
A Collaborative Framework to realize Virtual
Enterprises using 3APL

Gobinath Narayanasamy1, Joe Cecil2, and Tran Cao Son1

1Computer Science Department
New Mexico State University, USA
{gonaraya,tson}@cs.nmsu.edu
2 Department of Industrial Engineering
New Mexico State University, USA

jcecil@nmsu.edu

Abstract. In this paper, we propose a collaborative framework to realize a Vir-
tual Enterprise (VE) for the domain of Micro Assembly. The framework is de-
veloped using 3APL technologies [5] and employs the idea of viewing Web-
Service composition as a planning problem [10]. We describe the implementa-
tion of the framework and experiment with two micro assembly work cells.

1 Introduction

In today’s business world, being innovative and withstanding competitive pressure
from contemporary business vendors are a key to success for any business vendors.
With dynamic nature of consumer demands, business vendors often need a sophisti-
cated mechanism to tap those momentous market demands. One such mechanism
which will facilitate as well as satisfy the business vendors need is the concept of a
Virtual Enterprise (VE). A VE is a conglomeration of different business vendors un-
der one hood (to meet the market demands arising from consumers) by sharing their
own resources and expertise, which – sometime – cannot be provided by a single
business vendor. Each of the business vendors participating in a VE has different
resource capabilities. Here a resource is anything that is necessary for the production
of a product. It can be a machine, a software program, a component, a service, etc.
Each resource might have a cost associated with it. Furthermore, there might be a
resource, which can be used in the assembly of a product and is available in several
places. The diversifying nature of a VE causes heterogeneity which slows down the
process of forming collaborations among the vendors.

Our goal is to develop a framework that facilitates collaborations and seamless
flow of information exchange among the partners in a VE. We explore this idea using
the agent technologies provided by the 3APL framework [5].

We develop a prototype VE using the proposed collaborative framework in the
Micro Assembly domain. Micro Assembly is the domain where parts in micron sizes
are assembled using computer enabled micro assembly work cells. We target this
domain for the following reasons: (i) it is considered as a better alternative to Micro

Electro Mechanical Systems (MEMS) where parts having varying material properties
cannot be manufactured; (ii) it is a completely new methodology for developing prod-
ucts in manufacturing sector, and hence, not many business vendors possess the whole
range of tools and resources to accomplish micro assembly related tasks such as micro
assembly planning, simulation and actual physical implementation; and (iii) each
business vendor possesses different micro assembly resources which – when used
together – can accomplish most of the customer requests related to Micro Assembly.

As many parts in the Micro Assembly domain are assembled using computer pro-
grams and the VE is virtually available on the internet, we need a multi-agent devel-
opment platform in which agents with various capabilities can be created. Each agent
should have their own belief, capabilities, goals, and rules for reasoning. This platform
should also facilitate the agent communication and collaboration. This is the reason
why we choose 3APL as our implementation platform.

The paper is organized as follows: Section 2 provides a review of some past and
recent developments of Virtual Enterprises using agent based approaches. Section 3
highlights the 3APL framework. Section 4 describes the collaborative system design.
Section 5 discusses the development of collaborative framework using 3APL. Section
6 discusses VE formation for Micro Assembly domain using the proposed collabora-
tive framework and Section 7 is the conclusions.

2 Literature Review

In this section, background information about virtual enterprises as well as a review
of agent based systems is provided. Other issues such as agent communications, agent
interaction protocols, and distributed problem solving approaches in agent based sys-
tems are also discussed.

In [12], it is observed that Co-operative or Concurrent Engineering (CE) techniques
are the reason for forming collaborative working environment among company levels.
In [3], a consortium of companies is called a Virtual Enterprise (VE) which allows for
the development of a working environment to manage all or part of different resources
towards achieving a common goal. Common information definition and sharing prob-
lem while forming Virtual Enterprises are discussed in [4]. The paper also discusses
the issues of interaction among the companies that will agree upon a contract to form
virtual enterprise.

