
A Modelling Framework for Generic Agent Interaction
Protocols

Jośe Ghislain QUENUM2, Samir AKNINE1, Jean-Pierre BRIOT1, and
Shinichi HONIDEN2

1 Laboratoire d’Informatique de Paris 6,
8 rue du Capitaine Scott, 75015 Paris, France

2 National Institute of Informatics
2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

Abstract. This paper presents a framework to represent generic protocols. We
call generic protocols, agent interaction protocols where only a general behaviour
of the interacting entities can be provided. Our framework is grounded onthe
AUML graphical formalism. From this formalism, we identified five fundamental
concepts on top of which we defined the formal specifications for the framework.
We address a lack in protocol representation by emphasising the description of
actions performed in the course of interactions based on generic protocols. The
framework is formal, expressive and of practical use. It helps decouple interaction
concerns from the rest of agent architecture. Several application levels exist for
our framework. First, we used it to address two issues faced in the design of agent
interactions based on generic protocols. At a more concrete level, this framework
can be used to publish the protocols agent interactions are based on in a multi-
agent system.

1 INTRODUCTION

Interaction is one of the key aspects in agent-oriented design. It allows agents to put
together the necessary actions in order to perform complex tasks collaboratively. The
coordination mechanism needed for a safe execution of theseactions is often governed
by a sequence of message exchanges: interaction protocols.Usually, only a general
description of how agents should behave during the interactions is provided. Such pro-
tocols are called generic protocols. An issue in open and heterogeneous multi-agent
systems (MAS) is concerned with the description of generic protocols, especially with
respect to their correct interpretation. A subsequent issue is the need to decouple inter-
action concerns from the rest of agent architecture.

To date, there has been some endeavour to develop new protocol representation for-
malisms. The formalisms developed thus far have several drawbacks. They usually fo-
cus on data exchange through a communication channel (Promela/SPIN [7]). Some oth-
ers are either informal (or semi-formal) (e.g., AUML [1]) ordemand advanced knowl-
edge in logics (e.g., the formal framework in [10]). Therefore, there is an obvious need
for a formal, yet practical and expressive generic protocolrepresentation framework.
Additionally, such a framework should provide the buildingblocks to help decouple the

interaction concerns from the rest of agent architecture. We address this need in this
paper.

The solution we arrived at is a framework for the descriptionof generic protocols.
It complies with most of the criteria required of a conversation policy in [6]. The phi-
losophy of our framework is to start from AUML, which is a wellestablished agent in-
teraction representation formalism. But we depart from AUML by addressing the lacks
and incompleteness which limit it. A common trend in protocol representation con-
sists of describing only the sequence of message exchanges.However, some actions are
needed to produce these messages and handle them when received. As we will see later,
some actions might be executed beyond the communication level during an interaction.
Thus, in addition to the description of message exchange, our framework introduces the
description of actions needed in the course of an interaction. This provides us with the
ability of describing the behaviour agents will exhibit while playing a role in a protocol.
A particular aspect in our framework is our focus on generic protocols. This keeps us
from providing a complete representation for actions. We introduced action categories
to fix this weakness.

Our framework offers several advantages. It builds on the graphical representation
in AUML, which eases the message exchange perception for human designers. In ad-
dition, it offers the means to depict what happens beyond themessage exchange level.
The framework is expressive, formal and of practical use forprotocol representation.
Particularly, we offer at least the same expressiveness as in AUML (and its extensions)
without introducing new control flows. Rather, we only use event description and (if
necessary) three connectors:and, or andxor. We also ease the implementation of pro-
tocols in our framework by providing a XML representation. As an application, we
used our framework to address two issues in agent interaction design of open and het-
erogeneous MAS: (1) an automatic derivation of agent interaction model from generic
protocol specifications, in order to address the issue of consistency during interactions
based on generic protocols in an heterogeneous MAS; and (2) an analysis of generic
protocol specifications in order to enable agents to dynamically select protocols when
they have to perform a task in collaboration. A more practical usage of our framework
is the possibility to publish protocol specifications for agent interactions in a MAS.

The remainder of this paper is organised as follows. Section2 discusses some re-
lated work. Section 3 introduces the fundamental concepts we use in the framework and
presents both the specifications and their semantics. Section 4 discusses some properties
one can check for a protocol represented following this framework. Finally, section 5
concludes the paper.

2 RELATED WORK

Several formalisms have been developed to represent interaction protocols. In this sec-
tion, we discuss the most suitable ones for agent interaction.

