
Using Dynamic Logic Programming to Obtain
Agents with Declarative Goals

– preliminary report

Vivek Nigam? and João Leite

CENTRIA, New University of Lisbon, Portugal
vivek.nigam@gmail.com and jleite@di.fct.unl.pt

Abstract. Goals are used to define the behavior of (pro-active) agents.
It is our view that the goals of an agent can be seen as a knowledge base of
the situations that it wants to achieve. It is therefore in a natural way that
we use Dynamic Logic Programming (DLP), an extension of Answer-
Set Programming that allows for the representation of knowledge that
changes with time, to represent the goals of the agent and their evolution,
in a simple, declarative, fashion. In this paper, we represent agent’s goals
as a DLP, discuss and show how to represent some situations where the
agent should adopt or drop goals, and investigate some properties that
are obtained by using such representation.

1 Introduction

It is widely accepted that intelligent agents must have some form of pro-active
behavior [19]. This means that an intelligent agent will try to pursue some set of
states, represented by its goals. At the same time, goals will serve as explanations
for agent’s actions. Goals have two distinct, though related, aspects: a procedural
that can be identified with the sequence of actions that the agent attempts to
perform in order to achieve a goal; and a declarative that can be associated with
the set of states that the agent wants to bring about. In this paper we will focus
on the declarative aspect of goals.

Recently, there has been an increasing amount of research devoted to the issue
of declarative goals and their properties [18, 6, 13, 16, 17, 15]. Agent programming
languages with declarative goals open up a number of interesting possibilities
to the programmer, such as checking if a goal has been achieved, if a goal is
impossible, if a goal should be dropped, i.e., if the agent should stop pursuing
a goal, or if there is interference between goals [18, 15]. Having declarative goals
also facilitates the task of constructing agents that are able to communicate them
with other agents [13]. In [18, 15, 13] the reader can find examples illustrating
the need for a declarative aspect to goals.

As dynamic entities, agents often must adopt new goals, and drop existing
ones, and these changes in the adopted goals can be made dependent on the
? Supported by the Alβan Program, the European Union Programme of High Level

Scholarships for Latin America, no. E04M040321BR

state of affairs. There has been a great deal of research to identify when an
agent should change its goals [5, 16, 15, 18]. For example, an agent should drop
a goal when it believes that the goal is no longer achievable (maybe represented
by a failure condition [18]). As for adopting new goals, after a negotiation is
successfully closed there may be new obligations [7] that the agents involved
have committed to, that lead to the revision of the agent’s goals and, possibly,
the adoption of new ones.

In this paper, we will address the problem of representing and reasoning
about dynamic declarative goals using a logic programming based approach.

In [12, 8], the paradigm of Dynamic Logic Programming (DLP) was intro-
duced. According to DLP, knowledge is given by a series of theories, encoded
as generalized logic programs1, each representing distinct states of the world.
Different states, sequentially ordered, can represent different time periods, thus
allowing DLP to represent knowledge that undergoes successive updates. Since
individual theories may comprise mutually contradictory as well as overlapping
information, the role of DLP is to employ the mutual relationships among dif-
ferent states to determine the declarative semantics for the combined theory
comprised of all individual theories at each state. Intuitively, one can add, at
the end of the sequence, newer rules (arising from new or reacquired knowledge)
leaving to DLP the task of ensuring that these rules are in force, and that previ-
ous ones are valid (by inertia) only so far as possible, i.e. that they are kept for as
long as they are not in conflict with newly added ones, these always prevailing.

It is our perspective that the declarative goals of an agent can be seen as a
knowledge base encoding the situations it wants to achieve. There has been, in
the past years, an intense study of the properties of DLP to represent knowledge
bases that evolve with time [2, 8, 11]. However, up to now, there hasn’t been much
investigation of how DLP could be used to represent, in a declarative manner,
the goals of an agent. Since DLP allows for the specification of knowledge bases
that undergo change, and enjoys the expressiveness provided by both strong and
default negations, by dint of its foundation in answer-set programming, it seems
a natural candidate to be used to represent and to reason about the declarative
goals of an agent, and the way they change with time.

In this paper we will represent the goal base of an agent as a Dynamic Logic
Program, and investigate some of its properties. Namely, we will see that the
semantics of DLP will allow us to straightforwardly drop and adopt new goals
by updating the goal base of the agent, and will allow those operations to be
conditional on the current state of affairs.

Furthermore, an agent can distinguish between maintenance and achievement
goals. A maintenance goal represents a state of affairs that the agent wants to
hold in all states. For example, a person doesn’t want to get hurt. An achievement
goal represents a state of affairs that, once achieved, is no longer pursued. For
example, an agent that has as goal to write a paper for a congress, after it believes
it has written the paper, it should no longer consider this as a goal. Therefore,

1 Logic programs with default and strong negation both in the body and head of rules.

to correctly define the conditions for dropping a goal, we also investigate how to
express maintenance and achievement goals using DLP.