In [8], the concept of forming Virtual Enterprises using agent based systems is pro-
posed. In this conceptualization, partners of a virtual enterprise are considered as
software agents. This paper also discusses different agent communication protocols
such as KQML and KIF. A significant agent communication protocol proposed by US
Defense Advanced Research Projects Agency’s (DARPA) Knowledge-Sharing Effort
known as Knowledge Query Management Language (KQML) is presented in [7]. The
language includes variety of primitives, assertives, and directives which allow agents
to query other agents, subscribe to other agents services, or find other agents for dis-
tributed problem solving. KQML assumes that each agent is built with its own knowl-
edge bases. This allows other agents to extract information from the knowledge base

of that particular agent. In the context of micro assembly, a sample KQML message
between two agents, Path_Planner and Service_Locater, the former requests the latter
for information about providers of a certain service with the help of ontological in-
formation is

(tell :sender Path_Planner :receiver Service_Locater
:ontology Micro_Assembly_ontology content publish(Service)).

In [6], Knowledge Interchange Format is emphasized. KIF is a language for inter-
changing knowledge between heterogeneous programs. KIF has a declarative seman-
tics which allows agents to understand a KIF representation without any interpreters.
It allows expressing arbitrary sentences using first order predicate calculus. It has
constructs to represent knowledge in the domain, represent non monotonic reasoning
rules and define objects, functions and relations. KIF has been employed in the devel-
opment of the Process Specification Language (PSL), a language specifically designed
to facilitate correct and complex exchange of process information among manufactur-
ing systems [13].

In [10], it is observed that web services markup will allow agent technologies to
efficiently capture the ‘meta’ data associated with the services and reason about them.
This paves way for agent technologies to perform automated web services discovery,
execution, composition and interoperation. In automated web services discovery, the
software agent automatically discovers the web services based on user constraints,
which is performed manually in the current World Wide Web (WWW). In automated
web services execution, the software agent discovers the web services based on user
constraints, understands the requirements for the services, and executes them auto-
matically. In automated web services composition and interoperation, the software
agent selects the required web services, compose and interoperate them to accomplish
the requested complex task.

In [11], a need is identified to automate the process of discovering, executing,
composing, and monitoring services. Automation refers to no human intervention and
allows for the use of software agents. For a software agent to automatically process
and execute a service, a machine understandable description of the service is required.
One such language which provides descriptions that are machine understandable is
OWL-S which is evolved as a collaborative work of BBN Technologies, Carnegie
Mellon University, Nokia, Stanford University, SRI International, and Yale Univer-
sity.

In [2], the importance of using ontologies in manufacturing domain is explained.
The paper emphasis on the need for developing richer ontological structures especially
to the manufacturing domain so that more sophisticated intelligent applications can be
developed.

3 3APL Language

An Abstract Agent Programming Language (3APL) developed at Universiteit
Utrecht is a new agent oriented programming language for developing agents with

cognitive capability, as given in [5]. The language comes with programming con-
structs that allows developing agents with complex mental states. A 3APL agent de-
veloped using this language is a tuple of the form <B, G, P, A> where,

• B is Belief base,
• G is Goal base,
• P is a set of Practical reasoning rules and
• A is an Action base.

Each of this component is briefly explained next.

3.1 Belief Base

A belief base encodes the agent knowledge about its operating environment and is
a set of first order sentences. For example, a belief that a robot at room A is repre-
sented by the atom at(Robot, RoomA); other belief that a robot is not at the room x
then it is at the room next to x is expressed by the sentence1 ∀x,y(¬at(Robot,x) ∧ nex-
tto(x,y)⇒ at(Robot,y)). Notice that a belief base can contain non-grounded sentences.

3.2 Goal Base

A goal base consists of goals-to-do goals. 3APL considers goals of procedural
type. Under this view, a goal can be considered as an imperative program. A goal
defines a plan of actions for an agent to execute. The language allows for the defini-
tion of simple and complex goals.