AUML [1] and its extensions are graphical frameworks for protocol diagram rep-
resentation. These frameworks, though practical and easy to use, are informal (or semi
formal). It is then hard to check properties or even define thesemantics of a protocol
represented in these formalisms. [15] and [2] automate the translation process from

AUML to a textual description, which is more machine readable. The advantage of this
automatic translation, though undebatable, is weakened bymany other AUML original
limitations, f.i., the lack of emphasis on action representation in protocol representation.

Some formal frameworks have been proposed for protocol representation. [14] de-
fined a framework using concepts similar to ours. However, inour case agents are not
represented in protocol specifications. They are expected to play (in a protocol config-
uration and instantiation standpoint) roles at runtime. [10] made significant advances
in the area of protocol representation for agent interaction. This work developed a for-
mal framework which combines Propositional Dynamic Logic and belief and intention
modalities (PDL-BI). The framework covers a broad spectrumof issues related to agent
interactions. However, it requires advanced knowledge in logics. In our opinion, logics
is useful to define the semantics and check some properties for protocols. But due to the
complexity it may introduce, we believe that it should be hidden at the specifications
stage, as usually done in programming languages. Additionally, PDL-BI focuses on the
messages exchange. But, as we showed above, agent interaction protocols demand more
than message exchange.

IOM/T [3] is a more recent language for interaction representation. Our work,
though sharing some similarities with IOM/T, departs from it on the following points.
Firstly, we focus on generic protocols, where we consider generic actions. Secondly,
the behaviour of the agents in IOMT/T (the actions they perform) is not associated with
the events which occur in the MAS. Thirdly, the language is Java-like. However, we
believe that a protocol description language is supposedlya declarative one. Especially
for open and heterogeneous MAS. We address this need in this paper by developing a
formal framework for generic protocols representation. Our framework is a declarative
language and offers expressiveness as well as ease of use.

3 THE FRAMEWORK

We introduce the fundamental concepts our framework is based on. Then, we present
the specifications and the semantics of these concepts.

3.1 FUNDAMENTAL CONCEPTS

Our framework is based on the AUML protocol diagram. Thereof, we identified five
fundamental concepts:protocol, role, event, actionandphase. A graphical illustration
of these concepts is given in Fig. 1.

Definition 1. Protocol
A protocol is a sequence of message exchanges between at least two roles. The ex-

changed messages are described following an Agent Communication Language (ACL)
e.g., FIPA ACL [5], KQML [9].

More formally, a protocol consists of a collection of rolesR, which interact with
one another through message exchange. The messages belong to a collectionM and
the exchange takes place following a sequence,Ω. A protocol also has some intrinsic
propertiesΘ (attributes and keywords) which are propositional contents that provide

protocol

role: R1 role: R2

message1

message2

.

.

.

phase

action

event: message

 reception

message3

Fig. 1.Graphical illustration of concepts in generic protocols.

a context for further interpretation of the protocol. We note p
def
=< Θ,R,M,Ω >. In

Ω, the message exchange sequence, each element is denoted byrı
mk−−−−−−→

aα,mk−1

r, to be

interpreted as “the rolerı sends the messagemk to r, and thatmk is generated after
actionaα’s execution and the prior exchange ofmk−1”. Additional elements may be
introduced in this representation, but we do not discuss them in this paper.

Definition 2. Generic Protocol
A generic protocol is a protocol wherein the actions which are taken, to handle,

produce the contents of exchanged messages, etc. cannot be thoroughly described. A
complete description of these actions depends on the architecture of each agent playing
a role in the protocol.

Note that the attributes and keywords we use in the current version have been
identified from our experimentations. Currently, we only use three attributes:class,
return valueandparticipantscount. classis the type of processing performed through
the execution of an interaction based on this protocol (e.g., we userequestto denote
that the participant performs some task on behalf of the initiator). return value, when
any, depicts how the final result is represented.participantscountis the number of dis-
tinct participant roles in the protocol. As for keywords, several ones can be used in the
current version. For example,IncrementalProcessmeans that some partial results may
be considered for the ongoing process. Some more experiments are needed to extend
these attributes and keywords.

Each of the communicating entities is called a role. Roles are understood as stan-
dardised patterns of behaviour required of all agents playing a part in a given functional
relationship in the context of an organisation [4].

Definition 3. Role In our framework, a role consists of a collection of phases. As we
will see later in Section 3.2, a role may also have global actions (which are executed
outside all phases) and some data other than message content, variables.

∀r ∈ R, r
def
=< Θr,Ph,Ag,V >, whereΘr corresponds to the role’s intrinsic prop-

erties (e.g., cardinality) which are propositional contents that help further interpret the

role,Ph the set of phases,Ag the set of global actions andV the set of variables. The
roles can be of two types: (1)initiator, the unique role of the protocol in charge of
starting its execution; (2)participant, any role partaking in an interaction based on the
protocol.

