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Abstract. In [12, 16] we showed how to combine propositional BDI logics us-
ing Gabbay'sibring methodology. In this paper we extend the above mentioned
works by providing a tableau-based decision procedure for the ceatiilored
logics. To achieve this end we first outline with an example two types of tableau
systems,draph& path), and discuss why both are inadequate in the case of fib-
ring. Having done that we show how to uniformly construct a tableau keddar

the combined logic using Governatori’s labelled tableau sy$t&M .
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1 Introduction

BDI logics are normad multimodal logics used to formalise the internal mentaliades
of an agent such as beliefs, desires, goals and intentiomkinMddal logics generalise
modal logics allowing more than one modal operator to apipdarmulae, i.e., a modal
operator is named by means of a label, for instancehich identifies it. Hence a for-
mula like O;¢ could be interpreted ag is believed by the agent i aF is a goal for
agent i etcrepresenting respectively the belief and goal of an agaradtition to the
above representation, the traditional BDI logics [17] im@aonstraints between be-
liefs, desires and intentions in the forminferaction axiomdike, INT(¢) — DES(¢),
DES(¢) — BEL(¢), denoting intentions being stronger than desires and etebie-
ing stronger than beliefs. Moreover the interaction axiamon-homogeneots the
sense that every modal operator is not restricted to the sgstem, i.e., the underlying
axiom systems for DES iK andD of modal logic whereas that of BEL KD45.
Hence the basic BDI logi€. can be seen as a combination of different component
logics plus the two interaction axioms as given below

L = (®]L,KD45geL;) ® (®[L1KDpes) @ (®[L1KDNT; ) (1)
+ {INT;¢ — DES¢} + {DES¢ — BEL¢}

Any BDI theory, or for that matter any fully-fledged Multi-&gt-System (MAS)
theory, modelling rational agents consists of a combinedesy of logic of beliefs,
desires, goals and intentions as mentioned above. Theyasieally well understood

1 General modal systems with an arbitrary set of normal modal opsratiocharacterised by
the axiomK: O(¢ — ) — (O¢ — Oy) and the necessitation rule. i.e.g/ - O¢.



standard modal logiceombined togetheto model different facets of the agents. A
number of researchers have provided such combined systerddférent reasons and
different applications. However, investigations into ag&l methodology for combin-
ing the different logics involved has been mainly negledted large extent. Recently
[12,16] it has been shown théibring/dovetailing[8] can be adopted as a semantic
methodology to characterise BDI logics. But in that workytkiéd not provide any de-
cision procedure for the fibred BDI logics. In this paper wéeex our previous work
so as to provide a tableau decision procedure for the fibigid Wehich in turn is based
on the labelled tableau systd¢EM [10, 9, 1].

The key feature of our tableau system is that it is neitheethas resolution nor
on standard sequent/tableau techniques. It combines tamglaau expansion rules with
natural deduction rules and an analytic version of the clat fThe tableau rules are
supplemented with a powerful and flexible label algebra #flatvs the system to deal
with a large class of intensional logics admitting possiieteld semantics (non-normal
modal logic [11], multi-modal logics [10] and conditionaldics [2]). The label algebra
is intended to simulate the possible world semantics arasielvery strong relationship
with fibring [9].

As far as the field oEombining logicds concerned, it has been an active research
area since some time now and powerful results about thempetien of important prop-
erties of the logics being combined has been obtained [#32B, 21]. Also, investiga-
tions related to using fibring as a combining technique imwerdomains has produced
a wealth of results as found in works like [8, 18, 22, 19, 6]e Fiovelty of combining
logics is the aim to develogeneral techniquethat allow us to produce combinations
of existingand well understood logics. Such general techniques aedder formal-
ising complex systems in a systematic way. Such a methogalag help decompose
the problem of designing a complex system into developinggments (logics) and
combining them.

The advantages of using fibring as a semantic methodologgdimbining BDI
logics as compared to other combining techniques filgon 2 is that the later has
the problem of not being able to express interaction axiams;h needed for MAS
theories. Fibring is more powerful because of the possjtifiadding conditions on the
fibring function. These conditions could encode interadibetween the two classes
of models that are being combined and therefore could reptésteraction axioms
between the two logics. One such result was shown in [12] eldeer, fibring does not
require the logics to be normal. The drawbacks of other comgitechnigiues like
embedding@ndindependent combinatiamhen compared to fibring (in the case of BDI
logics) has been discussed at length in [15].

The paper is structured as follows. The next section prevalerief introduction
to the technique of fibring. Section 3 outlines the path-tas®l graph-based tableau
procedures. Section 4 describes KieM tableau system. The paper concludes with
some final remarks.

2 Normal bimodal and polymodal logics without any interaction axioms agé# studied as
fusionsof normal monomodal logics [13, 20].