For our purpose, we will use a simple agent framework to be able to clearly
demonstrate the properties obtained by using DLP. Agents in this framework
are composed of data structures representing its beliefs, goals, committed goals
(intentions) and reasoning rules. We propose three types of reasoning rules: 1)
Intention Adoption Rule: used to commit to a goal by adopting a plan to achieve
it; 2) Goal Update Rule: used to update an agent’s goals using the DLP seman-
tics; 3) Intention Dropping Rule: used to drop previously committed goals.

The remainder of the paper is structured as follows: in the next Section we are
going to present some preliminaries, introducing DLP and the agent framework
we are going to use. Later, in Section 3, we are going to define the semantics of
the goal queries and in Section 4 the reasoning rules. In Section 5, we discuss
some situations related to when to drop and adopt new goals, and how to use
the DLP semantics to represent these situations. In Section 6 we give a simple
example of a multi-agent system illustrating how DLP could be used to represent
goals, to finally draw some conclusions and propose some further research topics
in Section 7.

2 Preliminaries

In this section we are going to give some preliminary definitions that will be
used throughout the paper. We start by introducing the language and semantics
of Dynamic Logic Programming and, afterwards, we introduce the simple agent
framework that we will adopt to demonstrate our investigations.

2.1 Dynamic Logic Programming

Let K be a set of propositional atoms. An objective literal is either an atom A
or a strongly negated atom ¬A. A default literal is an objective literal preceded
by not . A literal is either an objective literal or a default literal. The set of
objective literals is denoted by L¬K and the set of literals by L¬,not

K . A rule r
is an ordered pair Head (r) ← Body (r) where Head (r) (dubbed the head of
the rule) is a literal and Body (r) (dubbed the body of the rule) is a finite set
of literals. A rule with Head (r) = L0 and Body (r) = {L1, . . . , Ln} will simply
be written as L0 ← L1, . . . , Ln. A generalized logic program (GLP) P , in K,
is a finite or infinite set of rules. If Head(r) = A (resp. Head(r) = not A)
then not Head(r) = not A (resp. not Head(r) = A). If Head (r) = ¬A, then
¬Head (r) = A. By the expanded generalized logic program corresponding to the
GLP P , denoted by P, we mean the GLP obtained by augmenting P with a
rule of the form not ¬Head (r) ← Body (r) for every rule, in P , of the form
Head (r)← Body (r), where Head (r) is an objective literal2. Two rules r and r′

are conflicting, denoted by r on r′, iff Head(r) = not Head(r′). An interpretation
2 Expanded programs are defined to appropriately deal with strong negation in up-

dates. For more on this issue, the reader is invited to read [9, 8]. From now on, and

M of K is a set of objective literals that is consistent i.e., M does not contain
both A and ¬A. We define the set I as the set of all interpretations. An objective
literal L is true in M , denoted by M � L, iff L ∈ M , and false otherwise. A
default literal not L is true in M , denoted by M � not L, iff L /∈ M , and false
otherwise. A set of literals B is true in M , denoted by M � B, iff each literal in
B is true in M . Only an inconsistent set of objective literals, In, will entail the
special symbol ⊥ (denoted by In |= ⊥). ⊥ can be seen semantically equivalent
to the formula A ∧ ¬A. An interpretation M of K is an answer set of a GLP P
iff M ′ = least (P ∪ {not A | A 6∈M}), where M ′ = M ∪ {not A | A 6∈M}, A is
an objective literal, and least(.) denotes the least model of the definite program
obtained from the argument program by replacing every default literal not A by
a new atom not A. For notational convenience, we will no longer explicitly state
the alphabet K. As usual, we will consider all the variables appearing in the
programs as a shorthand for the set of all their possible ground instantiations.

A dynamic logic program (DLP) is a sequence of generalized logic pro-
grams. Let P = (P1, ..., Ps), P ′=(P ′

1, ..., P
′
n) and P ′′=(P ′′

1 , ..., P ′′
s) be DLPs.

We use ρ (P) to denote the multiset of all rules appearing in the programs
P1, ...,Ps, and (P,P ′) to denote (P1, ..., Ps, P

′
1, ..., P

′
n) and P ∪ P ′′ to denote

(P1 ∪ P ′′
1 , ..., Ps ∪ P ′′

s).
In the past years there have appeared several semantics for a DLP. We are

going to use the Refined Dynamic Stable Model semantics defined below, because
of its nice properties, as investigated in [9].

Definition 1 (Semantics of DLP). [8, 1] Let P = (P1, . . . , Ps) be a dynamic
logic program over language K, A be an objective literal, ρ (P), M ′ and least(.)
be as before. An interpretation M is a (refined dynamic) stable model of P iff

M ′ = least ([ρ (P)−Rej(M,P)] ∪Def(M,P))

Where:

Def(M,P) = {not A | @r ∈ ρ(P),Head(r) = A,M � Body(r)}
Rej(M,P) = {r | r ∈ Pi,∃r′ ∈ Pj , i ≤ j ≤ s, r on r′,M � Body(r′)}

It is important to notice that a DLP might have more than one stable model.
Each stable model can be viewed as a possible world that follows from the knowl-
edge represented by the DLP. We will denote by SM(P) the set of stable models
of the DLP P. Further details and motivations concerning DLPs and its seman-
tics can be found in [8].

