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Abstract. We outline elements of the Abstract Contract Calculator, a
prototype language implemented in Haskell (a declarative programming
language) in which we simulate agents executing abstract actions rela-
tive to deontic specifications. The deontic specifications are prohibition,
permission, and obligation. The concepts of deontic specifications are de-
rived from Standard Deontic Logic and Dynamic Deontic Logic. The con-
cepts of abstract actions are derived from Dynamic Logic. The logics are
declarative, while the implementation is operational. In contrast to other
implementations, we have articulated and productive violation and fulfill-
ment markers. Our actions are given with explicit action preconditions
and postconditions, and we have deontic specification of complex ac-
tions. We implement inference in the Contrary-to-Duty Obligations case,
which has been a central problem in Deontic Logic. We also distinguish
Contrary-to-Duty Obligations from obligations on sequences, which has
not previously been accounted for in the literature. The language can
be used to express a range of alternative notions of actions and deontic
specification. We use it to to model and simulate multi-agent systems
in which the behavior of an agent is guided by deontic specifications on
actions.

1 Introduction

We present an overview of the Abstract Contract Calculator (ACC) written in
Haskell, which is a functional programming language (cf. Wyner (2006) for the
code and documentation for the ACC). The ACC processes the deontic notions
of prohibition, permission, and obligation applied to complex, abstract actions.
As an intuitive example, suppose Bill is obligated to leave the room. We have a
deontic specification “obligated” applying to an agentive action “Bill’s leaving
the room”. We call sets of such expressions Contract States. Informally, were
Bill to leave the (given) room, he would have violated the obligation to leave the
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room. Consequences may follow from the fact that he has violated his obligation.
For example, he may then be obligated to pay a fine. The objective of the
implementation is to abstractly model deontic specification of agentive actions
as well as to simulate the behavior of agents executing actions relative to a
contract state.

It is outside the scope of this paper to provide the complete implementation or
formalization. Rather, we introduce basic, crucial elements and invite the reader
to investigate the language further. In addition, actions and deontic notions have
been extensively discussed in the Deontic Logic and Dynamic Logic literature (cf.
Lomuscio and Nute (2004) and Wieringa and Meyer (1993), Harel (2000), Meyer
(1988), and Khosla and Maibaum (1987)). We indicate some of our key sources.
However, in contrast to these declarative works, we focus on operationalizing
the notions. Therefore, we do not outline the logics. Indeed, in Wyner (2006),
we have identified a range of fundamental questions with some of these logics.

The outline of the paper is as follows. We first discuss the context of our
research as well as central issues along with how we address them. We turn to
the implementation, which is largely presented conceptually and with fragments
of Haskell code. The implementation has two aspects. First, it is a programming
tool in that it allows alternative notions of deontic specification on agentive ac-
tions to be systematically examined and animated. Thus, one can develop and
focus on a preferred interpretion of the deontic concepts. Second, having fixed
an interpretation, the tool enables one to abstractly simulate environments in
which agents behave relative to actions, sets of deontic specifications on actions,
and how such sets change. It is intended to be used for simulation and mod-
elling of Multi-Agent systems where deontic specifications govern the behavior
of individuals or collectives of agents (see Gilbert and Troitzsch (2005) for a
discussion of social science simulations). In the final two sections, we touch on
other proposals for implementing deontic notions, and then we mention several
aspects of the implementation which were not discussed in this paper as well as
mention several aspects left for future research.

2 Background Context

The intial objective of our study was to define a formal language which is suitable
for the formation, execution, and monitoring of legal contracts in a multi-agent
system. Thus, our approach keeps in mind applied and empirical issues. Among
the key issues, we wanted to simulate the behavior of agents with respect to
deontic specifications on actions. In addition, we wanted to model how deontic
specifications can change over time. For instance, if we have a deontic speci-
fication such as Bill is obligated to deliver five pizzas, we want to be able to
determine the conditions under which Bill violates or fulfills this obligation. In
addition, we want to determine what follows in either case. Furthermore, we
want to define under what conditions can we eliminate Bill’s obligation. In gen-
eral, how could we operationalize deontic specifications on actions such that they



could be used to guide agentive behavior? Thus, the research is an application
of deontic reasoning.