The behaviour of a role is governed by events. An event is an atomic change which
occurs in the environment of the MAS. An informal description of the types of events
we consider in our framework is given in Table 1. A more formalinterpretation of these
events is discussed in Section 3.3. The behaviour a role adopts once an event occurs is
described through actions.

Event Type Description

Change The content of a variable has been changed.
Endphase The current phase has completed.
Endprotocol The end of the protocol is reached.
MessagecontentThe content of a message has been constructed.
Reception A new message has been received.
VariablecontentThe content of a variable has been constructed.
Custom Particular event (error control or causality).

Table 1.Event Types.

Definition 4. Action
An action is an operation a role performs while executing. This operation trans-

forms the whole environment or the internal state of the agent currently playing this
role. An action has a categoryν, a signatureΣ and a set of events it reacts to or pro-

duces. We notea
def
=< ν,Σ,E >.

Since our framework focuses on generic protocols, we can only provide a general
description for the actions which are executed in these protocols. Hence, we introduced
action categories to ease the definition of a semantics for these actions. Table 2 contains
an informal description of these categories. We discuss their semantics in Section 3.3.

Definition 5. PhaseSome successive actions sharing direct links can be groupedto-
gether. Each group is called a phase. Two actions share a direct link if the (or only a
part of them) input arguments of one are generated by the other (f.i. when asendaction
sends the message generated in a prior action).

3.2 FORMAL SPECIFICATIONS

The formal specifications are defined through a EBNF grammar.Only essential parts of
this grammar are discussed in this section. A thorough description of this grammar is
given in Appendix A. In sake of easy implementation of generic protocols, we represent

Action Type Description

Append Adds a value to a collection.
Remove Removes a value from a collection.
Send Sends a newly generated message.
Set Sets a value to a variable.
Update Updates the value of a variable.
Compute Computes a new information.

Table 2.Action categories.

them in XML in our framework. However, as XML is too verbose, asimpler (bracket-
based) representation will be used for illustration in thispaper.

RUNNING EXAMPLE We will use the Contract Net Protocol (CNP) [13] to illustrate
the specifications we present. The sequence diagram (protocol diagram in AUML) of
this protocol is given in Fig. 2. The labels placed on messageexchange arrows in the
figure are not performatives, but message identifiers.

ParticipantInitiator

X

X

X

Failure

Inform−Done

Inform−Ref

Cfp

Not−Understood

Refuse

Propose

Reject−Proposal

Accept−Proposal

[deadline]

Fig. 2.The Contract Net Protocol.

The rationale of the CNP consists of an initiator having someparticipants perform
some processing on its behalf. But beforehand, the participants which will perform the

processing are selected on the basis of the bids they proposed, in-reply to the initiator’s
call for proposals. When the selected participants are done with their processing, each
of them notifies the initiator agent of the correct execution(or error occurrence) of the
part it committed in performing.

PROTOCOL The following production rules define a protocol:
<protocol>:=<protproperties><roles><messagepatterns>

<protproperties>:=<protdescriptors><protattributes><protkeywords?>
<protdescriptors>:=<identifier><title><location>
<protattributes>:=<class><participantcount><return>
<protkeywords>:=<protkeyword+> <protkeyword>:=“IncrementalProcess”|...
An illustration of these rules is given as follows.

(protocol
(protocolproperties
(protocoldesc ident=’cnpprot’ title=’ContractNet’ location=’KqmlCnp.xml’)
(protocolattr class=’Request’ participantcount=’1’ return=’operationresult)
(protkeyws ’...’))

(roles ...)
(messagepatterns ...))

As one can see from these rules, the exchange sequenceΩ is not explicitly specified.
Actually, it is described throughsendactions in each role. When several messages can
be sent, we use connectorsand, or andxor to compose them.

ROLE Protocol diagrams only show the communication flow between roles. However,
there may be some information beyond the communication level. For example, in the
CNP, the action an initiator executes in order to make a decision upon the participants’
bids is hidden behind the communication flow. Actually, thisaction exploits information
from different participants of the protocol. Moreover, information like the deadline for
bidding, cannot be extracted from any message content. Then, we introduced a global
area for each role where we describe actions which are beyondthe communication flow,
as well as data which cannot be extracted from any message content. Note that actions
relevant to the global area are no more associated with any phase. The production rules
hereafter define a role.
<roles>:=<role><role>|<roles><role>
<role>:=<roleproperties><variables?><actions?><phases>
<roleproperties>:=<roledescriptors><roleattributes><rolekeywords?>
<roledescriptors>:=<identifier><name>
<roleattributes>:=<cardinality>
<variables>:=<variable+> <variable>:=<ident><type>
<actions>:=<action+>
Each role is described through its intrinsic properties (f.i., name and cardinality), its
variables (pieces of information the role handles which arenot extracted from any mes-
sage content), its global actions and the phases the non global actions are grouped in.