2.2 Agent Framework

In this subsection we are going to define the agent framework3 that we will
use throughout this article. We will start by introducing the concept of agent

unless otherwise stated, we will always consider generalized logic programs to be in
their expanded versions.

3 The agent framework defined in this section could be seen as a modified (simplified)
version of the agent framework used in the 3APL multi-agent system [4].

configuration, which consists of a belief base representing what the agent believes
the world is, a goal base representing the states the agent wants to achieve, a set
of reasoning rules and a set of intentions with associated plans representing the
goals that the agent is currently committed to achieve. We are going to make
precise, later in Section 4, how the reasoning rules of the agents are defined. We
are considering that the agent has, at its disposal, a plan library represented by
the set of plans, Plan. A plan can be viewed as a sequence of actions that can
modify the agent’s beliefs or/and the environment surrounding it, and is used
by the agent to try to achieve a committed goal.

Our main focus in this paper is to investigate the properties of represent-
ing the goal base as a Dynamic Logic Program. We are not going to give the
deserved attention to the belief base. We consider the belief base as a simple
interpretation. However, a more complex belief base could be used. For exam-
ple, we could represent the belief base also as a Dynamic Logic Program and
have some mechanism such that the agent has an unique model for its beliefs4.
Elsewhere, in [14], we explore the representation of 3APL agent’s belief base as
a DLP.

Definition 2 (Agent Configuration). An agent configuration is a tuple 〈σ, γ,
Π,R〉, where σ ∈ I is an interpretation representing the agent’s belief base, γ a
Dynamic Logic Program representing it’s goal base, Π ⊆ Plan×L¬ the intentions
of the agent and R the set of reasoning rules.

We assume that the semantics of the agents is defined by a transition system.
A transition system is composed of a set of transition rules that transforms one
agent configuration into another agent configuration, in one computation step.
It may be possible that one or more transition rules are applicable in a certain
agent configuration. In this case, the agent must decide which one to apply.
This decision can be made through a deliberation cycle, for example, through a
priority among the rules. In this paper, we won’t specify a deliberation cycle.
An unsatisfied reader can consider a non-deterministic selection of the rules.

We are interested in knowing what an agent believes and what are its goals.
To this purpose, we start by introducing, in the next definition, the belief and
goal query languages.

Definition 3 (Belief and Goal Query Language). Let φ ∈ L¬,not and φ′ ∈
L¬. The belief query language, LB, with typical element β, and the goal query
language, LG, with typical element κ are defined as follows:

> ∈ LB Bφ ∈ LB β, β′ ∈ LB then β ∧ β′ ∈ LB
> ∈ LG Gφ′ ∈ LG

Notice that we don’t include default literals in the goal query formulas. This
is because we believe that it would only make sense for an agent to pursue a
situation that the agent is completely sure when it is achieved. For example, if
4 For example, a belief model selector that would select one of the stable models of

the belief base to represent the agent’s beliefs.

an agent had the goal of not (by default) failing an exam, not fail, it would
be possible for the agent not to study for the exam and still satisfy this goal
(considering that the agent is not a genius) by simply not checking its mark.
On the other hand, default literals can be quite useful for the belief queries.
For example, for cautious agents in emergency situations, if an agent is not sure
that a place is safe (not safe), it could trigger the goal of moving to a safer
location. We will explain better how this could be represented when we discuss
goal adoption and dropping, in Section 5.

Now, we will start by defining the semantics of the belief query formulas
(|=B). The semantics of the goal query formulas (|=G), one of the key interests
of this paper, will be defined later in Section 3.

Definition 4 (Semantics of Belief Formulas). Let Bφ, β, β′ ∈ LB be belief
query formulas and 〈σ, γ, Π,R〉 be an agent configuration. Then, the semantics
of belief query formulas, |=B, is defined as:

〈σ, γ, Π,R〉 |=B >
〈σ, γ, Π,R〉 |=B Bφ⇔ σ |= φ

〈σ, γ, Π,R〉 |=B β ∧ β′ ⇔ 〈σ, γ, Π,R〉 |=B β and 〈σ, γ, Π,R〉 |=B β′

Although this is a quite simple agent framework it will be enough for the
purpose of this paper.

3 Semantics of Agent Goal Bases

As defined in the previous section, we are considering the goal base of the agent as
a Dynamic Logic Program. We will use the stable models of the goal base of the
agent to determine the goals that it should achieve. Since the logic programs used
in DLP use default negation, we can have situations where one DLP has more
than one stable model, each internally consistent, but entailing contradictory
conclusions between them. For example, consider a goal base consisting of the
logic program with the following two rules:

a← not ¬a. ¬a← not a.

This program has two stable models, namely {a} and {¬a}. Even though each
of them is consistent (recall that models are interpretations which, themselves,
are consistent), they are contradictory in the sense that one entails a while the
other entails ¬a. This contradiction could be seen as undesirable. However, as
argued by Hindriks et al. in [6], the goal base of an agent doesn’t have to be
consistent since, for example, the goals of an agent can be achieved at different
times. We add to this that these apparently contradictory goals can just be seen
as alternative ones. The semantics of the intention adoption rules, defined below,
makes sure that the agent doesn’t concurrently pursue inconsistent intentions5.
5 [17] uses a default logic system to be able to express contradictory goals, but no

mechanism to drop goals is proposed. We propose a system based on the stable
models of the goal base, with the same expressiveness as the system in [17], and
with the possibility of elegantly drop goals.