Simple goals (also called basic goals) are of three types: basic action, test goal, and
achievement goal. For example, a simple goal like inquireUDDI() allows an agent to
inquire the UDDI registry.

Complex goals (also called composite goals) are composed from basic goals and
are used to specify complex actions such as sequences of actions, disjunctive goals, or
non-deterministic choices, etc. Conventional programming constructs such as ‘;’ and
‘+’ are used to create complex goals. For example, “goal1; goal2” defines a sequence
of goals and “goal1+goal2” defines a disjunctive goal.

3.3 Practical Reasoning Rules

A 3APL agent can manipulate its goals by using practical reasoning rules. These
reasoning rules allow an agent to find plans, which help him/her achieve its goals.
They also allow the agent to monitor its goal base. These rules facilitate the practical
reasoning which an agent can use to decide (i) to adopt a plan for achieving a goal;
(ii) to revise a plan if necessary. The set of practical rules is built from semi-goals and
first order formulas where semi-goals are defined similar to goals using a new set of
variables.

1 The sentence might or might not be valid.

A practical reasoning rule is of the form
 π ← φ | π’,

where

• π is the head of a the rule,
• φ is the guard of the rule and
• π’ is the body of the rule,
• Global variables are free first order variables in the head of the rule, and
• Local variables are non global first order variables in the body of a rule.

A practical rule π ← φ | π’ says that if the agent adopts some goal or plan π and be-
lieves that φ is true, then it may consider adopting π’ as a new goal.

3.4 Action Base

Action base defines the set of primitive actions (or basic actions) that an agent can
execute. This set of basic actions defines the capabilities of an agent with which an
agent can change its mental state of belief about its working environment.

4 Framework Design

We follow the idea behind the design of this system follows the model proposed in
[8] and [9]. We view each partner in a VE as an agent who has its own knowledge
about the environment, its actions (basic and complex), its set of practical rules, and
its own goals. A VE is a collection of agents who collaborate to achieve a common
goal. As we have discussed above, most activities in the Micro Assembly domain are
controlled by computer programs. As such, each partner is implemented as a software
agent who can offer their services (or actions) to others. Our framework facilitates the
communication between agents and allows users of the system to simulate the VE. The
overall design of our framework is depicted in Figure 1.

Central to our system is a central manager agent which is a 3APL agent. This agent
facilitates the communication between different agents and creating solutions for us-
ers’ requests.

An agent can advertise its services in a service directory, which is implemented as
a part of our system. A 3APL service directory agent provides other agents in the
system the capability to find service provider(s) that can satisfy their needs. This agent
communicates with other agents through the agent manager. In our implementation,
each service is specified by its inputs and its execution method.

One issue in a collaborative framework is the semantically differences between dif-
ferent agents. This is also an issue in our framework. We follow others by addressing
this issue using ontologies and develop ontologies for the Micro Assembly domain.
To incorporate ontologies into our system, a 3APL agent is developed. This agent also
communicates with other agents through the agent manager. We call this the meta-
information of services.

We note that in [1], design and development of ontologies for physical devices are

explained.

Figure 1. Collaborative System for Virtual Enterprise

5 Framework Implementation

This section discusses the implementation of the collaborative framework as
shown in Figure 1. It consists of following agents:

1. User Agent
2. Virtual Enterprise Agent (or Enterprise Agent Manager)
3. Ontology Agent
4. Service Directory Agent and

5. Service Provider Agents
All these agents are implemented using 3APL and they run in 3APL platform.

Plug-in programming construct is provided by 3APL platform so that agents can use
the plug-in as their working environments and access the methods available in them.
With the help of plug-ins, agents in 3APL platform can access the external JAVA
methods, virtually allowing an agent to execute a service provided by another agent.
For each agent in the our system, an associated plug-in is developed to assist the for-
mation of Virtual Enterprise in real time. Detailed descriptions of 3APL agents used in
the collaborative system are given below.