In the example below, theinitiator role of the CNP has three variables:deadline,
bidsCol anddeliberations. deadline contains the time when bidding should

stop.bidsCol is a collection where participants’ bids are stored.deliberations
contains the decision (accept or reject) the initiator madeupon each bid. Each variable
has an identifier and the type of the data it contains. The content of a variable is charac-
terised using some abstract data types. We also use these data types to represent message
content and action signature. String, Number and Char are some examples of the data
types we use in our framework. The description of these typesis out of the scope of this
paper. The only global action in this role is namedDeliberate. Through this action,
the initiator makes a decision upon the participants’ bids.Global actions are described
in the same way like local (located in a phase) ones: category, signature and events. The
description ofDeliberate explains itself from the example. The special wordeven-
tref is used here to refer to an event defined elsewhere (changeevent which occurred
against thebidsCol variable). As we will see later, this word sometimes introduces
causality between actions.

(role ident=’initiator’
(roleproperties (roledescriptors ident=’initiator’ name=’Initiator’)
(roleattributes cardinality=’1’))

(variables (variable ident=’bidsCol’ type=’collection’)
(variable ident=’deliberations’ type=’map’)
(variable ident=’deadline’ type=’date’))

(actions(action category=’compute’ description=’Deliberate’
(signature (arg type=’date’ dir=’in’)
(arg type=’collection’ dir=’in’)(arg type=’map’ dir=’out’))

(events (event type=’change’ dir=’in’ object=’deadline’ ident=’evt0’)
(eventref dir=’in’ ident=’evt5’)
(event type=’change’ dir=’out’ object=’deliberations’ ident=’evt1’))))

(phases ...))

PHASE As stated above, each phase is a sequence of actions that share some direct
links. We use the following rules to define a phase:
<phases>:=<phase+>
<phase>:=<actions>
<action>:=<category><description?><signature><events>
For example, in the initiator role of the CNP, the first phase consists of producing
and sending thecfp message. This phase contains two actions:prepareCFP and
sendCFP. prepareCFP produces thecfp message. It is followed bysendCFP
which sends the message to each identified participant.

(phase ident=’phs1’
(actions (action category=’compute’ description=’prepareCFP’

(signature(arg type=’date’ dir=’in’)(arg type=’any’ dir=’out’))
(events (event type=’variablecontent’ dir=’in’ object=’deadline’)
(event type=’messagecontent’ dir=’out’ object=’cfp’ ident=’evt2’)))

(action category=’send’ description=’sendCFP’
(signature (message ident=’cfp’))
(events(eventref dir=’in’ ident=’evt2’)
(eventref type=’custom’ dir=’out’ ident=’cus01’)
(event type=’endphase’ dir=’out’ ident=’evt3’)))))

MESSAGE Though we did not define messages as a concept, we use them in the
formal specifications because they contain part of the information manipulated during

interactions. The concept of message is well known in ACL, and their semantics is
defined accordingly.

We propose an abstract representation of messages, which wecall message patterns.
A message pattern is composed of the performative and the content type of the message.
We also offer the possibility to define the content pattern, aUNIX-like regular expres-
sion which depicts the shape of the content. Note that at runtime, these messages will
be represented with all the fields as required by the adopted ACL. In our framework,
we represent all the message patterns once in a block and refer to them in the course
of the interaction when needed. In our opinion, it sounds to constrain to the use of only
one ACL all along a single protocol description. The following rules define message
patterns.
<messagepatterns>:=<acl><messagepattern+>
<acl>:=’fipa’ |’kqml’
<messagepattern>:=<performative><identifier><content>
<content>:=<type><pattern?>
The example below describes the message patterns used in theCNP.

(messagepatterns acl=’Kqml’
(messagepattern performative=’achieve’ ident=’achmsg’
(content type=’any’ pattern=’...’))

(messagepattern performative=’sorry’ ident=’refuse’
(content type=’null’ pattern=’...’))

(messagepattern performative=’tell’ ident=’propose’
(content type=’any’ pattern=’...’))

(messagepattern performative=’deny’ ident=’reject’
(content type=’null’ pattern=’...’))

(messagepattern performative=’tell’ ident=’accept’
(content type=’string’ pattern=’...’)) ...)

DESIGN GUIDELINE As a guideline for protocol design and description in our
framework, we recommend several design rules. They guarantee the correctness of a
protocol represented in our framework. We introduce some ofthem here.