For a theoretical underpinning, we focussed on the analyses of deontic no-
tions, particularly those with a dynamic component (cf. Meyer (1988), Khosla
and Maibaum (1987), but cf. Carmo and Jones (2001) for a non-dynamic the-
ory). Strictly put, the implementation does not implement a particular deontic
logic. We found available logics to be unsuitable for a variety or reasons (cf.
Wyner (2006)). Instead, we provide a language in which different logics could
be operationalized, though we make some specific suggestions.

We have implemented our system in Haskell, which is a functional program-
ming language. Speaking broadly, functional programming languages implement
the Lambda Calculus. It is a programming language which is particularly well
suited to computational semantics (cf. Doets and van Eijck (2004) and van Eijck
(2004). For a comparison to Prolog, see Blackburn and Bos (2005)).

3 Driving Issues

The implementation is driven by four interlocking issues: compositional and
productive flags which signal violation or fulfillment of a deontic specification;
negation of an action as antonym or opposite; complex actions, particularly
sequences; and the Contrary-to-Duty paradox. In the following, we briefly outline
the problems and our solutions, which we find again in the implementation.

3.1 Violability

In our view, the key concept of the deontic notions is that of violability. Logical or
operational representations ought then to have violation (or fulfillment) markers
in the formal language such that one can reason further with them (either for
recovery or other processes). Thus, bad behavior is marked and reasoned with
rather than ruled out (cf. Anderson and Moore (1957), Meyer (1988), and Khosla
and Maibaum (1987)). We do not adopt the approach of recent proposals which
use the deontic notions to filter out or to prioritize actions (cf. Garcia-Camino
et. al. (2005) and Aldewereld et. al. (2005)).

In recent proposals of Standard Deontic Logic (Carmo and Jones (2001)) or
Dynamic Deontic Logic (Khosla and Maibaum (1987) and Meyer (1988)), we find
a distinguished proposition which is used to mark that a deontic specification
has been violated. We use the marker for further reasoning or reactive behavior.
The richer the structure of the marker, the subtler the ways it can be used
(for logical proposals along these lines, cf. van den Meyden (1996, Meyer and
Wieringa (1993), and Kent, Maibaum, and Quirk (1993)).

In Wyner (2006), we have argued that the markers for deontic specification
on complex actions have to be productively and compositionally derived from the
agent, the deontic specification, the input actions, and the mode of combination
of the actions. We also argued that in order to calculate the conditions under
which an obligation is violated, we need a lexical semantic function to calculate



action negation. We discuss this in the next section. We should also mention
that in Wyner (2006), we argue that temporal specifications are not essential to
deontic specifications on actions. To our knowledge, these claims and supporting
arguments are novel. They serve to distinguish our analysis and implementation.

3.2 Action Opposition and Deontic Specification

One key component of our analysis is the calculation of actions in opposition.
Suppose Bill is obligated to deliver pizzas for an hour. It is intuitively clear
that some actions count toward fulfilling the obligation and some other actions
count towards violating the obligation. Furthermore, not just any activity which
is not itself an action of delivering pizzas counts toward a violation. Indeed,
some actions which Bill executes are deontically underspecified. If this were not
the case, then anything Bill does other than delivering pizzas leads to a violation.
More formally, set-theoretic complementation is not the appropriate notion for
action negation in our domain of application, for it would imply that at any
one time, the agent can either violate the obligation or fulfill it. There would be
no actions which are deontically underspecified. This is unreasonable for agents
executing contracts over time. Instead, we need some means to calculate the
opposite actions with respect to the particular input action, leaving other actions
underspecified.

In general, we want to be able to calculate the relevant opposite of an action,
if there is one. While action opposition in natural language is rather unclear,
we use abstract actions with respect to which we can define action opposition.
Suppose α, β, and γ are abstract actions; we make these clearer in the imple-
mentation. For an action, say α, from the domain of actions, we can calculate
the opposite action (given well-formedness conditions), say it is β. We can say
that γ is not in any relation of opposition to either α or β. Thus, if a complex
action is obligatory, we can determine what specific actions fulfill the obligation,
what actions violate it, and what actions are deontically underspecified.

Other problems arise where we deontically specify complex actions. For in-
stance, suppose we have the complex action combinator for sequence, where one
action follows another. (α;β) represents α followed by an execution of β. Let
us make this sequence obligatory: Obligated(α;β). Of this obligation, we want
to know: What is the mark of violation or fulfillment of this obligation? Under
what conditions do the marks appear? Intuitively, the mark of violation ought
to indicate that the sequence per se has been violated (similarly for fulfillment).
Thus, we need some means to define for any well-formed sequence of actions the
violation marker for that sequence. Similar points can be made with respect to
the other complex action combinators. In addition, we have to consider when
the violation marker arises. For example, the sequence is violated where α is first
executed, and then β is not executed, but not necessarily where β is executed
before the execution of α.