5.1 User Agent

User Agent provides the user interface to the collaborative system. This agent is
probably the simplest agent in the system. It acts on behalf of real world entities such
as human users, software applications, or even other business vendors who may need
to accomplish a task.

5.2 Virtual Enterprise Agent

The Virtual Enterprise Agent coordinates the various activities in the collaborative
framework. It is responsible for processing users’ requests (from the user agent) and
providing an initial solution (i.e. plan) for these requests. In the course of finding this
solution, it queries the Ontology agent for meta-information and uses this information
to find a list of best available service providers by querying the Service Directory
agent.

The Virtual Enterprise Agent also serves as a search engine for other agents who
need to find service providers for their own needs. Figure 2 shows a view of collabo-
rative framework implemented in 3APL platform with developed plug-ins and partici-
pating software agents

 Figure 2. Collaborative System for VE using 3APL

5.3 Ontology Agent

The Ontology Agent in the collaborative system provides the necessary meta-
information for the VE agent to further process the input from the user agent. For
demonstration purpose, some sample ontologies are created using Stanford’s Protégé
editor. Figure 3 displays a part of the ontology developed for the Micro Assembly
domain.

The ontologies developed for the collaborative system are deployed in a Tomcat
web server. Any modifications to the existing ontologies are done through the ontol-
ogy agent. This is achieved by means of a Ontology plug-in developed to assist the
ontology agent. Ontology plug-in contains some basic functions for querying and
modifying existing ontologies.

Figure 3. Sample Ontology

5.4 Service Directory Agent

The Service Directory Agent in the collaborative system is used to maintain a ser-
vice directory where service provider agents will publish their services. This will
facilitate other agents in the collaborative system, especially VE agents, to access the
available services and use them to process the user agent’s input. Oracle UDDI regis-
try is used as the service directory in this collaborative system. Oracle UDDI registry
comes along with the Oracle Application Server 10g. In this UDDI registry, instead of
saving normal WSDL descriptions for services, OWL-S descriptions of services are
saved. Requests from other agents for available services in the UDDI registry are
made through this service directory agent. A service directory plug-in is developed for
the agent to accomplish this task. The plug-in is developed with methods to connect to
the service directory, publish OWL-S services in the service directory and inquire for
available services. A screen shot of oracle UDDI registry is shown with some sample
services is shown in Figure 4.

5.5 Service Provider Agent

Real business services in the collaborative system are provided by the service pro-
vider agents. Services provided by these agents range from software resources to ac-
tual physical implementation. Along with describing the service capabilities, the con-
figurations of actual physical implementations are also described using OWL. A sam-

OWL :
THING

Area

Manufac-
turing

Micro
Assembly

Micro
Devices

Micro
Assembly

Tech-

Micro
Assembly

Lifecycle

Micro
Manipulators

Micro
Positioners

Life Cy-
cle

Design Process
Planning

Imple-
mentation

ple OWL description of a physical work cell can be accessed at
http://128.123.245.156:9090/ontology/Device.owl

Figure 4. Oracle UDDI registry showing sample services for the collaborative system

This allows the Virtual Enterprise agent to know more about the actual hardware

implementation of devices. The collaborative system contains multiple service provid-
ers who will serve the needs of a user agent. Publication of services by these agents is
accomplished through the service directory plugin, which provides methods for pub-
lishing the services into the UDDI registry.

6 Example Scenario

In this section, an example scenario is provided from the Micro Assembly domain
to the collaborative system. Micro Assembly is considered as an alternative to MEMS
based product development, where it is difficult to manufacture a product with differ-
ent parts having varying properties. As explained in previous sections, it is completely
a new area of product development where business vendors have limited number of

sophisticated infrastructures and resources to accomplish a complete micro assembly
based product development. In this application scenario, a user agent wants to assem-
ble various micron sized parts (for eg. cams) on micron sized pins. Here, the goals of
user agent are identification and formation of partnerships with potential business
vendors and execution of their associated services.

Figure 5. Interactions among the agents in the collaborative system

Possible interactions that will happen in this collaborative framework are listed be-
low (refer to figure 5) and are elaborated subsequently.