2 Fibring BDI Logics

Consider the basic BDI logit. given in (1) which is defined from three component
logics, viz.,KD45, for belief, andKD , for desires and intentions. For sake of clarity,
consider two of the component logics; (KD45) andv,(KD ) and their corresponding
languagesZy, , Zy, built from the respective sets; and , of atoms having classes of
models vy,, v, and satisfaction relatiorjs; andj=>. Hence we are dealing with two
different systemss; andS, characterised, respectively, by the class of Kripke models
¢ and J#,. For instance, we know how to evaludata¢ (BEL(¢)) in J#1 (KD45)
andd,¢ (DES(¢)) in 272 (KD). We need a method for evaluating (resp.d) with
respect ta’#; (resp..#1). In order to do so, we are to link (fibre), vidiaring function
the model forv 1 with a model forv, and build a fibred model of the combination. The
fibring function can evaluate (give a yes/no) answer witlpeesto a modality irs,,
being inS; and vice versa. The interpretation of a formgilaf the combined language
in the fibred model at a statecan be given as

w = ¢ ifand only if  (w) =* ¢

where is a fibring function that maps a world to a modeiitable for interpretingp
and[=* is the corresponding satisfaction relatiga; for v; or =5 for ¥5).

Example 1.Let v41, V¥, be two modal logics as given above and ¢det= 05 o be
a formula on a worldwo of the fibred semanticgh belongs to the languag#(, » as
the outer connective{;) belongs to the languag#i and the inner connectivgd;)
belongs to the languag#.

By the standard definition we start evaluating of 0, atwg. Hence according
to the standard definition we have to check whethegr, is true at everyv; accessible
from wg since from the point of view of#; this formula has the fornidip (where
p= <2 g is atomic). But atv; we cannot interpret the operatop, because we are in
a model ofvy, not of ¥,. In order to do this evaluation we need the fibring function
which atw; points to a world/, a world in a model suitable to interpret formulae from
v,. (Fig.1). Now all we have to check is whethép , is true atvp in this last model
and this can be done in the usual way. Hence the fibred sermdatithe combined
language ¥, o) has models of the forng.;,wi,v1, 1), where.#; = (W, Ry) is a
frame, and ; is the fibring function which associates a modt%] from % with win

Zie 1(w= 2.

2.1 Fibring BDI Logics

Let | be a set of labels representing the modal operators for thatianal states (be-
lief, goal, intention) for a set of agents, amgli € | be modal logics whose respective
modalities arel;,i € |.

Definition 1 [8] A fibred model is a structuréW,S,R,a, v, 7,F) where

— W is a set of possible worlds;
— Sis a function giving for each w a set of possible worl6%,C W;
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Fig. 1. An Example of Fibring

R is a function giving for each w, a relatioRY C SV x S%;

ais a function giving the actual world" of the model labelled by w;

v is an assignment functiont¥( o) C S, for each atomicy;

T is the semantical identifying functian: W — |. 7(w) = i means that the model
(SW,RY a¥ v} is a model in%, we useV; to denote the set of worlds of type i;
— F, is the set of fibring functions : | x W — W. A fibring function is a function
giving for each i and each w W another point (actual world) i as follows:

(W) = w ifweS and e
! avalue inW;, otherwise

such that if we£ w' then j(w) # j(w). It should be noted that fibring happens when
7(W) # i. Satisfaction is defined as follows with the usual truthealfor boolean con-
nectives:

wE o iff v(w, g) =1, where g is an atom
W O iff we and € .4 andvw (WRwW —w = ¢),or
we ,and ¢.FandvV €F, {(w)=0¢.

We say the model satisfigsff wp = ¢.

Afibred model fory, can be generated from fibring the semantics for the modatsogi
Vi,i € |. The detailed construction is given in [16]. Also, to accootlate the interac-
tion axioms specific constraints need to be given on the fjbiumction. In [12] we
outline the specific conditions required on the fibring fumctto accommodate axiom
schemas of the typ&2P:¢d:3, We do not want to get into the details here as the main
theme of this paper is with regard to tableaux decision mhoiees for fibred logics.

What we want to point out here, however, is that the fibring troieion given in
[12, 16] works for normal (multi-)modal logics as well as aoormal modal logics.

3 Multimodal Tableaux

In the previous sections we showed that BDI logics are normafimodal logics with
a set of interaction axioms and introduced general teclesidike fibring to explain

3 Ga.b,c,d<>a|:|b¢ — 0c0q¢.



such combined systems. In this section, before gettingtimtodetails related to the
constructs needed for a tableau calculus for a fibred/cosdbiogic, we outline with
an example two types of tableau systemgeph & path) that can be used to reason
about the knowledge/beliefs of BDI agents in a multi-ageattirsg. We discuss why
both types are inadequate in the case of fibring. Having doate in the next section,
we describe how to uniformly construct a sound and compédtkeau calculus for the
combined logic from calculi for the component logics.