However, we shouldn’t directly consider the stable models of the goal base
(γ) of an agent as its goals, because the agent shouldn’t consider a goal if it
already believes that the goal is currently achieved. A naive way of solving this
problem is to refine the stable models of the goal base by removing the goals
that are entailed by the belief base: GM = {M \ σ | M ∈ SM(γ)}. But, by
doing so, we partially lose expressiveness of having conditional goals. Consider
the following illustrative example:

Example 1 (Conditional Goals). Let the goal base of an agent be the DLP com-
posed of one GLP, with the intended meaning that the agent has as goal to buy
a Ferrari if it won the prize, otherwise it would like to buy a Beetle. The goal of
getting an insurance will depend on which car the agent will buy.

buy ferrari← win lottery.

buy beetle← not win lottery

get insurance← buy ferrari.

We must consider the agent’s belief base to determine what its goals are.
Which car to buy will depend on whether it believes to have won or not the
lottery, since obviously winning the lottery would not be a feasible goal for the
agent.

The next definition formalizes an agent’s Goal Models. The agent’s Goal
Models will be used to represent the agent’s goals and they are obtained by
refining the stable models of the agent’s goal base in such a way that the agent
takes in consideration its beliefs, and doesn’t consider a formula as a goal if this
formula is entailed by its belief base. In the previous example, if win lottery is
entailed by the beliefs of the agent, buy ferrari would be one of its goals.

Definition 5 (Goal Models). Let 〈σ, γ, Π,R〉 be an agent configuration. Then,
the set of Goal Models (GM) of the agent is defined as:

GM (σ, γ) = {M \ σ |M ∈ SM((γ, Ψ(σ)))}

where Ψ(σ) = {L←| L ∈ σ}

Notice that, similarly to interpretations, the Goal Models are individually
consistent, but two different goal models can be mutually contradictory. As ar-
gued previously, we want to express agents with contradictory goals. Therefore,
to express the goals of an agent, we are going to use simultaneously all of its
Goal Models.

The definition below formalizes the semantics of the goal query formulas.

Definition 6 (Semantics of Goal Query Formulas). Let Gφ, κ, κ′ ∈ LG
be a goal query formula and 〈σ, γ, Π,R〉 be an agent configuration. Then, the
semantics of goal query formulas, |=G, is defined as:

〈σ, γ, Π,R〉 |=G >
〈σ, γ, Π,R〉 |=G Gφ⇔ ∃M.(M ∈ GM(σ, γ) ∧M |= φ)

The next proposition states that the agent cannot have a goal that is entailed
by the belief base.

Proposition 1. Let 〈σ, γ, Π,R〉 be an agent configuration, then:

(∀φ ∈ σ).(〈σ, γ, Π,R〉 2G Gφ)

Proof. It is trivial from the way the Goal Models are constructed and by the
Definition 6 of the Semantics of Goal Query Formulas

4 Reasoning Rules

We now define the types of reasoning rules an agent can have. We begin following
[17], introducing the Intention Adoption Rule that is used by the agent to commit
to a goal by associating a plan to it.

Definition 7 (Intention Adoption Rules). Let β ∈ LB be a belief query
formula and κ ∈ LG be a goal query formula, and π ∈ Plan be a plan. The
Intention Adoption Rules is defined as, κ ← β | π. We will call, β the guard of
the rule and κ the head of the rule.

Informally, the semantics of the Intention Adoption Rules is that if the goal
base satisfies the head of the rule (κ = Gφ) and the agent beliefs in the guard
(β) of the rule, the plan π is adopted to try to achieve the goal in the head of rule
by adding the pair (π, φ) to the agent’s intention base. However, as discussed
by Bratman in [3], a rational agent shouldn’t incorporate new intentions if it
conflicts with the current intentions. For example, a rational agent wouldn’t
adopt the intention of going on vacations if it has committed to clean its house.

Taking this into account, we now formalize the semantics of the intention
adoption rules.

Definition 8 (Semantics of Intention Adoption Rules). Let 〈σ, γ, Π,R〉
be an agent configuration, κ← β | π ∈ R, is an Intention Adoption Rule, where
κ = Gφ, and Π = {(π1, φ1), . . . , (πn, φn)}.

〈σ, γ, Π,R〉 |=G κ 〈σ, γ, Π,R〉 |=B β {φ1, . . . , φn, φ} 2 ⊥
〈σ, γ, Π,R〉 −→ 〈σ, γ, Π ∪ {(π, φ)} , R〉

Notice that the condition of consistency of the agent’s intentions is maybe
not yet the best option to avoid irrational actions, Winikoff et al. suggest, in
[18], that it is necessary also to analyze the plans of the agent, as well as the
resources available to achieve the intentions. However, this is out of the scope
of this paper. The reader can also notice that the conjunction of goals cannot
be expressed by only considering the intention adoption rule. It is necessary to
increment the goal base of the agent. Consider that we want to program an
agent with the following goal a1∧, . . . ,∧an. We can express this goal by having

the following rules in the goal base conj as ← a1, . . . , an and conj as ←, where
conj as is a new variable in the goal base. The goal conj as will only be achieved
if the conjunction a1∧, . . . ,∧an is true.