In general, we have to be able to productively calculate, for any well-formed
complex action, the compositional value of the violation (or fulfillment) marker.
In turn, this implies that we have to calculate the opposite of any complex



action. Thus, the lexical semantic rules must apply productively; it is not feasible
to have a listing of every complex action and its opposite. Productivity and
compositionality are also crucial to handle novel actions, which are new basic
action that we introduce to a particular system. We do not want reasoning and
action execution to hang when it is fed novel input.

So far as we know, the importance of productivity, compositionality, or lexical
semantic opposition have not been recognized in the deontic logic literature.

3.3 Contrary-to-Duty Obligations

Contrary-to-Duty (CTD) Obligations have been a central problem in Deontic
Logic (cf. Carmo and Jones (2001), which claims that it is the defining prob-
lem). Thus, an implementation ought to provide for it. CTDs are those cases
where a secondary obligation arises in a context where a primary obligation has
been violated. In other words, having violated one obligation, one incurs another
obligation. For example, if one is obligated to return a book by a specific time,
then (given the rules of a particular library), one may be obligated to pay a fine.
Such cases are key to legal reasoning and a case of context-dependent reasoning
(cf. Carmo and Jones (2001)). We have argued (Wyner (2006)) that violation
and fulfillment markers are key to distinguish a CTD case from the case where
the primary obligation changes. In other words, it is key that the action intro-
duces a violation marker. In virtue of this marker, the secondary obligation is
introduced.

3.4 Obligations on Sequences versus Sequences of Obligations

In Wyner (2006), we have argued for a distinction between obligations on se-
quences and sequences of obligations, contra Meyer (1988) who conflates them
(Khosla and Maibaum (1987 mention the distinction, but do not elaborate). For
example, a sequence of obligations is: one is obligated to do α and then one is
obligated to do β. In contrast, one could be obligated to do α followed by β. The
difference is in terms of the violation conditions. For a sequence of obligations,
each obligatory action introduces its own violation marker. For an obligation
on a sequence, failure to execute part of the sequence introduces a violation
marker on the sequence per se. This highlights the crucial role of productive,
compositional markers.

To create these richer markers, we provide a richer structure for complex
actions. For example, given a sequence of α;β, the structure distinguishes the
input actions α and β, the resultant action (suppose) γ, and the mode of for-
mation, which is the sequence operator. Given the definitions of basic actions,
the complex action operators are given functional definitions. With this, we may
define a deontic specification to apply to different parts of the complex action
relative to the complex action operator. This allows us to define families of de-
ontic specifications. For example, we can define three versions of obligations on
sequences: in one, the obligation distributes to each component action; in an-
other, the obligation applies to the collective action; in another, the obligation



applies so as to allow interruptable obligation specifications. We can map out
the logical space of possibilities. This allows us a very fine-grained, more accu-
rate analysis. From these alternatives, we can chose that which best suits the
purposes of the implementation. In our domain of application, the latter notion
seems most important, and it depends on complex markers which arise in a given
order.

4 An Overview of the Implementation

In the following subsections, we present highlights of the modules, necessarily
skipping many details. States of Affairs are lists of propositions along with in-
dices for worlds and times. Basic Actions are essentially functions from States
of Affairs to States of Affairs. Lexical Semantic Functions allow us to calculate
actions in specified lexical semantic relations such as opposite. These functions
help us define the consequences of deontically specified actions. Deontic Opera-
tors apply to actions to specify what actions lead to States of Affairs in which
fulfillment or violation is marked relative to the action and agent. We call such
a specification a Contract Flag State. We implement reasoning for Contrary-to-
Duty Obligations by modifying contract states relative to violation or fulfillment
flags. We end with a presentation of complex actions.

4.1 States of Affairs

We construct many of our expressions from basic Haskell types for strings
String, integers Int, and records, which are labels associated with values of
a given type. In terms of these, we have several derived types.