Example 2.(The Friends Puzzle) [3] Consider the agents Peter, Johamdly with
modalitiesOp, 0, andOy. John and Peter have appointment. Suppose that Peter
knows thetime of appointment. Peter knows that John knowsghece of their ap-
pointment. Wendy knows that if Peter knows thise of appointment, then John knows
that too (since John and Peter are friends). Peter knowsf thain knows theplace
and thetime of their appointment, then John knows that he has@wintment. Pe-
ter and John satisfy the axioms T and 4. Also, if Wendy knowsething then Peter
knows the same thing (suppose Wendy is Peter's wife) andtdrkeows that John
knows something then John knows that Peter knows the samg thi

The Knowledge/belief base for Example 2 can be formally yize follows;

1. Optime A Tp:Opp—¢
2. OpOjplace A 4p:0pp — OpUpd
3. Ow(Optime— Ojtime) A3 Tj:Ojp— ¢
4. OpOj(placeAtime— appointment A4 4;:0j¢ — Oj0;¢

As |wp3 Owp — Dp¢
As Sp] : Dijd} —>|:]ij¢

Fig. 2. Knowledge base related to the Friend’s puzzle.

So we have a modal language consisting of three modalities; andO,, denoting
respectively the agents Peter, John and Wendy and chasactdry the seA = {A |
i =1,...,6} of interaction axioms. Suppose now that one wants to shotetizh of
the friends knows that the other one knows that he has an rppant, i.e, one wants
to prove
O;0pappointmeni Op0jappointment (2

is a theorem of the knowledge-base. The tableaux rules fagia torresponding to the
Friends puzzle are given in Fig.3 [14], and the tableaux fpi@o(2) is given in Fig.4
[14]. The tableaux in Fig.4. is a prefixed tableau [7] where dlecessibility relations
are encoded in the structure of the name of the worlds. Sueprasentation is often
termed as athrepresentation. We show the proof of the first conjunct aedotioof
runs as follows. Item 1 is the negation of the formula to bevedy 2, 3, 4 and 5 are
from Example 2; 6 is from 1 by &-rule; 7 is from 6 by arf5yj-rule; 8 is from 7 by a
<&-rule; 9is from 8 by a>-rule; 10 is from 5 by @i-rule; 11 is from 10 by &i-rule. 12
and 24 are from 11 by ®-rule; 13 and 16 are from 12 by\arule; 14 is from 3 by a
O-rule; 15 is from 14 by aJ-rule; the branch closes by 13 and 15; 17 is from 4 by an
lwp-rule; 18 and 22 are from 17 by\arule; 19 is from 18 by &-rule; 20 is from 2 by

a 4p-rule; 21 is from 20 by @-rule; the branch closes by 19 and 21; 23 is from 22 by
aO-rule; the branch closes by 16 and 23; by 9 and 24 the remalmangch too closes.



A-rules ooy oo(@vy) 09— Y) For any prefixo
(o) g ¢ go

oy oy oy

opvVy o-(pAY) oPp—Y

V-rules For any prefixo
oploy o-¢|o-Y o~ |0y
g-—¢ )
—--rules For any prefixo
o
0%i¢  0o-0i¢ : , .
O-rules if the prefixg.n; is

an ¢ a.n —p
new to the branch € {1,...,m})
o0 g <O
O-rules ks i If the prefixo.n; already
a.n¢ o.ni ¢

occurs on the branch € {1,...,m})

oQd o - g
Tprules: of of ¢
go g-¢ g Opd
oudj¢ o -0i¢ oo
Tjrules:
(o} g-¢ g <je
o o> o.ng & o.np -0
4prules: " o? " p? p Opf p ~Cpf
o.n50p¢  0.nE0p—¢ o <pd o <Cpm
odjp g-Cp¢ onj<oi¢ o.nj-0;¢
4jrules: p
onjtj¢ onbj-¢ 0O~ 0<i-¢
Ow¢ g —wd o.np ¢
lwprules " .
o.ny¢ o.ny—9 g Owe

Sjrules: 0 0p0j¢ 0 -0p0jd 0. Opdp  o.nj -Opd
P onopp onOp-¢ 00p0j 000
(x) prefix already occurs on the branch
Fig. 3. Tableau rules corresponding to the Friend’s Puzzle.