We have just introduced a rule to adopt new intentions. Considering that
intentions are committed goals, if the goal that the intention represents is no
longer pursued by the agent, it would make sense to drop it. Therefore, we
introduce into our agent framework the Intention Dropping Rule. Informally,
the semantics of this rule is to remove from its intention base, any intention
that is no longer supported by the goal base of an agent. The next definition
formalizes this idea.

Definition 9 (Intention Dropping Rule). Let 〈σ, γ, Π,R〉 be an agent con-
figuration, where {(π, φ)} ⊆ Π. Then:

〈σ, γ, Π,R〉 2G Gφ
〈σ, γ, Π,R〉 −→ 〈σ, γ, Π \ {(π, φ)} , R〉

As the intention dropping rule is defined, the agent could stop executing
a plan if a goal is no longer entailed by the goal base. Stopping abruptly the
execution of the plan could be undesired since there might be some cleaning
actions to be taken after the goal is achieved. For example, if an agent’s goal is
to bake a cake, it would execute an appropriate plan, gathering the ingredients,
the utensils, and setting up the oven. After the cake is baked the agent would
still have to wash the utensils and throw the garbage away, these actions could
be seen as clean up actions. To handle this issue, we could propose a more
complex system of intentions, where there would be two plans associated with
the committed goal, one used to achieve the goal and another used to do the
cleaning up. When the goal is achieved the agent would execute the cleaning
up plan. However, this issue is not our main interest here in this paper, and
therefore we will limit our system to the intention dropping rule proposed in the
definition above.

To be able to use the update semantics of DLP it is interesting to have a rule
that can update the goal base of an agent with a generalized logic program. We
will call this rule as Goal Update Rule. We will investigate in the Section 4, how
to use the Goal Update Rule to adopt, drop or modify goals.

Definition 10 (Goal Update Rule). Let P be a Generalized Logic Program
and β ∈ LB be a query formula. The Goal Update Rule is defined as the tuple,
〈β, P 〉. We will call β as the precondition of the goal update rule.

Informally, the semantics of the goal update rule 〈β, P 〉, is that when the pre-
condition, β, is satisfied the goal base of an agent is updated by the generalized
logic program P .

Definition 11 (Semantics of Goal Update Rules). Let 〈σ, γ, Π,R〉 be an
agent configuration, the semantics of a Goal Update Rule, 〈β, P 〉 ∈ R is given
by the transition rule:

〈σ, γ, Π,R〉 |=B β
〈σ, γ, Π,R〉 −→ 〈σ, (γ, P),Π, R〉

5 Adopting and Dropping Goals

In this section we are going to investigate how to represent, in our system,
situations where an agent has to adopt or drop goals. We begin, in Subsection
4.1, by investigating how to represent failure conditions for goals. We will also
define, in this Subsection, how to represent maintenance and achievement goals,
since they are important concepts to be analyzed by an agent when it is intending
to drop a goal. Later, in Subsection 4.2, we discuss some possible motivations
of why an agent should adopt a goal and also investigate how to represent these
motivations in our agent framework. Finally in Subsection 4.3, we identify some
further properties of our framework.

5.1 Goal Dropping

In this subsection, we are going to investigate some situations where the agent
must drop a goal and discuss how this could be done with our agent framework.

Winikoff et al. in [18], suggests some properties that the agent should have
with respect to its goals, one of these properties is being able to define failure
conditions. The idea is that when the failure condition is true the goal should be
dropped and, furthermore, the agent should remove it from its intention base in
case it had committed to it.

We can easily define failure conditions for goals using Dynamic Logic Pro-
grams, since failure conditions can be viewed as conditional goals. Consider the
following example.

Example 2. Consider an agent that has to write a paper until a deadline of a
conference. We could represent this situation using the following DLP, composed
by a single GLP with a single rule, write paper ← not deadline over. The agent
will consider write paper as a goal only if the deadline is not over.

Another situation where the agent should drop a goal (or an intention) is
when the goal (or intention) has been achieved, i.e., when the belief base entails
the goal (or intention). By Proposition 1, we have that the agent will never
entail a goal formula that is believed to be achieved. Hence, the agent can use
the Intention Dropping Rule to drop intentions that are no longer goals of the
agent.

Up to now we haven’t explored the full expressiveness of Dynamic Logic
Programs, by the simple fact that we didn’t need, in any of the examples, the
update semantics of DLP. We are going to use the semantics of DLP to be able
to construct agents that can have maintenance as well as achievement goals.

In what circumstances an agent should drop a goal will depend in which type
of goal it is. If it is an achievement goal, once it is achieved the goal must be
dropped and not pursued in the future anymore. And if it is a maintenance goal,
it will only be dropped when it is currently entailed by the agent’s beliefs. But
if in the future the goal is no longer entailed by its belief base, the agent will
have to pursue this goal once more.

