one can specify that solving
one goal can prevent from solving another one. This kind of relation can not be
directly specified in a GDT but they are not really needed. Indeed, unlike the
tasks graph proposed by TAEMS, a GDT is not used by the agent to perform
planning tasks but to specify a behaviour which can for example be the result
of such planning tasks.

The building process of the GDT consists of four steps. In a first step, a
tree must be built by the designer, starting from the main goal of the agent

113



using a top-down process. This first step allows to introduce subgoals with their
satisfaction condition, elementary goals with their associated actions and also
decomposition operators. The designer must also decide for each goal if it is
lazy or not. During this step, the designer must also define invariants associated
to the tree. These invariants specify properties of the problem to be solved by
the MAS which must always be true during the life of agents of the system. For
example, in a prey/predator problem, an invariant specifies that “only one agent
can be located in a given cell of the grid”. These invariants are used during the
proof process.

In order to make the building process of the tree easier, we are currently
defining what can be seen as design patterns i.e. rules which can be used to
choose the right operator in particular contexts. For example a rule is focused
on the problem of interdependency between goals. When this property exists
between two goals A and B, it means that the satisfaction of A has an influence
on the satisfaction of B. When detected, this property can help to guide the
choice of the decomposition operator. For example, let suppose that a goal G

can be satisfied if two subgoals B and C are satisfied. The And operator may
be used to model this hypothesis. But if another hypothesis indicates that the
satisfaction of B can prevent from the satisfaction of C, the And operator can
not be used anymore, but must be replaced by the SeqAnd operator.

In the second step of the GDT design process, the designer must decide for
each elementary goal if it is necessarily satisfiable or not. In a third step, the
type of each intermediate goal, as far as satisfiability is concerned, is computed
using the goals types composition semantics of each used decomposition opera-
tor. Unlike the first step, this step is a down-top process. During this process,
inconsistencies or potential simplifications can be detected. In that case, the first
step must be executed again in order to modify the tree. Figure 12 shows such
a simplification for the SeqOr operator which can be detected during this step.
The first tree can be replaced by the second tree because if the first subgoal of
a SeqOr is a necessarily satisfiable one, the second subgoal will never be solved
(see the definition of the decomposition semantics of this operator in section 3.4).

A

A subtree

A

A subtree

seqand

R

L

L subtree

seqand

R

L

L subtree

G

B

B substree

seqor

Fig. 12. Tree simplification with SeqOr

114



Once the three first steps have been achieved, a proof of the tree can be built
in a fourth step. The process used to achieve this proof is described in [4] . Again,
this step can lead to detect inconsistencies in the tree based on proof failures. In
a last step, the validated tree is used to build the behaviour automaton of the
agent which can then be implemented. This process is also described in [11].

As explained before, the building of the tree leads also to the definition of
variables and actions of the agent which are essential parts of an agent model.
As a consequence, the GDT and the associated design process can be seen as a
design tool for a validated agent model in the context of a MAS design.

5 Comparison with other goal-oriented models

Model Goal
Expression

Goal
management
hypotheses

Action
kinds

Plan
language
(operators)

Winikoff satisfaction
failure

DS, DI, CG,
PG, KG

GA, BI,
BD, BAN

sequencing,
parallelism,
conditional
selection

AgentSpeak none none GA, GD,
BI, BD,
BAN

and, condi-
tional selection
(context)

Goal satisfaction DS GA, GD,
BI, BD,
BAS

only atomic
conditional
actions

GDT satisfaction DS GA, GD,
BI, BD
derived
from the
GDT,
BAS

many

Table 1. Goal management comparison

The table 1 compares our agent model with a few other ones with a goal
oriented point of view: Winikoff et al’s model [14], AgentSpeak [9] and GOAL
[2]. In the Goal expression column, it is specified whether a formal satisfaction
condition and a formal failure condition is expressed for each goal in the model.
For the models having only a procedural point of view, like AgentSpeak, there
is no formal expression of goals. Only the Winikoff’s model explicitly gives a
formal failure condition, making a distinction between a plan failure and a goal
failure.

Among the Goal management hypotheses, we distinguish the five characteris-
tics described in [14, 8]. The Drop Successful attitude (DS) consists in dropping
a goal that is satisfied. The Drop Impossible attitude (DI) consists in dropping
a goal that becomes impossible to satisfy. Goals are persistent (PG) if a goal is
dropped only if it has been achieved or if it becomes impossible to solve. The
other characteristics correspond to constraints on the goal management process.
The Consistent Goals property (CG) is satisfied if the set of goals the agent has

115



to solve must be consistent (if a is a goal, not(a) cannot be a goal). Finally, the
Known Goals (KG) property specifies that the agent must know the set of all
its goals. The model we propose does not need CG, KG and PG constraints to
be verified.