Definition 1. type PropList = [String]
type World = Int
type Time = Int
type SOA = Rec (properties :: PropList, time :: Time,

world :: World)
type DBSoas = [SOA]

Our atomic propositions are of type String such as prop1 and prop2. Pre-
fixing a string with neg- forms the negation of a proposition, and we have a
double negation elimination rule. Lists of propositions, of type PropList, form
the properties which define the properties which hold of a state of affairs. We
can filter the lists for consistency. This means that we remove from the model
any list of properties which has a proposition and its negation such as [prop1,
neg-prop1]. Filtering serves to constrain the logical space of models under con-
sideration and used for processing. For our purposes, we do not have complex
propositions other than negation. Nor do we address inference from propositions
at the level of contexts.

States-of-Affairs, which are of type SOA, are records comprised of a list of
properties along with indices for world and time. An example SOA is:



Example 1. (properties = [prop1, prop7, prop5, neg-prop3],
time = 2, world = 4)

Lists of expressions of type SOA are of type DBSoas. These can be understood
as alternative states of affairs or possible worlds.

4.2 Basic Actions

An action is of a record of type Action, which has fields for a label of type
String, preconditions xcond of type PropList, and postconditions ycond of type
PropList. An action is used to express state transitions from SOAs where the
preconditions hold to SOAs where the postconditions hold. An action with an
agent is of type AgentiveAction, which is a record with fields for an action and
an Agent of type String. A list of agentive actions is of type DBAgentiveAction.

Definition 2. type Action = Rec (label :: String,
xcond :: PropList,
ycond :: PropList)

type DBAction = [Action]
type Agent = String
type AgentiveAction = Rec (action :: Action,

agent :: Agent)
type DBAgentiveAction = [AgentiveAction]

An example of an agentive action is:

Example 2. (action = (label = Action6,
xcond = [prop1, prop7, prop5],
ycond = [prop3, neg-prop4, neg-prop6]),

agent = Jill)

This represents an abstract agentive action, which contrasts with agentive
actions found in natural language such as Jill leaves. We work exclusively with
abstract agentive actions since we can explicitly work with the properties which
exhaustively define them. It is harder to do so with natural language expressions
since it is not clear that we can either explicitly or exhaustively define them in
terms of component properties. Nonetheless, we can refer to the natural language
examples where useful.

The function doAgentiveAction in Definition 3 takes expressions of type
SOA and AgentiveAction and outputs an expression of type SOA.

Definition 3. type doAgentiveAction :: SOA → AgentiveAction → SOA

In the definition of the function (not provided), an action can be executed
so long as the preconditions of the action are a subset of the properties of the
SOA with respect to which the action is to be executed. Following execution of
the action, the postconditions of the action hold in the subsequent context, and
the time index of the resultant SOA is incrementally updated (in this paper,



we do not manipulate the world index). Further constraints on the execution of
the well-formed transitions are that the properties of the resultant SOA must
be consistent (no contradictions) and non-redundant (no repeat propositions).
In addition, we inertially maintain any properties of the input SOA which are
not otherwise changed by the execution of the action.

In (3), we have an example.

Example 3. input> doAgentiveAction
(properties = [prop1, neg-prop3, prop5, prop7],

time = 2, world = 4)
(action = (label = Action6,

xcond = [prop1, prop5, prop7],
ycond = [prop3, neg-prop4, neg-prop6]),
agent = Jill)

output> (properties = [prop1, prop3, neg-prop4,
prop5, neg-prop6, prop7],
time = 3, world = 4)

4.3 Lexical Semantic Functions

For the purposes of deontic specification on agentive actions, we define lexical se-
mantic functions. These functions allow us to functionally (in the mathematical
sense) determine actions in specified relationships. This is especially important
for the definition of obligation, where we want to determine which specific alter-
natives of a given action induce violation. One observation we want to account
for is the following. Informally, if it is obligatory for Jill to leave the room, then
Jill would violate the obligation by remaining in the room. On the other hand, if
it is obligatory for Jill to remain in the room, then Jill would violate the obliga-
tion by leaving the room. In other words, we see a reciprocal relationship between
actions in opposition. Furthermore, notice that if Jill’s leaving the room is oblig-
atory, then the action which fulfills the obligation and the action which violates
the obligation must both be executable in the same SOA. This means that the
actions have the same precondition properties. While the natural language case
provides the intuitions behind the functions, we implement them with respect to
our abstract actions. We only provide a sample of the lexical semantic functions
(see Wyner 2006 for further discussion).