To be able to differentiate between these types of goals, we are going to de-
fine a special predicate, only appearing in the goal base, with signature, mainte-
nance(.), stating that the goal as argument is a maintenance goal. The following
definition makes this precise.

Definition 12 (Maintenance and Achievement Goals). Let 〈σ, γ, Π,R〉 be
an agent configuration. We will call the goal φ as a maintenance goal iff

〈σ, γ, Π,R〉 |=G Gmaintenance (φ) ∧ 〈σ, γ, Π,R〉 |=G Gφ

We call the goal φ an achievement goal iff

〈σ, γ, Π,R〉 2G Gmaintenance (φ) ∧ 〈σ, γ, Π,R〉 |=G Gφ

We are going to use the semantics of DLP to define a goal update operator
that updates the goals of the agent by dropping the achievement goals that have
been achieved. The idea is to apply the goal update operator whenever the belief
base of the agent is changed (this could be done by a deliberation cycle).

Definition 13 (Goal Update Operator - Ω). Let 〈σ, γ, Π,R〉 −→ 〈σ′, γ′,Π ′, R〉
be a transition in the transition system, where 〈σ, γ, Π,R〉 and 〈σ′, γ′,Π ′, R〉 are
agent configurations, and Γ (σ) = {not L ← not maintenance(L) | L ∈ σ}. We
define the goal update operator, Ω, as follows:

Ω(γ, σ′) = γ′ = (γ, Γ (σ′))

We must be sure that with the goal update operator defined above, new goals
are not created and only the goals that have to be dropped are removed from
the Goal Models. The next theorem states that when the goal update operator
is used, no achievement goals that are achieved will be entailed by the agent,
regardless of its future beliefs. For example, consider that an agent has achieved
a goal φ and has updated its goal base with the goal update operator. If the agent
doesn’t adopt φ as a goal once more, or changes its status to a maintenance goal,
φ will not be a goal of the agent even if in the future, the agent’s belief base
doesn’t entail φ.

Theorem 1. Let 〈σ, γ, Π,R〉 be an agent configuration and σ′ be another belief
base, such that 〈σ, γ, Π,R〉 |=G Gφ and σ′ |= φ. Then:

(∀σ′′ ∈ I).(〈σ′′, γ′,Π, R〉 2 Gmaintenance(φ)⇒ 〈σ′′, γ′,Π, R〉 2 Gφ)

where γ′ = Ω(γ, σ′).

Proof. Proof: Since σ′ |= φ the goal update operator will update γ with a rule r,
{not φ← not maintenance(φ)}. As 〈σ′′, γ′,Π, R〉 2 Gmaintenance(φ), the rule
r will be activated rejecting all the rules with head, φ. Hence 〈σ′′, γ′,Π, R〉 2 Gφ.

By proposition 1 we have that the maintenance goals will not be entailed by
the agent if it believes that it is currently achieved.

5.2 Goal Adoption

Agents often have to adopt new goals. The reasons for adopting new goals can be
varied, the simplest one, when dealing with pro-active agents, would be because
the agent doesn’t have any goals and it is in an idle state.

We follow [16], and distinguish two motivations behind the adoption of a
goal: internal and external. Goals that derive from the desires of the agent, rep-
resented by abstract goals, have an internal motivation to be adopted. External
motivations, such as norms, impositions from other agents, and obligations, can
also be a reason for the agent to adopt new goals. An example of a norm, in the
daily life, is that a person should obey the law. Obligations could derive from
a negotiation where an agent commits to give a service to another agent e.g.
your internet provider should (is obliged to) provide the internet connection at
your home. Agents usually have a social point of view e.g. a son usually respects
his father more than a stranger, and it may be the case that an agent imposes
another agent some specific goals e.g. a father telling the son to study.

Dignum and Conte discuss, in [5], that an agent usually has abstract goals
that are usually not possible to be achieved by a simple plan, but the agent
believes that these abstract goals can be approximated by a set of concrete goals.
Notice that the beliefs of the agent must be taken in consideration to adopt new
concrete goals. For example, if an agent has the desire to obey the law and it
believes that if it drives too fast it will break the law, it might have the goal of
driving slower. On the other hand, it would be acceptable for the agent to talk
on the mobile phone while driving a car, if an agent believes that by doing so it
is not breaking the law, even though, by doing so, it might be violating the law.

Using DLP as the goal base of an agent we can partially simulate this behav-
ior. Consider an agent with the a goal base consisting of one GLP, {¬drive fast←
obey law; obey law ←;maintenance(obey law) ←}. As the agent will have the
abstract maintenance goal of obeying the law (however there might be no plan
to achieve it), it will try not to drive fast.