Proposition 1. For each role of a protocol, there should be at least one action which
drives into the terminal state. Every such action should be reachable from the role’s
initial state.

Corollary 1. From their semantics, roles can be represented as graphs. And for every
path in this graph, there should be an action which drives to aterminal state.

Proposition 2. When two distinct transitions can be fired from a state, the set of events
which fire each one of the transitions, though intersect-able, should be distinguishable.

Proposition 3. When an action produces a message, it should be immediately followed
by asendaction, which will be responsible for sending the message.

3.3 SEMANTICS OF THE CONCEPTS

EVENT As we saw, an event informs of an atomic change. It may have to do with the
notified role’s internal state. But usually, the notification is about other roles’ internal

state. Therefore, events are the grounds for roles coordination. Due to space constraints,
we only discuss the semantics of two types of events in this section.

change: this event type notifies of a change of the value of a variable. Let v be
this variable,change(v) denotes this event. In order to define the semantics of our con-
cepts, we introduce some expressions in a meta-language, which we call primitives.
These primitives are functions and predicates.value is one of these primitives (actu-
ally a function). It returns the value of a data at a given time. Let T be the time space,
andd andt a data and a time respectively (t ∈ T), V alue(d, t) denotes this function.
Value(d, t) = ∅ means that the datad does not exist yet at timet. We interpret the
changeevent as follows:∃ (t1, t2) ∈ T × T :

(t1 6= t2) ∧ (Value(v, t1) 6= ∅) ∧ (Value(v, t1) 6= Value(v, t2))

endprotocol: this event type notifies of the end of the current interaction. For each
role, all the phases have either completed or are unreachable. Also any global action of
each role is either already executed or unreachable. A phaseis unreachable if none of its
actions is reachable. Actually, if the initial action is unreachable, the phase it belongs to
will also be unreachable. Again, we introduced three new primitives:Follow, Executed
andUnreachable. Follow is a function which returns all the immediate successors of
a phase. Letp1 andp2 be two phases,p1 immediately followsp2, if any of the input
events of the initial action ofp1 refers to a prior event generated by one of the actions
(usually the last one) ofp2. Unreachableis a predicate which means that the required
conditions for the execution of an action do not hold. Therefore, this action cannot be
executed. Finally,Executedis a predicate which means that an action has already been
executed. LetPr be the set of phases andApkr

the set of executable actions for phase
pkr in a roler. Let alsoAGr

be the set of global actions for roler. We interpret the
endprotocolevent as follows:∀r ∈ R,∀aα ∈ AGr

,

(Unreachable(aα)∨Executed(aα))∧(∀pkr ∈ Pr, (Follow(pkr) = ∅)∨(∀ai ∈ Apkr
, Unreachable(ai)))

ACTION Actions are executed when events occur. And once executed, they may pro-
duce some new change in the MAS. Events are therefore considered asPre andPost
conditions for actions’ execution. Here again, we only discuss the semantics of theap-
pendandsendaction categories.

Let E be the set of all the event types we consider in our framework.We defineE ′

as a subset ofE : E ′ = E − {endphase, endprotocol}.
append: this action adds a data to a collection. Letai be such an action,

Pre=
∨

j ej , whereej ∈ E ′

Post=
∨

j ej ,∃k ek =′ change′ ∧ (∃(t1, t2) ∈ T × T ,∃d, v ∈ args(ai),

(t1 < t2) ∧ (isElement(v, d, t1) = false) ∧ (isElement(v, d, t2)))

isElement()is a predicate which returns true when a data belongs to a collection at a
given time.args()returns the arguments of an action.

send: this action sends a message. It is effective both at the sender and the receiver
sides. Letai be such an action. We interpret it as follows: at the sender side:

Pre=
∨

j ej , where∀mj ∈ arguments(ai),∃ k, ek = messagecontent(mj)

Post= (Trans(mj) = true)

at the receiver side:

Pre= ∅
Post=

∨
j e′j , where∀mj ∈ arguments(ai),∃! k, e′k = reception(mj)

ACL usually define the semantics of their performatives by considering the belief
and intention of the agents exchanging (sender and receiver) these performatives. This
approach is useful to show the effect of a message exchange both at the sender and the
receiver sides. In our framework, we adopt a similar approach when an action produces
or handles a message. We use the knowledge the agent performing this action has with
respect to the message. Hence, we introduce a new predicate,Know(φ, ag), which we
set to true when the agentag has the knowledgeφ. Know is added to the post conditions
of the action when the latter produces a message. It is ratheradded to the pre conditions
of the action when it handles a message. Note thatφ is the (propositional) content of
the message. Moreover, when an action ends up a phase or the whole protocol, its Post
condition is extended with theendphaseandendprotocolevents respectively.