Let us suppose a (partial) lexical semantic function findOpposites, which is
essentially a function from Action to Action. For processing, it takes a lexicon
and some constraints. For example, suppose findOpposites applied to the action
labelled Action6 yields Action7 and vice versa. While there are many potential
implementations of action opposition, we have defined the function findOpposites
such that it outputs an action which is the same as the input action but for the
negation of one of the postcondition propositions. This closely models the natural
language example of the opposition between leave and remain. As an illustration,
we have the following:



Example 4. input> findOpposites (label = Action6,
xcond = [prop1, prop7, prop5],
ycond = [prop3, neg-prop4, neg-prop6])

output> (label = Action7, xcond = [prop1, prop7, prop5],
ycond = [prop3, neg-prop4, prop6])

Three things are important about the function actionOpposites for our pur-
poses. First, we can calculate specific alternative actions which give rise to vi-
olations. As discussed earlier, it is unintuitive that just any action other than
the obligated action should give rise to violation. Second, as a calculation, we
can find an opposite for any action where the lexical structure allows one. For
the purposes of deontic specification, it need not be the case that every action
has an antonym (although one could define a function and lexical space to allow
this). Crucially, this holds for atomic as well as complex actions. And finally,
the function actionOpposites is defined so as to provide reciprocal actions; that
is, the opposite of Action6 is Action7 and vice versa. Thus, the function closely
models the natural language case discussed above.

4.4 Deontic Specifications

The previous three subsections are components of deontic specifications on ac-
tions, which we model on the following intuition. Suppose an agent Jill is obli-
gated to delivery a pizza. This implies that were she to deliver the pizza, in the
context after the delivery of the pizza, we would want to indicate that Jill has
delivered the pizza. Moreover, by doing so, she has fulfilled her obligation with
respect to her obligation to deliver the pizza. On the other hand, suppose Jill
were not to deliver the pizza, which is the opposite of delivering the pizza. In
this case, we should indicate in the subsequent context that Jill that has not de-
livered the pizza. Furthermore, by doing so, she has violated her obligation with
respect to delivering the pizza. We assume there are deontically underspecified
actions as well. For example, if Jill eats an apple, which she could do concur-
rently over the course of delivering the pizza or not delivering the pizza, it may
be that she does not incur a violation or fulfillment flag relative to that action.
While it is possible that we use a fixed list for some cases to determine when
violation markers arise, this will not work for complex actions or novel actions,
which are those actions that are not already prelisted in a lexicon.

To define the deontic specifications, we provide a type ContractFlag. This
type is a record having fields for: the action which is executed (indicated by
the label), the deontic specification on the action (i.e. obligated, permitted, or
prohibited), the action which is deontically specified (indicated by the label and
which can be distinct from the action that is executed), whether execution of the
action flags for violation or fulfillment, and the agent which executes the action.
Lists of contract flags are of type ContractFlagState.

Definition 4. type ContractFlag = Rec (actionDone::String,
deonticSpec::String, onSpec:: String,



valueFlag::String, agent::Agent)
type ContractFlagState = [ContractFlag]

The violation and fulfillment flags, which are String types that are values
of valueFlag, are key in reasoning what follows from a particular flag. In other
words, that an agent has violated an obligation on an action may imply that the
agent incurs an additional obligation. Indeed, such reasoning is central to legal
reasoning. This is further developed in the section below on Contrary-to-Duty
Obligations.

A deontic specifier such as obligated is essentially a function from an Agen-
tiveAction to a ContractFlagState. A list of actions DBAction and propositions
PropList are also input for the purposes of code development.

Definition 5. type obligatedCompFlag :: AgentiveAction →
DBAction → [PropList] → ContractFlagState

In Definition 6, we give a sample of Haskell code which calculates a Con-
tractStateFlag relative to an input agentive action inAgentiveAction (along with
a lexicon and compatibility constraints). Expressions of the form #label list re-
turn the value associated with given the label found in the list. Expressions of
the form [ x | x ← P ] are list comprehensions in Haskell; they are analogous to
the set-builder notation of set theory, where for S = {x + 2 | x ∈ {1,. . . ,5} ∧
odd(x)}, the result is S = {3, 5, 7}. List comprehension works much the same
way, but using lists rather than sets.