1. Interactions between Service Directory Agent and Service Provider Agents.
2. Interactions between Virtual Enterprise Agent and Ontology Agent.
3. Interactions between Virtual Enterprise Agent and Service Directory Agent.
4. Interactions between User Agent and Virtual Enterprise Agent.
5. Interactions between Service Provider Agents and User Agent.

6.1 Service Directory Agent �������� Service Provider Agents

To demonstrate this interaction, a set of service provider agents have been designed
and implemented. These include service directory agents capable of providing

1. Services based on software applications such as assembly sequence generators,
3D path planners and virtual prototyping and analysis Environments
2. Services based on actual physical resources such as micro assembly work cells.

A brief description of some of these resources is provided along with their OWL
and OWL-S descriptions.

In order to assemble micron sized parts on micron sized pins, two micro assembly
work cells as shown in figure 6, having different assembling capabilities are designed
and developed. An ontology is developed to describe the capabilities in terms of work
cell specifications. For example, work cell 1 is developed with gripper having the
capability of assembling pins and cams in the size range of 100 – 200 microns (diame-
ter) and a few millimeters in length. Due to the page limit, all OWL descriptions and
grounding files necessary for the operation of the example are omitted. They are ac-
cessible from http://web.nmsu.edu/~gobinath/file.htm.

The maximum and minimum gripping force exerted by the gripper on its target
object and its operating conditions are also described by an OWL element. The type
of parts that the gripper can handle is given by the following OWL element

<parts_it_handle rdf:resource="#Cams"/>
<parts_it_handle rdf:resource="#Pins"/>

Similar to first micro assembly work cell, the second micro assembly work cell
with tweezers is also described using OWL. This can be accessed at the URL
http://128.123.245.156:9090/mawc2.owl. Figure 6 display two work cells used in our
experiment. �

�

Figure 6. Micro Assembly Work Cells (Left: Work Cell 1, Right: Work Cell 2)

The assembly services of these two micro assembly work cells are made available
as web services. As the assembly service requires physical components (cams and pins
in this case) to be assembled, a software validation program is developed to validate
the dimensions of input components with the capability of the respective micro as-
sembly work cell. For example, in micro assembly work cell 1, the validation program
validates the input by comparing the dimensions of the gripper and the parts to be
assembled. If the validation program returns the positive results, further steps will be
taken to ship the parts to the respective work cell location. This validation program is
also made available as web services whose grounding information in OWL-S format is
given in the above mentioned URL.

W ork p iece
Suppo rting
platen

M icro stages

G ripper unit

W ork p iece
Suppo rting
platen

M icro stages

G ripper unit

Apart from the work cells, virtual prototyping environments have been developed
which form part of the VE resources. Figure 7 provides a snapshot of two virtual
environments, which can be used to study alternates assembly and path plans, etc. �

�

Figure 7. Different Virtual Environments (Virtual Environment 1, Virtual Environment 2)

These virtual environments are also accessible via web services. Service grounding
information for one of the these VEs is described in OWL-S format and is available at
http://web.nmsu.edu/~gobinath/file.htm.

Some of the software resources within the collaborative framework include micro
assembly sequence generators as well as 3D path planners. Grounding information for
one of the micro assembly sequence generators (determining an optimal sequence of
assembling a target set of micro parts) using Genetic Algorithm is detailed below in
3APL format.

Sample message transfers that will take place during the interaction between a ser-
vice provider agent (say, Micro Assembly Work Cell Provider) and the service direc-
tory (SD) agent while publishing a service are listed below:

Send(SD_Agent, inform, publish ()),
Send(SD_Agent, inform, serviceName (Micro Assembly Work Cell)),
Send(SD_Agent, inform,
 serviceDescription (http://128.123.245.156:9090/ontology/Implementer.owl))
Send(SD_Agent, inform, requires (path planning))
Send(SD_Agent, inform, requires (simulation))

After receiving these messages from the service provider agent, service directory
agent publishes the service in the Oracle UDDI registry.