In a similar manner the tableaux proof for (2) usingraph representation where
the accessibility relations are represented by means ofgitié and separate graph of
named nodes is given in Fig.6. Each node is associated wihdaf prefixed formulae
and choice allows any inclusion axiom to be interpretedrasvaiting ruleinto the path
structure of the graph. The proof uses the rules given irbFighich is often referred
to as the Smullyan-Fitting uniform notation. We will be ugithis notation in the next
section for ouKEM tableaux system. The proof for (2) as given in [3] runs a®iedl.
Steps 1-4 are from Fig.2 and 5 is the first conjunct of (2). gsirrule we get items
6 and 7 (from 5) and 8 and 9 (from 6). We get 10 from 7 using axfgnn Fig.2 and
p-rule in Fig.5. Similarly 11 is from 9 vi#g andp-rule. By making use of the-rule
in Fig.5 we get 12 (from 4 and 10) and 13 (from 12 and 11). 14alatidare from 13
usingB-rule ("a” and "b” denote the two branches created by theiappbn of 3-rule).
Branch "a” (14a) closes with 8. Applyin@-rule again we get 15ba and 15bb from 14b
("ba” and "bb” denote the two branches created by the apjdicaf 3-rule). Applying
v-rule we get 16ba (from 3 and 10) and 17ba (from 16ba and 1&ndr”ba” closes
because of 15ba and 17ba. We get 16bb from 10 via aigin Fig.2 andrr-rule in
Fig.5. Similarly from 2 and 16bb by usingrule we get 17bb. We get 18bba and 18bbb



1 -0Oj0pappointment 1.

1 Optime 2.

1 OpOjplace 3.

1 DW(D ptim9—> Djtime) 4.

1 OpOj(placentime— appointment 5.
11; —-Opappointment 6.

1 Opdj—-appointment 7.

11, <j—-appointment 8.

11p.2; —appointment 9.

11, Oj(placentime— appointment 10.
11,.2j placentime— appointment 11.

11p.2; —(placentime) 12. 11,.2; appointment 24.
11p.2; -place 13. 11,.2]-time 16.
11, Ojplace 14. 11, Optime— Ojtime  17.

11p.2; place 15.

1.1, -Optime  18.

11,2, —time 19. 11, Ojtime 22
11p Optime 20. 11p.2j time 23.
11p.2p time 21.

Fig. 4. Proof of0;0, appointment usingathrepresentation

from 17bb by applying th@-rule ("bba” and "bbb” denote the branches created by the
B-rule). By usingv-rule we get 19bba ( from 18bba and 11). Branch "bba” (19bba)
closes with 15bb. From 18bbb usingrule we get 19bbb and 20bbb. From 10 and
20bbb via axiomA; (in Fig.2) andp-rule (in Fig.5) we get 21bbb. By applyingrule

to 1 and 21bbb we get 22bbb as a result of which the branch "bloises (22bbb and
19bbb).

It should be noted that axiom schemas likg. .., As of Example 2 given in Fig. 2
belong to the class of axioms callextlusion axiomsln particular they belong to axiom
sets of the form(J;, ... Oj, — Oy ... O (in > 0,if, > 0), which in turn characterise the
class ofnormal modal Iogics:ahedinclusion modal logicsAs shown in [3], for each
axiom schema of the above type the correspondiotysionproperty on theaccessi-
bility relation can be given as

RiloRizo...Rin:_)Ri/lORi/z...OR”n 3)

where "o ” denotes the relation compositidt), o Ri, = {(W,w') e W x W | 3w e W
such thatiw,w') € Ri; and (W ,w") € R;,}. This inclusion property is used to rewrite
items 7.(WoRjonnW1) and 9.(wiRpetew2) oOf the proof given in Fig.6 so as to derive
a new path(woRpetews) and (WsRjonnW2) as in items 10. and 11. The corresponding
tableaux rule for this property is given asrule (5) in Fig.5. Also, the type of inter-
action axiom schemas of Example 2 involves the interactatwéen thesame mental
attitudeof different agentsThere is also another type where there is interaction batwe



w:a
1) a-rule

Ww:ag

wW:ap
2) w:p B-rule

Wi |w: B

WiV woiw . ,
3) Wv-rule wherewp;w is availableon the branch
4) SRl In—rule wherew' is newon the branch

w P

w: piw

.+ o Win_1Ps,W
(5) WPe W1 an\; 1Psn p-rule wherew,...,w,_, arenewon the branch and
Wpi, Wy Dil"'Din(p*)Di’l"'Di{n(pEA
\NI,"Iflpan
a o oz | |B B |B
TOAY) [TOTY F(OAY) FOFY| Vi |vo | |Th |To
Fovy) FolFy| T(eVvy) TO Ty TOi¢Te| FOi¢|F
FO—U)[TOFY| [T(@—Y)FOT Y| [FOigIF¢| TOiPT @
F(-¢) [ToTo|[T(~9) [FOIF¢
(c) B- (d) ©-
(a) A-formulae (b) v-formulae formulae formulae

Fig. 5. Tableaux rules based on uniform notation for propositional inclusioramodics. [3].

different mental attitudesf the same agentThe BDI interaction axioms given in (1) is
of the later type. In the coming sections we will show thatkieM tableau can deal
with both types of interaction axioms.