We discuss the code relative to the line numbers in Definition 6. Lines 1-2
constitute a guard on the function: if the action from the input agentive action
has an opposite (i.e. is a non-empty list), only then do we return a non-empty
ContractStateFlag list. Otherwise, we return the empty list (line 14). This reflects
the conceptual point that there can only be obligations on an action where the
obligation can be violated (cf. Wyner 2006). Thus, where we return a non-empty
list, there is some action in opposition to the input action. In lines 3-7, we create
a list of type ContractState which represents the fulfillment of the obligation on
the action. In lines 7-13, we find the opposite to the input action and use it to
create a list of type ContractState which represents the violation of the action.
We use ++ to conjoin these to lists to produce a list of type ContractFlagState.

Definition 6. obligatedCompFlag inAgentiveAction inDBAction inComp
1 | ((findOpposites (#action inAgentiveAction)
2 inDBAction inComp) /= []) =
3 ([ (actionDone=(#label (#action inAgentiveAction)),
4 deonticSpec=”Obligated”,
5 onSpec=(#label (#action inAgentiveAction)),
6 valueFlag=”Fulfilled”,
7 agent=(#agent inAgentiveAction))] ++
8 [(actionDone=(#label x), deonticSpec=”Obligated”,
9 onSpec=(#label (#action inAgentiveAction)),
10 valueFlag=”Violated”,



11 agent=(#agent inAgentiveAction))
12 | x ← (findOpposites
13 (#action inAgentiveAction) inDBAction [])])
14 | otherwise = []

To illustrate, let us assume that when we apply obligatedCompFlag to an
agentive action labelled Action6 with agent Jill. The output is:

Example 5. [(actionDone = Action6, agent = Jill, deonticSpec = Obligated,
onSpec = Action6, valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill, deonticSpec = Obligated,
onSpec = Action6, valueFlag = Violated)]

This is of type ContractStateFlag. It indicates that were Jill to execute Ac-
tion6, then Jill would have fulfilled her obligation on Action6. On the other
hand, were Jill to execute Action7, then Jill would have violated her obligation
on Action6.

As lists of records, we can manipulate them. For example, we can add to
or subtract from contract states. For example, the following represents Jill’s
obligation with respect to Action6 and Bill’s prohibition with respect to Action9.

Example 6. [(actionDone = Action6, agent = Jill, deonticSpec = Obligated,
onSpec = Action6, valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill, deonticSpec = Obligated,
onSpec = Action6, valueFlag = Violated),

(actionDone = Action9, agent = Bill, deonticSpec = Prohibited,
onSpec = Action9, valueFlag = Violated)]

Manipulations of ContractStateFlag expressions are crucial for modelling con-
tract change, which is key to the analysis and implementation of Contrary-to-
Duty Obligations.

4.5 Contrary-to-Duty Obligations

To model reasoning for CTDs, we enrich our States-Of-Affairs to include ex-
pressions of type contractFlagState as well as histories of type history. Histories
are lists of records of what was done, when, by whom, and whether it counts as
a fulfillment or violation relative to a deontic specification. Such records are of
type HistoryFlag. They are much like ContractState expressions, but record the
world and time at which the action is executed. An important difference between
HistoryFlag and ContractStateFlag expressions is in how they are processed. This
is further developed below.

Definition 7. type HistoryFlag = Rec (actionDone::String,
deonticSpec::String, onSpec:: String,
valueFlag::String, agent::Agent,
world::World, time::Time)

type History = [HistoryFlag]



Our SOAs are enriched with both a ContractFlagState and a History.

Definition 8. type SOAHistorical = Rec (properties::PropList,
actionDone::String, history::History,
contractFlagState::ContractFlagState,
world::World, time::Time)

Actions are executed relative to a SOAHistorical. Action execution doAgen-
tiveActionSOAHist is essentially a function from SOAHistorical to SOAHistor-
ical. We illustrate this informally below.

Let us suppose the following is the input SOAHistorical to doAgentiveAc-
tionSOAHist. Notice that the history is empty, which means that there is no
evidence that an action has been executed.

Example 7. (contractFlagState =
[(actionDone = Action6, agent = Jill,

deonticSpec = Obligated, onSpec = Action6,
valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)],

history = [],
properties = [prop1, prop7, prop5, neg-prop4, neg-prop6],
time = 2, world = 7)

Suppose that Jill does execute Action7 with respect to this SOAHistorical.
This means that we should indicate that Jill has violated her obligation. Thus,
in the history of the subsequent SOAHistorical, we record that Jill executed
Action7. We also record that this action violates Jill’s obligation to execute
Action6, as well as the world and time stamp where the violation occurred.
We also see that the time of the SOAHistorical is updated. The properties are
updated as well.