In the Action kinds column, we precise what kind of actions the language
provides. These actions can be divided into 3 types: actions concerning goals
management (goal dropping GD, goal adoption GA), actions concerning beliefs
management (belief insertion BI, belief deletion BD) and all other actions that
we call Basic Actions. These actions may be Specified in the language (BAS) or
only Named (BAN). BAS are essential to allow a proof process.

Finally, in the last column, we tried to enumerate the Goal decomposition
operators provided by the language. For the model described in this paper, see
section 3. The plan language of Goal is rather a rule language. But for each rule,
only one action may be executed: there is, for instance, no sequence operator. In
a GDT, plans rely on goal decompositions, and as a consequence, the expressivity
of our plan language is also the expressivity of our goal decomposition language.

6 Conclusion
In this article, we presented a goal-oriented behaviour model of an agent relying
on a Goal Decomposition Tree. The goal notion is central in the development of
an agent. This appears for instance in the desires concept of the BDI model, or
is the basis of other methods such as Goal or Moise ([2], [5]). Using a decompo-
sition tree, the user can progressively specify the behaviour of an agent. Thus,
goals and plans are closely linked: the decomposition tree of a goal is the plan
associated to this goal. A part of goal decomposition operators involves undeter-
minism, which is necessary for autonomous agents. Of course, using our model,
an agent designer must specify each goal by a satisfaction condition. This may
seem difficult, but the experience shows that rapidly, unexperimented designers
can write the right satisfaction condition. Moreover, this model can be verified
using our proof method. The model can then be automatically translated into a
behaviour automaton which is, as a consequence, validated also. This automaton
can then be implemented inside agents which can be developped using any MAS
development platform. However, the design and the proof process are strongly
disconnected. So, the designer can develop the GDT without taking care of the
proof process. This model has been used to specify prey agents behaviour inside
a prey/predator system [11]. The resulting GDT contains sixteen nodes. This
system have been also verified using the produced GDT. As shown before, this
model can be seen as a tool for agents design. That’s why we are going to de-
velop an interpreter which can directly simulate the behaviour of agents from
their GDT. The idea is to obtain, as in TAEMS, a method for fast prototyping
with validation in parallel.

References

1. R.H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifiable multi-agent
programs. In M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, ProMAS,
2003.

116



2. F.S. de Boer, K.V. Hindriks, W. van der Hoek, and J.-J.Ch. Meyer. Agent program-
ming with declarative goals. In Proceedings of the 7th International Workshop on
Intelligent Agents VII. Agent Theories Architectures and Language, pages 228–243,
2000.

3. M. Flouret, B. Mermet, and G. Simon. Vers une méthodologie de développement de
sma adaptés aux problèmes d’optimisation. In Systèmes multi-agents et systèmes
complexes : ingénierie, résolution de problèmes et simulation, JFIADSMA’02,
pages 245–248. Hermes, 2002.

4. D. Fournier, B. Mermet, and G. Simon. A compositional proof system for agent
behaviour. In Proceedings of SASEMAS’2005, 2005. to appear.

5. J.F. Hubner, J.S. Sichman, and O. Boissier. Specification structurelle, fonctionnelle
et deontique d’organisations dans les sma. In Journees Francophones Intelligence
Artificielle et Systemes Multi-Agents (JFIADSM’02). Hermes, 2002.

6. L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 1994.

7. B. Mermet, G. Simon, D. Fournier, and M. Flouret. SPACE: A method to increase
tracability in MAS Development. In Programming Multi-agent systems, volume
3067. LNAI, 2004.

8. A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In
Proceeding of the 3rd International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 439–449. San Mateo. CA. Morgan Kaufmann,
1992.

9. A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In W. Van de Velde and J. Perram, editors, MAAMAW’96, volume 1038,
Eindhoven, The Netherlands, 1996. LNAI.

10. G. Simon, M. Flouret, and B. Mermet. A methodology to solve optimisation
problems with MAS, application to the graph coloring problem. In Donia R.
Scott, editor, Artificial Intelligence : Methodology, Systems, Applications, volume
2443. LNAI, 2002.

11. G. Simon, B. Mermet, D. Fournier, and M. Flouret. The provable goal decompo-
sition tree : a behaviour model of an agent. Technical report, Laboratoire Infor-
matique du Havre, 2005.

12. M.B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J.Ch. Meyer. Dynamics of
declarative goals in agent programming. In Proceedings of Declarative Agent Lan-
guages and Technologies (DALT’04), 2004.

13. R. Vincent, B. Horling, and V. Lesser. An agent infrastructure to build and eval-
uate multi-agent systems: the java agent framework and multi-agent system simu-
lator. In Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent
Systems, 2001.

14. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & proce-
dural goals in intelligent agent systems. In Proceedings of the Eighth International
Conference on Principles of Knowledge Representation and Reasoning (KR2002),
2003.

15. M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3):285–312, 2000.

117


