A Graphical Framework for the Analysis of Mixed Multi-Unit Combinatorial Auctions

M. Vinyals1 A. Giovannucci1 J.A. Rodriguez1 B. Rosell1 J. Cerquides 2

1IIIA-CSIC
Artificial Intelligence Research Institute

2WAI
Universitat de Barcelona

3rd MARA Get Together, 2008
Outline

- Mixed Multi-Unit Combinatorial Auctions
- The Mixed Multi-Unit Auction Platform
- Automated design of electronic institutions
Outline

- Mixed Multi-Unit Combinatorial Auctions
- The Mixed Multi-Unit Auction Platform
- Automated design of electronic institutions
Mixed Multi-Unit Combinatorial Auctions
The Mixed Multi-Unit Auction Platform
Automated design of electronic institutions
What are Mixed Multi-unit Combinatorial Auctions?

Suppose that an auctioneer allows agents to bid for goods to buy, to sell or to transform.

A bidder would be able to express his ability to transform goods at a certain cost:

$1 \text{ gin} + 1 \text{ lemon juice} \rightarrow 1 \text{ gin lemon} \quad \text{for 5 \$}$

We call the resulting model mixed auctions (direct and reverse auctions combined) Mixed Multi-Unit Combinatorial Auctions.

Generalizes several type of combinatorial auctions (Cerquides et al, IJCAI 2007)
What are Mixed Multi-unit Combinatorial Auctions?

- Suppose that an auctioneer allows agents to bid for goods to buy, to sell or to transform.
- A bidder would be able to express his ability to transform goods at a certain cost:
 \[1 \text{ gin} + 1 \text{ lemon juice} \rightarrow 1 \text{ gin lemon} \quad \text{for 5 \$} \]
- We call the resulting model mixed auctions (direct and reverse auctions combined) **Mixed Multi-Unit Combinatorial Auctions**.
- Generalizes several type of combinatorial auctions (Cerquides et al, IJCAI 2007).
What are Mixed Multi-unit Combinatorial Auctions?

Suppose that an auctioneer allows agents to bid for goods to buy, to sell or to transform.

A bidder would be able to express his ability to transform goods at a certain cost:

\[1 \text{ gin} + 1 \text{ lemon juice} \rightarrow 1 \text{ gin lemon} \text{ for 5 \$} \]

We call the resulting model mixed auctions (direct and reverse auctions combined) **Mixed Multi-Unit Combinatorial Auctions**

Generalizes several type of combinatorial auctions (Cerquides et al, IJCAI 2007)
What are Mixed Multi-unit Combinatorial Auctions?

- Suppose that an auctioneer allows agents to bid for goods to buy, to sell or to transform.
- A bidder would be able to express his ability to transform goods at a certain cost:
 \[1 \text{ gin} + 1 \text{ lemon juice} \rightarrow 1 \text{ gin lemon} \text{ for 5 dollars} \]
- We call the resulting model mixed auctions (direct and reverse auctions combined) **Mixed Multi-Unit Combinatorial Auctions**.
- Generalizes several type of combinatorial auctions (Cerquides et al, IJCAI 2007)
Example of MMUCA: GIN & LEMON

Bidder 1, -3€

Bidder 3, -7€

Bidder 2, -5€

Bidder 4, -5€

Bidder 5, -6€

Bidder 6, 15€

OPTIMAL SOLUTION?
Goals:

- Prototype and demonstrate the possibilities of application of MMUCA for Supply Chain Formation.
- Experiment with graphical visualization tools and user interfaces for MMUCA and evaluate their usefulness and comprehensibility.
- Integrate access to MMUCA tools.
- Automate the process of generation of an electronic institution for Supply Chain Formation.
Architecture of the MMUCA platform

A Graphical Framework for the Analysis of MMUCA
The Supply Chain Generation Process

- An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids.
 - Bids submitted are loaded in the MMUCA viewer.
 - The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chain configuration.
 - Optimal solution is loaded in the MMUCA viewer.
 - Automated generation of the supply chain processes as the specification of an electronic institution.

The resulting specification can be either:
 - Uploaded by ISLANDER for further refinements.
 - Uploaded by AMELI to run the supply chain as an electronic institution.
The Supply Chain Generation Process

- An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids.
- Bids submitted are loaded in the MMUCA viewer.
- The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chain configuration.
- Optimal solution is loaded in the MMUCA viewer.
- Automated generation of the supply chain processes as the specification of an electronic institution.
 The resulting specification can be either:
 - Uploaded by ISLANDER for further refinements
 - Uploaded by AMELI to run the supply chain as an electronic institution
A Graphical Framework for the Analysis of MMUCA
An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids. Bids submitted are loaded in the MMUCA viewer. The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chain configuration. Optimal solution is loaded in the MMUCA viewer. Automated generation of the supply chain processes as the specification of an electronic institution. The resulting specification can be either:

- Uploaded by ISLANDER for further refinements
- Uploaded by AMELI to run the supply chain as an electronic institution
A Graphical Framework for the Analysis of MMUCA
The Supply Chain Generation Process

- An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids.
- Bids submitted are loaded in the MMUCA viewer.
- The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chain configuration.

Optimal solution is loaded in the MMUCA viewer.

- Automated generation of the supply chain processes as the specification of an electronic institution.
 The resulting specification can be either:
 - Uploaded by ISLANDER for further refinements.
 - Uploaded by AMELI to run the supply chain as an electronic institution.
A Graphical Framework for the Analysis of MMUCA
The Supply Chain Generation Process

- An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids.
- Bids submitted are loaded in the MMUCA viewer.
- The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chain configuration.
- Optimal solution is loaded in the MMUCA viewer.
- Automated generation of the supply chain processes as the specification of an electronic institution.
 - The resulting specification can be either:
 - Uploaded by ISLANDER for further refinements.
 - Uploaded by AMELI to run the supply chain as an electronic institution.
Institutions in the sense proposed by North “...set of artificial constraints that articulate agent interactions”
Electronic Institutions Development Environment (EIDE)

http://e-institutions.iiiia.csic.es

INSTITUTIONAL DESIGN BY HAND!

START

design & verify

ISLANDER

SIMDEI

AMELI

aBUILDER

test & deployment

GO

simulate

development

IIIA-CSIC, WAI-UB
A Graphical Framework for the Analysis of MMUCA
The xml specifies for the generated supply chain:

- Performance Structure
- Roles
- Ontology
- Scenes & protocols
A Graphical Framework for the Analysis of MMUCA
Islander

BUY

DELIVER & RECEIVE

DELIVER

A Graphical Framework for the Analysis of MMUCA
Demo: MMUCA platform

A Graphical Framework for the Analysis of MMUCA