As pointed out in [3], the main difference between the twaetypf tableaux, (graph
and path), is in the use of-rule. In the case opath representation one needs to use
a specificv-rule for each logic as can be seen from Fig.3. These rules tazlprop-
erties of the accessibility relations so as to express cexmgllations between prefixes
depending on the logic. Whereas in the casgraph representation the accessibility
relations are given explicitly. Also, it has been pointetlia§3] that the approach based
on path representation can be used only for some subclaksegdusion axioms and
therefore difficult to extend the approach to the whole ctdsaulti-modal systems.

4 Labelled Tableau for Fibred BDI Logic

In this section we show how to adapEM , a labelled modal tableaux system, to deal
with the fibred combination of BDI logics. In labelled tableasystems, the object
language is supplemented by labels meant to represent Seraxnctures (possible
worlds in the case of modal logics). Thus the formulas of @lled tableaux system
are expressions of the forf: i, whereA is a formula of the logic andis a label. The
intuitive interpretation ofA: i is thatA s true at (the possible world(s) denoted hy)



1. wp: TOptime 14b. ws : F(placeA time)
2. wp: TOw(Optime— Ojtime) 15ba. wy : F place
3. wp: TOpOjplace 16ba. wy: TOjplace
4. wp: TOpOj(placentime— appointment 17ba. w, : Tplace
5. wp: FOjOpappointment X
6. wy: FOpappointment 15bb. ws : Ftime
7. WoR johnW1 16bb. WRyifeWs
8. ws: Fappointment 17bb. w3 : T(Optime— Ojtime)
9. W1 RpetetV2 18bba.ws : T Ojtime
10. WoR peteV3 19bba.w, : Ttime
11. W3R johnW2 X
12. ws: TOj(placentime— appointment  18bbb.ws : FOtime
13. wy: T (placeAtime— appointment 19bbb.wy : Ftime
l4a.wy : T appointment 20bbb W3R petetVa
X 21bbb. WORpeterW4
22bbb.wy : T time
X

Fig. 6. Proof of 0;0p usinggraphrepresentation.

KEM ’s inferential engine is based on a combination of standabdetux linear
expansion rules and natural deduction rules supplementad Bnalytic version of the
cut rule. In addition it utilises a sophisticated but powélabel formalism that enables
the logic to deal with a large class of modal and non-clasiiggcs. Furthermore the
label mechanism corresponds to fibring and thus it is passidefine tableaux systems
for multi-modal logic by a seamless combination of the (taffilpaux systems for the
component logics of the combination.

It is not possible in this paper to give a full presentatiotK&M for fully fledged
BDI logic supplemented with the interaction axioms giverExample 2. (for a com-
prehensive presentation see [9]). Accordingly we will timirrselves to a single modal
operator for each agent and we will show how to characteis@xioms and the inter-
action of example 2.

4.1 Label Formalism

KEM used_abelled FormulagL-formulas for short), where dnrformula is an expres-
sion of the formA : i, whereA is a wiff of the logic, and is a label. For fibred BDI
logic (from now onFBL) we need to have labels for various modalities (belief, réesi
intention) for each agent. However, as we have just expdiaiveewill consider only one
modality and thus will have only labels for the agents.

The set of atomic label§), is then given as

_ i
Hy = UieAgt @,

whereAgt s the set of agents. Every' is partitioned into (non-empty) sets of variables
and constantsp' = @, U &} wered®, = {Wi,Wi, ...} and®L = {W},wh,...}. & and
@y denote the set of constants and the set of variables. Weddsa set of auxiliary un
indexed atomic label®” = &) = (W4, W, ...} U D4 = {wy, Wy, ...}, that will be used

in unifications and proofs.



Definition 1 (labels) A label ue 00 is either (i) an element of the s€k, or (i) an
element of the saby, or (iii) a path term(u’,u) where (iiia) U € ®c U @ and (iiib)
ue @c oru=(V,v) where(V,v) is a label.

As an intuitive explanation, we may think of a laluet ®c as denoting a world (given
one), and a label € @, as denoting a set of worldarfyworld) in some Kripke model.
A labelu = (V,v) may be viewed as representing a path froto a (set of) world(sy’
accessible fronv (the world(s) denoted by).

For any labelu = (V,v) we shall callv the headof u, v the bodyof u, and denote
them byh(u) andb(u) respectively. Notice that these notions are recursivey (toere-
spond to projection functions): B(u) denotes the body af, thenb(b(u)) will denote
the body ofb(u), and so on. We call each dfu), b(b(u)), etc., asegmenbf u. The
length of a labely, £(u), is the number of atomic labels in #!(u) will denote the seg-
ment ofu of lengthn and we shall ush"(u) as an abbreviation fd¥(s"(u)). Notice that
h(u) = h™ (u). Letu be a label andl an atomic label. We us@/;u) as a notation for
the label(U', u) if U’ # h(u), or for u otherwise. For any label, ¢(u) > n, we define the
counter-segment-af u, as follows (forn < k < ¢(u)):

e"(u) = h(u) x (- (h(U) x (- x (""*(u), wo))))

wherewp is a dummy label, i.e., a label not appearingiifthe context in which such

a notion occurs will tell us whatyy stands for). The counter-segmentiefines what
remains of a given label after having identified the segméletrgthn with a ‘dummy’
labelwgp. The appropriate dummy label will be specified in the appiices where such

a notion is used. However, it can be viewed also as an indepe¢mdomic label. In the
context of fibringwy can be thought of as denoting the actual world obtained \ga th
fibring function from the world denoted ().