PHASE The semantics of a phase is that of a collection of actions sharing some causal-
ity relation. The direct links between actions of a phase areaugmented with a causality
relation introduced by events. We noteph

def
=< A,≺ >, whereA is a set of actions and

≺ a causality relation which we define as follows (|A| is the cardinality ofA):
∀aı,a ∈ A,aı 6= a,aı ≺ a ⇐⇒ |A| > 1 ∧ ∃e ∈ Post(aı), e ∈ Pre(a).

Proposition 4. Letaı anda be elements ofPh, such thataı always precedesa,

(aı ≺ a) ∨ (∃ap, . . . ,ak,aı ≺ ap . . . ≺ ak ≺ a)

ROLE An event generated at the end of a phase can be referred to in other phases.
Thus, the causality relation between actions of phases can be extended to interpret roles.
We consider a role as a labelled transition system having some intrinsic properties.
r

def
=< Θr,S,Λ,−→ > where:

– Θr are the intrinsic properties of the role;
– S is a finite set of states;
– Λ contains transitions labels. These are the actions the roleperforms while running;
– −→ ⊆ S × Λ × S is a transition function.

As an illustration, we give part of the semantics of the initiator role of the CNP,
which we callr0. r0 =< Θr0 ,S,Λ,−→ >, with:

– Θr0 =′ cardinality = 1 ∧ isInitiator = true . . .′;

– S = {S0,S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11};
– Λ = {a0,a1,a2,a3,a4,a5,a6,a7};
– −→ = {(S0,a0,S1), (S1, send[m0],S2), (S2,a1,S7), (S2,a2,S3), (S3,a4,S4), (S4,a3,S5),

(S5, send[m3],S11), (S5, send[m4],S6), (S6,a5,S8), (S6,a6,S9), (S6,a7,S10)}

m0, m3 andm4 belong to the set of messages exchanged during the protocol.

PROTOCOL The semantics of a protocol is a combination of the semanticsof its in-
trinsic properties, that of each role and finally the semantics of the coordination mech-
anism. Recall that the coordination mechanism, in our case,is the sequence of mes-
sage exchanges. The sequence of messages actually exchanged during the interaction is
known only at runtime. This raises up one of the limitations of the work concerned with
agent interaction protocols semantics. They usually proposeda priori semantics for
protocols. However, as protocols generally offer several possible exchange sequences,
several possible semantics may coexist for an interaction based on a protocol. [8] pro-
poseda posteriorisemantics through a platform calledProtocol Operational Semantics
(POS). We build on this platform and adopta posteriorisemantics for protocols in our
framework. Two main reasons account for such an approach. Firstly, the messages ex-
change sequence can be mapped to a graph of possibilities forexchanged messages.
Therefore, the semantics of an interaction based on this protocol consists of a path in
this graph. Secondly, the semantics of communicative acts defined in ACL is not enough
to define the semantics of a protocol. The executed actions’ semantics should also be
included. However, apart from send actions, all the other actions can only have general
characterisation before the execution of the interaction.A more precise semantics of
these actions can only be known at runtime.

As an illustration, let us assume that the semantics of each role of the CNP is
known, we define that of the whole protocol as follows.p =< Θ,R,M,Ω >, where
R = {r0, r1} andM = {m0,m1, . . .m7}. m0 corresponds tocfp, m1 corresponds
to refuse, etc. (see Fig. 2).Ω = Ω1|Ω2|Ω3|Ω4|Ω5|Ω5|Ω6. Ω6 is the case where
everything went correctly and the participant notifies the initiator of the correct perfor-
mance of the task.Ω6 =< r0

m0−−→
a0

r1, r1
m2−−−−→

a8,m0

r0, r0
m3−−−−→

a3,m2

r1, r1
m7−−−−→

a10,m4

r0 >

4 PROPERTIES

4.1 LIVENESS

Proposition 5. For every role of a protocol, events will always occur and firesome
transition until the concerned role enters a terminal state.

Proof. Each role is a transition system. And from the description oftransition systems,
unless an error occurs, an event will always occur and require to fire a transition until
the role enters a terminal state, where the execution stops.

4.2 SAFETY

We consider two safety properties:consistent messages exchangeand Unambiguous
protocol execution.

Proposition 6. Consistent messages exchangeMessages exchange is consistent in our
framework. Precisely, any message a role sends is received and handled at least by one
role. By the same token, any message a role receives has a sender (generally another
role).

Proof. We prove both parts of the proposition.