To be able to commit to obligations, changes in norms, or changes in desires,
we need to be able to change the goal base during execution. For example, if a
new deal is agreed to provide a service to another agent, the agent must entail
this new obligation. By using the Goal Update Rule, an agent can update its
goal base in such a way that it can incorporate new goals in several situations:

Adopt New Concrete Goals - As discussed previously, the agent may have
some desires that can be represented by abstract goal κ that is usually not
really achievable, but the agent believes that it can be approximated by
some concrete goals (κ1, . . . , κn). Consider that the agent learns that there
is another concrete goal κl that, if achieved, can better approximate the
abstract goal, κ. The agent can update its goal base using the following
Goal Update Rule, 〈concrete goal(κl, κ), {κl ← κ}〉, as κ is a goal of the
agent, it will activate the new rule, hence the new concrete goal, κl, will also
be a goal of the agent;

Norm Changes - Consider that the agent belongs to a society with some norms
that have to be obeyed (norm1, . . . , normn) and furthermore that there is a

change in the norms. Specifically, the normi is changed to norm′
i, hence the

agent’s goal base must change. We do this change straightforwardly, using
the goal update rule, 〈change(normi, norm′

i), {not normi ←;norm′
i ←}〉.

This update will force all the rules, r, with Head(r) = normi to be rejected
and normi will no longer be a goal of the agent. Notice that there must
be some coherence with the change in the norms. For example, the agent
shouldn’t believe that on change(normi, normj) and at the same time on
change(normj , normi);

New Obligations - Agents are usually immersed with other agents in an en-
vironment and, to achieve certain goals, it might be necessary to negotiate
with them. After a negotiation round, it is normal for agents to have an
agreement that stipulates some conditions and obligations (e.g. in Service
Level Agreements [7]). The agent can again easily use the goal update rules
to incorporate new obligations, 〈obligation(φ), {φ ←}〉, as well as dismiss
an obligation when an agreement is over, 〈¬obligation(φ), {not φ←}〉;

Impositions - Agents not only negotiate, but sometimes have to cooperate with
or obey other superior agents. This sense of superiority is quite subjective
and can be, for example, the obedience of an employee to his boss, or a
provider towards his client. It will depend on the beliefs of the agent to
decide if it should adopt a new goal or not, but this can be modeled using
the goal update rule, 〈received(achieve, φ, agenti) ∧ obey(agenti), { φ←}〉.
Meaning that if it received a message from agenti to adopt a new goal
φ, and the receiving agent believes it should obey agenti, it will update
its goal base. Notice that more complex hierarchy could be achieved by
means of preferences between the agents. However, it would be necessary
to elaborate a mechanism to solve possible conflicts (e.g by using Multi-
Dimensional Dynamic Logic Programming [10]).

5.3 Further Properties

We still can identify some more properties that could be elegantly achieved by
using the goal update rule:

Defining Maintenance and Achievement Goals We can define a goal as a
maintenance goal if a certain condition is satisfied. For example, an initially
single male agent finds the woman agent of its life and marries it. After
this is achieved, it might like to be married with this agent until the end of
its life. This can be represented by the goal update rule 〈married(girl), {
married(girl) ←;maintenance(married(girl)) ←}〉. The opposite can also
be easily achieved, using the goal update rule. A goal that initially was
a maintenance goal can be dropped or switched to an achievement goal.
For example, consider that the previous agent had a fight with its agent
wife and, after the divorce, it doesn’t want to marry again. This can be
represented by the goal update rule, 〈divorce(girl), { not married(girl)←
; not maintenance(married(girl)) ←}〉. We define a new achievement or
modify a maintenance goal to an achievement by using the following goal
update rule 〈achieve(φ), { φ←; not maintenance(φ)←}〉;

Defining and Modifying Failure Conditions and Conditional Goals - As
discussed, failure conditions are used to define when a goal has to be dropped.
It is possible that the agent is not aware of all the failure conditions for a goal,
or there has been a change in the environment such that the previous failure
is not enough or, furthermore, it is not a valid failure condition anymore. Us-
ing the goal update rule, we are able to define new, modify or even eliminate
failure conditions. Consider the example where the agent has to write a paper
until a deadline and the deadline is postponed, we can use the following goal
update rule, 〈postponed deadline, {write paper ← postponed deadline}〉.
Conditional goals can be defined using a similar goal update rule.

6 Example

Consider a scenario containing two agents, a father and a son. Furthermore
consider that the father agent is the head of a mob family. The son agent wants
to obey the law but only if by doing so he doesn’t disobey its father. Obeying
the law can be viewed as an abstract goal that will be approximated by more
concrete goals. These concrete goals can also been seen as the norms that the
society imposes on the son agent. However, according to his social viewpoint, his
father is more important than the society itself.

The goal base of the son agent can be represented by the following DLP:

¬kill← obey law,not disobey father.

disobey father ← received (father, φ, command) ,not φ.

φ← received (father, φ, command) .

obey law ← .

maintenance (obey law)← .

Considering an initially empty belief set, the son agent has a unique Goal
Model, namely {maintenance(obey law), obey law,¬kill}. Consider that, sub-
sequently, his father orders him to kill one of the mobsters of the rival family.
Hence, the son receives the achievement goal of killing, modifying its beliefs to
{received(father, kill, command)}. Therefore, the Goal Model of the son agent
changes to {maintenance (obey law), obey law, kill}6.

The son agent, after committing to the goal of killing, will create a plan to
achieve it and, after executing the plan (killing the mobster), the agent updates
its goal base with the rule

not kill← not maintenance (kill) .