So far we have provided definitions about the structure ofgbels without regard
to the elements they are made of. The following definitionslve concerned with the
type of world symbols occurring in a label.

We say that a label is i-preferrediff h(u) € @'; a labelu is i-pureiff each segment
of u of lengthn > 1 isi-preferred.

4.2 Label Unifications

The basic mechanism &€EM is its logic dependent label unification. In the same
way as each modal logic is characterised by a combinationarfainaxioms (or se-
mantic conditions on the modellkEM defines a unification for each modality and
axiom/semantic condition and then combines them in a re@iend modular way.
In particular we use what we call unification to determine thiee the denotation of
two labels have a non empty intersection, or in other termstidr two labels can be
mapped to the same possible world in the possible worldssgrea
The second key issue is the ability to split labels and to waitk parts of labels.

The mechanism permits the encapsulation of operations lotegels. This is an im-
portant feature that, in the present context, allows ustieetate unifications and fibring
functions. Given the modularity of the approach the firsp stbthe construction is to



define unifications (pattern matching for labels) corresiumto the single modality in
the logic we want to study.

Every unification is built from a basic unification defined @émrhs of a substitution
P : 0; — Osuch that:

p:le
@, — O for everyi € Agt
&

Accordingly we have that two atomic (“world”) labelsandv o-unify iff there is a
substitutionp such thatp(u) = p(v). We shall usdu;v]jo both to indicate that there
is a substitutiorp for u andv, and the result of the substitution. Tireunification is
extended to the case of composite labels (path labels) lag/fol

i;jlo = kifft 3p:h(k) = p(h(i)) = p(h(j)) and
b(k) = [bi);b(j)]o

Clearly o is symmetric, i.e.[u;V]o iff [v;u]o. Moreover this definition offers a flexible
and powerful mechanism: it allows for an independent cosatprt of the elements of
the result of the unification, and variables can be freehameed without affecting the
result of a unification.

We are now ready to introduce the unifications correspontitiyze modal operators
at hand, i.e.y, Oj andOp. We can capture the relationship betwegpand O, by
extending the substitution by allowing a variable of typ& to be mapped to labels of
the same type and of type

pY(WW) e VU OP
Then the unificatioro™ is obtained from the basic unificatiam by replacingp with
the extended substitutignt'. This procedure must be applied to all pairs of modalities
01,0, related by the interaction axiom; ¢ — Ox¢.

For the unifications forJ, andd; (0P ando’) we assume that the labels involved
arei-pure. First we notice that these two modal operatorsSarenodalities thus we
have to use the unification for this logic.

{ [u;v]a® if £(u) = £(v)
[uvjo™ = { [u;v]oT if £(u) < £(v),h(u) € &c (4)
[u;vja? if £(u) < £(v),h(u) € By

It is worth noting that the conditions on axiom unificatiome aeeded in order to pro-
vide a deterministic unification procedure. Thi® ando* are defined as follows:

[s"V)(u);v]o if £(u) > £(v), and
Vo = vn > ((v),[h"(u);h(v))]o = [h(u); h(v)]o
’ [u; "W (v)]a if £(u) > £(v), and
vn = ((u), [h(u); h(v)]o = [h(u);h(v)]o

The above unification allows us to unify to labels such thatsbgment of the longest
with the length of the other label and the other label unifgvided that all remaining



elements of the longest have a common unification with the loéthe shortest. This
means that after a given point the head of the shortest iyaliwaluded in its extension,
and thus it is accessible from itself, and consequently we heflexivity.

cW(v) if £(v) > £(u),h(u) € B, and
u;vjo* wo = [ (V)]
’ c™(u) if £(u) > £(v),h(v) € @y and

In this case we have that the shortest label unifies with tigeneat with the same
length of the longest and that the head of the shortest iahfari A variable stands for
all worlds accessible from the predecessor of it. Thus,giv@nsitivity every element
extending the segment with length of the shortest is adglessom this point.