1. The sequence of message exchangesΩ is described as follows:
Ω =< r0

m0−−→
a0

r1, r1
m2−−−−→

a8,m0

r0, . . . >. This representation shows that any message

sent is received and handled by at least one role.
2. Any received message has been generated elsewhere, sinceits identifier exists. Ad-

ditionally, from proposition 3, any message generated is automatically sent. Hence,
any message received is sent by a role.

Proposition 7. Unambiguous protocol executionFor each action a role can take,
there is an unambiguous set of events which fire its execution.

Proof. The proof follows from the direct application of proposition 2 and is omitted
here because of space constraints.

4.3 TERMINATION

Proposition 8. Each role of a protocol represented in our framework always termi-
nates.

Proof. From Proposition 1, each role has at least an action which brings that role to a
terminal state. Once this terminal state is reached, the interaction stops for the concerned
role. When all the roles enter a terminal state, the whole interaction definitely stops.

This proof is insufficient when there are several alternatives or loops in the protocol.
Corollary 1 addresses this case. Actually, only one path of the graph (with respect to the
transition system) corresponding to the current role will be explored. And as this path
ends up with an action driving to a terminal state, the role will terminate.

5 CONCLUSION

We believe that a special care is needed in representing generic protocols, since only
partial information can be provided for them. Therefore, Wedeveloped a framework to
represent generic protocols for agent interactions. Our framework puts forth the descrip-
tion of the actions performed by the agents during interactions, and hence highlights
their behaviour during protocols execution. In this, we depart from the usual protocol
representation formalisms which only focus on exchanged messages descriptions. Our
framework is based on a graphical formalism, AUML. It is formal, at least as expressive

as AUML (and its extensions) and of practical use. As we discussed in the paper, this
framework has been used to address issues in agent interaction design.

Since actions in generic protocols can be described only in ageneral way, a more
precise description of these actions is dependent on the architecture of the agent about
to perform them in the context of an interaction. This is usually done by hand by agent
designers when they have to configure agent interaction models. Doing such a con-
figuration by hand may lead to inconsistent message exchangein an heterogeneous
MAS. We address this issue by developing some mechanisms to automatically carry
this configuration out. These mechanisms consist of lookingfor similarities between
the functionalities from agent architecture and actions ofprotocols. These mechanisms
are presented in [12].

Protocol selection is another issue we faced while designing agent interactions
based on generic protocols. Usually, agent designers select the protocols their agents
will use to interact during the performance of collaborative tasks. But this static pro-
tocol selection severely limits interaction in open and heterogeneous MAS. Thus, we
developed some mechanisms to enable agents to dynamically select the protocol they
will use to interact. These mechanisms require some reasoning about the specifications
of the protocols. Again, we used this framework, since it enables us to reason about
the mandatory coordination mechanisms for the performanceof collaborative tasks. We
described part of the mechanisms we proposed in [11].

References

1. B. Bauer and J. Odell. UML 2.0 and Agents: How to Build Agent-based Systems with the
new UML Standard.Journal of Engineering Applications of Artificial Intelligence, 18:141–
157, 2005.

2. G. Casella and V. Mascardi. From AUML to WS-BPEL. Technical report, Computer Science
Department, University of Genova, Italy, 2001.

3. T. Doi, Y. Tahara, and S. Honiden. IOM/T: an Interaction DescriptionLanguage for Multi-
agent Systems. InProceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 778–785, 2005.

4. M. Esteva, J. A. Rodriguez, C. Sierra, P. Garcia, and J. L. Arcos. On the Formal Specifi-
cation of Electronic Institutions. InAgent-mediated Electronic Commerce (The European
AgentLink Perspective). 2001.

5. FIPA. FIPA Communicative Act Library Specification. Technical report, Foundation for
Intelligent Physical Agents, 2001.

6. M. Greaves, H. Holmback, and J. Bradshaw. Waht is a Conversation Policy? InProceedings
of the Workshop on Specifying and Implementing Conversation Policies, Autonomous Agents
1999, 1999.

7. G.J. Holzmann. The Model Checker Spin.IEEE Transactions on Software Engineering,
23:279–295, 1997.

8. J-L Koning and P-Y Oudeyer. Introduction to POS: A Protocol Operational Semantics.
International Journal on Cooperative Information Systems, 10(1 2):101–123, 2001. Special
Double Issue on Intelligent Information Agents: Theory and Applications.

9. Y. Labrou and T. Finin. A proposal for a new KQML Specification. Technical report, Uni-
versity of Maryland Baltimore County (UMBC), 1997.

10. S. Paurobally, J. Cunningham, and N. R. Jennings. A Formal Framework for Agent Interac-
tion Semantics. InProceedings. 4th International Joint Conference on autonomous Agents
and Multi-Agent Systems, pages 91–98, Utrecht, The Netherlands, 2005.