6.2 User Agent �������� Virtual Enterprise Agent

In this interaction, the user agent sends the input requirements to the virtual enter-
prise agent. Below are some sample input requirements to the VE agent:

Send (VE_Agent, inform, domain (Micro_Assembly)),
Send (VE_Agent, inform, input ()),
Send (VE_Agent, inform, radius (pin1, 0.5)),
Send (VE_Agent, inform, radius (pin2, 0.5)),
Send (VE_Agent, inform, radius (pin3, 0.5)),
Send (VE_Agent, inform, radius (cam1, 0.6)),
Send (VE_Agent, inform, radius (cam2, 0.6)),
Send (VE_Agent, inform, radius (cam3, 0.6)),
Send (VE_Agent, inform, goal ()),
Send (VE_Agent, inform, on (cam1, pin1)),
Send (VE_Agent, inform, on (cam2, pin2)),
Send (VE_Agent, inform, on (cam3, pin3))

This sequence of message states that the user would like to assemble three pins (pin1,
pin2, pin3) of radius 0.5 into three cams of radius 0.6 by placing pin1 on cam1, pin2
on cam2, and pin3 on cam3.

6.3 Virtual Enterprise Agent �������� Ontology Agent

For the VE agent to process users’ request, it needs to create a plan for doing it and
who can provide the necessary services required to execute this plan. This information
is available in the meta-information managed by the Ontology agent. The VE agent
first queries the Ontology agent for meta-information about the services available in
the system and devises a plan to achieve the goals of the users (as done in [10]).

In our experimental scenario, ontology for the Micro Assembly domain is devel-
oped and deployed in a Tomcat Application Server (refer to Figures 2 and 3). Some
sample 3APL messages for this interaction are given below

Send (Ontology_Agent, inform, queryForMeta (Micro_Assembly))
Send (Ontology_Agent, inform, whatis (pin1))
Send (Ontology_Agent, inform, whatis (cam1))

Once the Ontology Agent receives the input from the VE agent, the Ontology

Agent processes the input to find the corresponding ontology (in this case the ontology
of Micro Assembly domain) and queries the ontology to find possible relationships
between the input and the concepts it contained using the ontology plug-in. For sample
input messages from VE agent, the ontology agent responds by sending the following
messages,

Send (VE_Agent, inform, metaInfo (Micro_Assembly))
Send (VE_Agent, inform, steps ())
Send (VE_Agent, inform, physical_implementation ())
Send (VE_Agent, inform, planning ())
Send (VE_Agent, inform, simulation ())
Send (VE_Agent, inform, isObject (pin1, true))
Send (VE_ Agent, inform, isObject (cam1, true))

6.3 Virtual Enterprise Agent �������� Service Directory Agent

With the meta information and the original input, the VE agent now requests the
service directory agent for service providers. The sample messages of this interaction
are given below.

Send (SD_Agent, inform, serviceProviderfor (physical_implementation))
Send (SD_Agent, inform, serviceProviderfor (planning))
Send (SD_Agent, inform, serviceProviderfor (simulation))

After receiving these messages, the service directory agent searches the UDDI reg-

istry for available service providers. In a UDDI registry, there may be more than one
service provider who can serve the user agent’s input request. Those service providers
are known as potential partners in VE context. From the list of potential service pro-
viders, the service directory agent should choose one best service provider for the user
agent. Before the selection of a best service provider, the Service directory agent will
check for the requirements for each of the potential service providers. The require-
ments for a service provider may be correct inputs or even some services from other
service providers. If all the requirements of a service provider are satisfied and it also
satisfies the requirements of user agent, the service directory agent will announce the
service provider as best partner. If user agent’s requirement does not match with the
service providers’ requirements, then service directory agent will announce the un-
availability of service providers. After finding the service providers, the service direc-
tory agent returns the access point URLs of each of the identified business vendors to
the VE agent. Message transfers during this interaction are

Send (VE_Agent, inform,
accessPointURL (http://128.123.245.156:9090/ontology/Implementer.owl)),

Send (VE_Agent, inform,
accessPointURL (http://128.123.245.156:9090/ontology/planning.owl)),

Send (VE_Agent, inform,
accessPointURL (http://128.123.245.156:9090/ontology/simulator.owl)),

The resulting access point URLs are then sent to User Agent for execution.