And the Goal Model of the son is again {maintenance(obey law), obey law,
¬kill}. Consider now that the politicians, being annoyed by the gambling in city,

6 Notice that ¬kill is not in the Goal Model because we are using the expanded version
of the GLPs

resolved to consider it illegal. Accordingly, the goal base of the son is updated
with the GLP consisting of the following rule:

¬gamble← obey law,not disobey father.

The Goal Model of the son agent would change to {maintenance(obey law),
obey law,¬kill,¬gamble}. However, his father, not being happy with this deci-
sion, orders his son to continue the gambling activities. Hence, {received(gamble,
φ, command)} is added to his beliefs and the Goal Model of the son changes to

{maintenance(obey law), obey law,¬kill, gamble}

This example illustrates how a programmer can use the Goal Update Rule to
represent changes in the norms (considering gambling illegal) and use DLPs to
represent concrete goals (not killing and not gambling). Furthermore, we could
represent, in this small scenario, a social point of view of an agent (the son’s
social point of view) and how to give the correct preference on the goals according
to this view.

7 Conclusions

In this paper, we introduced a simple agent framework with the purpose of in-
troducing the agent’s goal base as a Dynamic Logic Program. We investigated
some properties of this framework. We were able to express, in a simple manner,
conditional, maintenance and achievement goals, as well as identify some situa-
tions where the agent would need to adopt and drop goals, and how this could
be done in this framework.

Since the objective of this paper was to investigate the use of DLP as the
goal base of an agent, we didn’t investigate what additional properties we could
have by also using the belief base as a DLP. We also didn’t give an adequate
solution for conflicting intentions, since it would probably be also necessary to
analyze the plans of the agent as well as its resources [18] to be able to conclude
which goals to commit to.

Further investigation could also be done to solve possible conflicts in the so-
cial point of view of the agent. For example, if the agent considers the opinion
of his mother and father equally, it would be necessary to have a mechanism
to solve the conflicts since the agent doesn’t prefer any one of them more than
the other. [10] introduces the concept of Multi Dimensional Dynamic Logic Pro-
gramming (MDLP) that could represent an agent’s social point of view. Further
investigation could be made in trying to incorporate the social point of view of
an agent as a MDLP in our agent framework.

Even though this is still a preliminary report, we believe that DLP is a
promising approach in which to represent the declarative goals of an agent,
since it easily allows for the representation of the various aspects associated with
agents’ goals, and their updates, while enjoying a formal well defined semantics.

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle
for semantics of dynamic logic programming. Studia Logica, 79(1), 2005.

2. J. J. Alferes, J. Leite, L. M. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases. Journal of Logic Programming,
45(1-3):43–70, 2000.

3. M. Bratman. Intentions, Plans and Practical Reason. Harvard University Press,
1987.

4. M. Dastani, M. B. van Riemsdijk, and J.-J. Ch. Meyer. Programming multi-
agent systems in 3APL. In Multi-Agent Programming: Languages, Platforms and
Applications, chapter 2. Springer, 2005.

5. F. Dignum and R. Conte. Intentional agents and goal formation. In Intelligent
Agents IV, volume 1365 of LNAI, pages 231–243, 1998.

6. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming with declarative goals. In Intelligent Agents VII, volume 1986 of
LNAI, pages 228–243. Springer, 2000.

7. N. R. Jennings, T. J. Norman, P. Faratin, P. O’Brien, and B. Odgers. Autonomous
agents for business process management. Applied Artificial Intelligence, 14(2):145–
189, 2000.

8. J. Leite. Evolving Knowledge Bases. IOS press, 2003.
9. J. Leite. On some differences between semantics of logic program updates. In

IBERAMIA’04, volume 3315 of LNAI, pages 375–385. Springer, 2004.
10. J. Leite, J. J. Alferes, and L. M. Pereira. On the use of multi-dimensional dynamic

logic programming to represent societal agents’ viewpoints. In EPIA’01, volume
2258 of LNAI, pages 276–289. Springer, 2001.

11. J. Leite, J. J. Alferes, and L. M. Pereira. Minerva - a dynamic logic programming
agent architecture. In Intelligent Agents VIII, volume 2333 of LNAI. Springer,
2002.

12. J. Leite and L. M. Pereira. Generalizing updates: From models to programs. In
LPKR’97, volume 1471 of LNAI, pages 224–246. Springer, 1998.

13. Á. F. Moreira, R. Vieira, and R. H. Bordini. Extending the operational semantics
of a BDI agent-oriented programming language for introducing speech-act based
communication. In DALT’03, volume 2990 of LNAI, pages 135–154. Springer, 2004.

14. V. Nigam and J. Leite. Incorporating knowledge updates in 3apl. In PROMAS’06,
2006.

15. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting & avoiding interference
between goals in intelligent agents. In IJCAI’03, pages 721–726. Morgan Kauf-
mann, 2003.

16. B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J. Ch. Meyer. Dynamics of
declarative goals in agent programming. In DALT’04, volume 3476 of LNAI, pages
1–18, 2004.

17. M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Semantics of declarative
goals in agent programming. In AAMAS’05. ACM Press, 2005.

18. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and pro-
cedural goals in intelligent agent systems. In KR’02. Morgan Kaufmann, 2002.

19. M. Wooldridge. Multi-agent systems : an introduction. Wiley, 2001.