Example 8. (contractFlagState =
[(actionDone = Action6, agent = Jill,

deonticSpec = Obligated, onSpec = Action6,
valueFlag = Fulfilled),

(actionDone = Action7, agent = Jill,
deonticSpec = Obligated, onSpec = Action6,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)],

history = [(actionDone = Action7, agent = Jill,



deonticSpec = obligated, onSpec = Action6,
time = 2, valueFlag = Violated, world = 7)],

properties = [prop1, prop7, prop5, prop3, neg-prop4, prop6],
time = 3, world = 7)

The next step in the implementation of CTDs is to allow contract state mod-
ification relative to actions which have been executed in the history. Recall from
the discussion of CTDs that we only want a secondary obligation to arise in a
context where some other obligation has been violated. In other words, if a par-
ticular violation of an obligation is marked in the History, we want a secondary
obligation to be introduced into (or subtracted from) the ContractStateFlag of
the SOAHistorical. For example, suppose Jill is obligated to leave the room. If Jill
violates this obligation (by remaining in the room), then she incurs a secondary
obligation to pay £5 to Bill. On the other hand, if Jill fulfills her obligation, then
she incurs a secondary permission to eat an ice cream. The secondary obligations
or permissions only arise in cases where a primary obligation has been violated
or fulfilled.

To implement this, we have to examine whether a particular violation marker
appears in the history. Second, we have to make that violation marker trigger
ContractStateFlag modification. For instance, suppose that it is marked in the
History that Jill has violated her obligation to do Action6 by doing Action7.
As a consequence of that, we modify the current contract state by removing
her previous obligation and introducing an obligation on Action11. In such an
operation, only the ContractStateFlag is modified. This gives the appearance of
inference in a state, for there is no state change marked by temporal updating.

We have a function doRDS, which implements action execution for relativized
deontic specifications; it is a function from AgentiveActions and SOAHistorical
to SOAHistorical. It incorporates modification of the ContractStateFlag. Where
we assume the steps just outlined to the ContractStateFlag in (7), a result is
along the following lines:

Example 9. (contractFlagState =
[(actionDone = Action11, agent = Jill,

deonticSpec = Obligated, onSpec = Action11,
valueFlag = Fulfilled),

(actionDone = Action15, agent = Jill,
deonticSpec = Obligated, onSpec = Action11,
valueFlag = Violated),

(actionDone = Action9, agent = Bill,
deonticSpec = Prohibited, onSpec = Action9,
valueFlag = Violated)],

history = [(actionDone = Action7, agent = Jill,
deonticSpec = obligated, onSpec = Action6,
time = 2, valueFlag = Violated, world = 7)],

properties = [prop1, prop7, prop5, prop3, neg-prop4, prop6],
time = 3, world = 7)



The implementation captures the essence of the CTD problem. It models how
the execution of an action relative to a ContractFlagState induces a modification
of the ContractFlagState.

4.6 Deontic Specification on Complex Actions

We implement complex actions as records. Complex Actions have fields for the
input actions, the complex action operator, and the result of the application of
the operator to the input actions. We discuss here only the sequence operator,
as it raises the more complex and interesting problems for deontic specification.
We represent sequences schematically as follows.

Example 10. (inActionA = ActionA, inActionB = ActionB,
operator = SEQ, outAction = ActionC)

The outAction is, in this case, function composition of the input actions (pace
several restrictions on well-formedness): the preconditions of ActionC are the
preconditions of ActionA; the postconditions of ActionC are those of ActionB
together with those of ActionA which remain by inertia; the preconditions of
ActionB must be a subset of the postcondition properties of ActionA; and the
postcondition properties of ActionC must otherwise be consistent. Our decom-
position of actions into explicit preconditions and postconditions as well as our
explicit construction of complex actions relative to those conditions distinguishes
our approach from Dynamic Logic approaches, where there are basic actions.