6.5 Service Directory Agent �������� User Agent

After obtaining the access point URLs of service provider agents, the User agent
executes the services available at the service provider sites.

7 Conclusion and Future Work

In this paper, a collaborative system is developed to form a Virtual Enterprise for
the domain of Micro Assembly. 3APL language is used to develop the agents which
constitute the collaborative system. Ontology for Micro Assembly domain is devel-
oped to provide a common ground to share the information contained in it among the
agents. Although it is still an ad-hoc development, this prototypical system demon-
strates that agent technologies can be very useful in VE development, a rather new
area to agent researchers. In the future, we would like to study and develop method-
ologies for a systematic development of VE in the Micro Assembly domain.

References
1. Bandara, A., Payne, T., Roure, D., Clemo, G., An Ontological Framework for Semantic

Description of Devices, ISWC 2004, Poster Session, Hiroshima, Japan, 7 - 11 Nov 2004.

2. Borgo, S., P. Leitão, The Role of Foundational Ontologies in Manufacturing Domain
Applications, R. Meersman, Z. Tari et al. (eds.) OTM Confederated International Confer-
ences, ODBASE 2004, Ayia Napa, Cyprus, 2004, LNCS 3290, pp. 670-688.

3. Camarinha-Matos, L. M., Asfarmanesh, H., Virtual Enterprise Modeling and Support
Infrastructures: Applying Multi-Agent System Approaches in Multi- agent Systems and
Applications, in LNAI 2086, Springer, July 2001.

4. Hardwick, M., Spooner, D. L., Rando, T., and Morris, K. C. 1996. Sharing manufacturing
information in virtual enterprises. Commun. ACM 39, 2 (Feb. 1996), 46-54.
http://doi.acm.org/10.1145/230798.230803

5. Hindriks, K. V., De Boer, F. S., Van Der Hoek, W., and Meyer, J.-J. Ch. Agent Pro-
gramming in 3APL, Autonomous Agents and Multi-Agent Systems, ACM, 2:4, 357–401,
1999.

6. Genesereth, M. R. and Fikes, R. E. Knowledge Interchange Format (KIF) Version 3.0,
Reference Manual.

7. Munindar P. Singh. Agent Communication Languages: Rethinking the Principles, Com-
puter, vol. 31, no. 12, pp. 40-47, December, 1998.

8. Petersen, S. A., Gruninger, M., An Agent-based Model to Support the Formation of Vir-
tual Enterprises, Int. ICSC Symposium on Mobile Agents and Multi-Agent in Virtual Or-
ganizations and E-Commerce (MAMA ‘2000), in Australia, 11-13 Dec. 2000.

9. Petersen, S. A., Rao, J., Matskin, M., AGORA Multi-agent Architecture for Implementing
Virtual Enterprises, Norsk Informatikkonferanse NIK2003, Oslo, Norway, 2003.

10. McIlraith, S., Son, T. C., and Zeng, H. Semantic Web Services, IEEE Intelligent Systems,
vol. 16, no. 2, pp. 46-53, March/April, 2001.

11. The OWL Services Coalition, “OWL-S: Semantic Markup for Web Services”,
http://www.daml.org/services/owl-s/1.0/owl-s.html.

12. Wilbur, S., Computer Support for Co-operative Teams: Applications in Concurrent Engi-
neering, IEEE Colloqium on Current Development in Concurrent Engineering Method-
ologies and Tools, June 1994.

13. M. Grüninger and C. Menzel. The Process Specification Language (PSL) Theory and
Applications, AAAI Magazi, 63-74, Fall 2000.