11. J. G. Quenum and S. Aknine. A Dynamic Joint Protocols Selection Method to Perform
Collaborative Tasks. In P. Petta M. Pechoucek and L.Z. Varga, editors, 4th International
Central and Eastern European Conference on Multi-Agent Systems (CEEMAS 2005), LNAI
3690, pages 11–20, Budapest, Hungary, September 2005. Springer Verlag.

12. J. G. Quenum, A. Slodzian, and S. Aknine. Automatic Derivation of Agent Interaction
Model from Generic Interaction Protocols. In P. Giorgini, J. P. Muller, and J. Odell, editors,
Proceedings of the Fourth International Workshop on Agent-Oriented Software Engineering.
Springer Verlag, 2003.

13. G. Smith. The Contract Net Protocol: High-level Communication and Control in a Dis-
tributed Problem Solver.IEEE Trans. on Computers, 29(12):1104–1113, 1980.

14. C. Walton. Multi-agent Dialogue Protocols. InProceedings of the Eight Int. Sympossium on
Artificial Intelligence and Mathematics, 2004.

15. M. Winikoff. Towards Making Agent UML Practical: A Textual Notationand Tool. InProc.
of the First Int. Workshop on Integration of Software Engineering and Agent Technology
(ISEAT), 2005.

A EBNF Grammar

<protocol>:=<protproperties><roles><messagepatterns>
<protdescriptors>:=<protdescriptors><protattributes><protkeywords?>
<protdescriptors>:=<identifier><title><location>
<protattributes>:=<class><participantcount><return>
<protocolkeywords>:=<protocolkeyword+>
<protocolkeyword>:="containsconcurrentroles"|"iterativeprocess"|

"incrementalprocess"|"subscriptionrequired"|
"alterableservicecontent"|"alterableproposalcontent"

|"dividableservice"
<title>:=<word>
<class>:=<word>
<location>:=<locationheader><path>
<locationhearder>:="http://www."|"http://"|"file://"|"ftp://ftp."
<path>:=<directory+><word>’’.’’<word>
<directory>:=<word>
<participantcount>:=<digit+>|"n"
<return>:="operationresult"|"information"|"agentaddress"
<roles>:=<role><role>|<roles><role>
<messagepatterns>:=<acl><messagepattern+>
<role>:=<roleproperties><variables?><actions?><phases>
<roledescriptors>:=<roledescriptors><roleattributes><rolekeywords?>
<roledescriptors>:=<identifier><name>
<roleattributes>:=<cardinality><concurrentparticipants?>
<concurrentparticipantset>:=<identifier+>
<rolekeywords>:=<rolekeyword+>
<rolekeyword>:=<word>

<name>:=<word>
<cardinality>:=<digit+>|"n"
<variables>:=<variable+>
<variable>:=<identifier><type>
<type>:="number"|"string"|"char"|"boolean"|"date"|

"collection"|"null"|"any"|"map"
<identifier>:=<letter+> "id" <digit+>
<letter>:="a"|"b"|"c"|..."z"
<digit>:="0"|"1"|"2"|...|"9"
<word>:=<letter+>
<space>:=""
<actions>:=<action+>
<phases>:=<phase+>
<phase>:=<identifier><actions>
<action>:=<category><description?><signature?><events>
<description>:=(<word><space?>)*
<category>:="append"|"custom"|"remove"|"send"|"set"|"update"
<signature>:=<arguments>|<messages>
<arguments>:=(<argset>|<argdesc>)+
<argset>:=<settype>(<argset>|<argdesc>)+
<argdesc>:=<identifier><type><direction>
<direction>:="in"|"out"|"inout"
<messages>(<message>|<messageset>)+
<message>:=<identifier>
<messageset>:=<settype>(<messageset>|<message>)+
<settype>:="and"|"or"|"xor"
<events>:=(<event>|<eventref>|<eventset>)+
<eventset>:=<settype>(<event>|<eventref>|<eventset>)+
<event>:=<identifier?><eventtype><object>
<eventtype>:="change"|"custom"|"emission"|"endphase"|

"endprotocol"|"messagecontent"|"reception"|"variablecontent"
<object>:=<message>|<variableid>
<variableid>:=<identifier>
<eventref>:=<identifier>
<messagepattern>:=<identifier><performative><content>
<performative>:=<fipaperformative>|<kqmlperformative>
<kqmlperformative>:="ask-all"|"ask-one"|"ask-if"|"stream-all"|...
<acl>:="fipa"|"kqml"
<content>:=<type><pattern?>
<pattern>:=<word*><space>