In Meyer (1988), obligations on sequences are reduced to sequences of obliga-
tions on the component actions. In Khosla and Maibaum (1987), obligations on
sequences are irreducible to sequences of obligations, but rather are obligations
on the sequence per se. In Wyner (2006), we have further discussion of the sig-
nificance of the difference, particularly the CTD problem. Here, we simply point
out that the implementation provides ways to articulate these differences. For
example, suppose Jill is the agent of the sequence and ActionD is the opposite
of ActionA and ActionE is the opposite of ActionB. To provide the distributive
interpretation of obligation in Meyer (1988), Obldist, we need two components.
First, we have an initial contract state for the obligation on the first action:

Example 11. [(actionDone = ActionA, agent = Jill, deonticSpec = Obligated,
onSpec = ActionA, valueFlag = Fulfilled),

(actionDone = ActionD, agent = Jill, deonticSpec = Obligated,
onSpec = ActionA, valueFlag = Violated)]

In addition, we have a ContractStateModTrigger record which specifies that
in the context where the first action has been executed (checked in the history),
then the obligation on the second action of the sequence is introduced. This
results in the following contract state, which specifies the fulfillment and violation
cases for each of the component actions:



Example 12. [(actionDone = ActionA, agent = Jill, deonticSpec = Obligated,
onSpec = ActionA, valueFlag = Fulfilled),

(actionDone = ActionD, agent = Jill, deonticSpec = Obligated,
onSpec = ActionA, valueFlag = Violated),

(actionDone = ActionB, agent = Jill, deonticSpec = Obligated,
onSpec = ActionB, valueFlag = Fulfilled),

(actionDone = ActionE, agent = Jill, deonticSpec = Obligated,
onSpec = ActionB, valueFlag = Violated)]

We might say that the obligated sequence has been fulfilled where the obli-
gations on each action have been fulfilled and in the right order.

In contrast, we could represent Khosla and Maibaum’s interpretation (1987)
by applying the operator to ActionC with a collective interpretation of obliga-
tion, Oblcoll. We suppose that ActionF is the opposite of ActionC :

Example 13. [(actionDone = ActionC, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Fulfilled),

(actionDone = ActionF, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Violated),

The most interesting case is the interruptable notion of obligation on a se-
quence. In this case, there is a violation and fulfillment flag with respect to the
whole sequence, and the actions must apply in a given order. We assume the fol-
lowing initial contract state, where we emphasize that the marker for violation
is relative to the complex action per se and there is no marker for fulfillement
of the sequence:

Example 14. [(actionDone = ActionD, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Violated),

The second component is the ContractStateModTrigger, which specifies that
after execution of the first action ActionA, an obligation to execute the second
action arises such that fulfillment of this obligation marks fulfillment of the
obligation of the sequence, while violation of this obligation marks violation of
the obligation on the sequence. The resulting contract state looks like:

Example 15. [(actionDone = ActionD, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Violated),

(actionDone = ActionB, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Fulfilled),

(actionDone = ActionE, agent = Jill, deonticSpec = Obligated,
onSpec = ActionC, valueFlag = Violated),

It is in such cases that a productive and compositional analysis comes to the
fore.

These examples show that there are alternative definitions which can be used
to define deontic specification on complex actions. The particular definitions
may be designed to suit particular purposes and interpretations. The language



is thus very expressive and can be used to implement different notions of values
applied to actions for the purposes of simulation in a multi-agent system. Further
discussion appears in Wyner (2006).

5 Some Comparisons

There have been several recent efforts to operationalize deontic specifications.
Some we have already discussed. For example, Garcia-Camino et. al. (2005) and
Aldewereld et. al. (2005) appear to use deontic specifications to filter out or sort
actions. We do not believe that this represents the essence of the deontic notions.
Sergot (2006) uses the event calculus and only considers permissions. While we
may eventually want to integrate deontic specifications into an event calculus,
we would want to be clear about deontic specifications themselves; it does not
seem necessary to add the additional and potentially obscuring components of
the event calculus. In addition, Sergot (2006) has neither complex actions nor
an analysis of the CTD problem. Boella and van der Torre (2006 present an
architecture for normative systems which is similar in that deontic specifications
add information to basic information. However, it is unclear how they implement
their design, integrate complex actions, or account for the CTD problem.

6 Other Elements of the Implementation and Future
Research

One key aspect of the implementation which we have not discussed here are con-
sistency constraints and implicational relations between deontic specifications.
For this, we define a notion of the negation of a deontic specification. We also
introduce lexical relations between positive and negative deontic specifications.
Further discussion appears in Wyner (2006).

We plan to enrich the structure of agents to give them some capacity to reason
with respect to their goals, preferences, and relationships to other agents. As we
want to model organizational behavior, we want to add roles, powers, a counts as
relation between actions, and organizational struture to the implementation. The
jural relations of rights and duties can also be incorporated into the language.
While the implementation provides a significant and novel advance in the field,
much yet remains to be done.
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