Then a unification corresponding to axiom A6 from Example.is 2

c™N(v) if h(u) € cDV andc"(v) is p-pure, and
h“ )— ( ) € ¢>\§’ andc(v) is j-pure, and
“2(u);S"(v)]o

)
igShi — s
U vjo™i = V) e cpv andc"(u) is p-pure, and
1
=[s"

oW i
hé VI=L(v) € CD\E’ andc”( ) is j-pure and
(u);s™M-2(v)]o

This unification allows us to unify two labels such that in amehave a sequence of a
variable of typep followed by a variable of typg and a label where we have a sequence
of labels of typej followed by a sequence of labels of type

The unification forOp andOj are just the combination of the three unifications
given above. Finally the unification for the logic defined by the axioms A1-A6 is
obtained from the following recursive unification

o [ [uvg™Pi
VoL = { [C™(u); (V)] 0%P) wherewp = [s™(u); $"(v)]oi

o"P.1 is the simple combination of the unifications for the threedalmperators. Hav-
ing accounted for the unification we now give the inferendesused irKEM proofs.

4.3 Inference Rules

For the inference rules we use the Smullyan-Fitting undymotation [7].

B:u,.
a:u Bf:v(l_l’z)
ai:u (@) Bs—i : [u;v]o (B)
az:u

The a-rules are just the familiar linear branch-expansion rolethe tableau method.
The B-rules are nothing but natural inference patterns such adusi®onens, Modus



Tollens and Disjunctive syllogism generalised to the madak. In order to apply such
rules it is required that the labels of the premises unify tnedabel of the conclusion
is the result of their unification.

viiu mu

whereW, is a new label.

The v and mt rules are the normal expansion rule for modal operators l#lled
tableaux with free variable. The intuition for therule is that ifJ;A is true atu, then
Alis true at all worlds accessible Vi from u, and this is the interpretation of the label
(WL u); similarly if ;A is false atu (i.e., -BA is true), then there must be a world, let
us sayw, accessible fronu, where—A is true. A similar intuition holds wheun is not
i-preferred, but the only difference is that we have to maleeaighe fibring function
instead of the accessibility relation

A:u | -A:u (PB)
The “Principle of Bivalence” represents the semantic cerpdrt of the cut rule of the
sequent calculus (intuitive meaning: a formlds either true or false in any given
world). PB is a zero-premise inference rule, so in its umieted version can be applied
whenever we like. However, we impose a restriction on itdiegfion. PB can be only
applied w.r.t. immediate sub-formulas of unanalyefbrmulas, that ig3 formulas for
which we have no immediate sub-formulas with the appropteltels in the tree.

A:u
-A:vV
X

[if [u;v]o] (PNC)

The Principle of Non-ContradictioPNC) states that two labelled formulas ane-
complementary when the two formulas are complementaryleidlabelso -unify.

4.4 Proof Search

Let I = {Xq,...,Xm} be a set of formulas. The& is aKEM -tree for " if there ex-
ists a finite sequence”:, %, ..., ) such that ()77 is a 1-branch tree consisting of
{X1:t1,.... Xm: tm}; (i) Fh =7, and (iii) for each < n,.7 1 results from.% by an
application of a rule oKEM . A branch@ of aKEM -tree.7 of L-formulas is said to be
o, -closedif it ends with an application dPNC, open otherwise. As usual with tableau
methods, a sef of formulas is checked for consistency by constructingEM -tree
for I'. Moreover we say that a formula is a KEM -consequence of a set of formu-
lasl™ = {Xq,..., %} (I Fxem ) A) if a KEM -tree for {X; : u,...,Xn : Un,~A: v} is
closed using the unification for the logdic wherev € @&, andy; € &). The intuition
behind this definition is thak is a consequence 6f when we takd™ as a set of global
assumptions [7], i.e., true in every world in a Kripke model.



We now describe a systematic procedureK&M . First we define the following
notions. Given a branch of aKEM -tree, we shall call ah-formulaX : u E-analysed
in @ if either (i) X is of typea and bothay :t anda, : u occur in8; or (ii) X is of typef3
and one of the following conditions is satisfied: (a],%ff :voccurs in@ and[u; V] g, then
alsof; : [u;vjo occurs ind, (b) if BS : v occurs in6 and|u;v]o, then alsqB; : [u;v]o
occurs in@; or (ii) X is of typeu and o : (U, u) occurs inf for some appropriate
U’ of the right type, not previously occurring #, or (iv) X is of typey andyo(Xn) : U
occurs inf for some variable, not previously occurring i or (v) X is of typed and
do(cn) : uoccurs inB for some variable, not previously occurring irf.

We shall call a brancl of a KEM -tree E-completedf every L-formula in it isE-
analysed and it contains no complementary formulas whielmato; -complementary.
We shall say a branch of a KEM -tree completedif it is E-completed and all the
L-formulas of typef in it either are analysed or cannot be analysed. We shallcall
KEM -treecompletedf every branch is completed.

The following procedure starts from the 1-branch, 1-node tronsisting of X; :
u,...,Xm: v} and applies the inference rules until the resulti<igM -tree is either
closed or completed.

At each stage of proof search (i) we choose an open non coeddieancto. If 6 is
not E-completed, then (ii) we apply the 1-premise rules ugitilecome<£-completed.

If the resulting branch®’ is neither closed nor completed, then (iii) we apply the 2-
premise rules unti® becomes£-completed. If the resulting brand is neither closed
nor completed, then (iv) we choose bafformula of typef which is not yet analysed
in the branch and applyB so that the resultingS-formulas areg3; : U andﬁf U (or,
equivalentlyB; : U and S : U), whereu = U’ if u is restricted (and already occurring
whenh(u) € &c), otherwisel is obtained fromu by instantiatingh(u) to a constant not
occurring inu; (v) (“Modal PB”) if the branch is noE-completed nor closed, because of
complementary formulas which are r@t-complementary, then we have to see whether
a restricted label unifying with both the labels of the coempéntary formulas occurs
previously in the branch; if such a label exists, or can bét bging already existing
labels and the unification rules, then the branch is closedwe repeat the procedure
in each branch generated B.

1. FOjOpappt Wy 9. T(placentime— appt) (W17W1 , W)
2. TOpOj(placentime— appt) Wy 10. Fplacentime (wl w1 Wo)
3. TDW(DptlmeH Ojtime) Wo 11. TOptime— Ojtime (W]“’]" ,Wp)
4. TOpOjplace W 12.TO;place (W, w )
5. TOptime W 13. T place (W2 ,W2 , W)
6. FOpappt (wl,wo) 14. Ftime (Wl,Wl,Wo)
7. Fappt (Wl,Wl,Wo) 15. TOptime (Wi, w )
8.TOj(placentime— appt) (WS, wp)  16.Ttime (WP, w], wo)
X

Fig. 7. Proof of0;0p usingKEM representation.

Fig.7. shows &KEM tableaux proof using the inference rules in section 4.3 and
following the proof search mentioned above to solve thedsjunct of (2). The proof
goes as follows; 1. is the negation of the formula to be provée formulas in 2-5 are



the global assumptions of the scenario and accordingly rtiest hold in every world
of every model for it. Hence we label them with a variakgthat can unify with every
other label. This is used to derive 12. from 11. and 5. usifigrale, and for introducing
15.;6.isfrom 1., and 7. from 6. by applyirmgrule. Similarly we get 8. from 2., 9. from
8. usingv rule. 10. comes from 9. and 7. through the use of modus tolkepglying

v rule twice we can derive 11. from 3. as well as 13. from 12. Tigtopropositional
reasoning we get 14. from 10. and by a further use ofle on 15. we get 16. (14. and
16.) are complementary formulas indicating a contradictind this results in a closed
tableaux because the labels in 14. and 16. unify, denotiaigtile contradiction holds
in the same world

5 Concluding Remarks

In this paper we have argued that BDI logics can be explaingdrims of fibring as
combination of simpler modal logics. Then we have outlinect¢ labelled tableaux
systems (path, graph and unification). For each of the metleobave seen how they
can deal with the Friend’s puzzle as a way to evaluate thaiufes. The path approach
requires the definition of new inference rules for each lpbigt then we can use a
simple labelling mechanism. However, it is not clear hows #ipproach can be extended
to more complex cases of fibring, for example when we considernormal modal
operators for the mental attitudes of the agents.

The graph approach on the other hand does not require, imaleany new rule,
since it uses the semantic structure to propagate formaltdgetappropriate labels. It
is then suitable for an approach based on fibring, since th&aeships between two
labels can be given in terms of fibring. However, when thecttine of the model is
more complicated (for example when the models for the logresgiven in terms of
neighbourhood models) then the approach might not be aicsince it assumes
relationships between labels/worlds in a model and not noreplex structures. In
addition, the system does not give a decision proceduresitihe relationships among
labels are restricted to decidable fragments of first-ol@lgic. Thus it is not possible to
represent logic that are not first-order definable and thiggdesof an agent logic has
to verify that she is operating within a decidable fragmdtiirst order logic.

KEM, in general similar to the graph approach, does not need ldgpendent
rules, however, similar to the path approach, it needs ldggendant label unifications.
We have seen that the label algebra can be seen as a form ngf[Bti thus simple
fibring does not require special attentionKiEM ; therefore it allows for a seamless
composition of (sub)tableaux for modal logics. The labgkaka contrary to the graph
reasoning mechanism is not based on first order logic andctnusleal with complex
structure and is not limited to particular fragment. Ind&&M has been proved able
to deal with complex label schema for non-normal modal Isdica uniform way [11]
as well as other intensional logics such as conditionalckdP]. For these reasons
we believe thaKEM offers a suitable framework for decision procedure for mult
modal logic for multi-agent systems. As we only describezlgtatic fragment of BDI
logics, (no temporal evolution was considered), the futumek is to extend the tableaux
framework so as to accomodate temporal modalities.
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