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Setting
• Similar to Nicolas’ tutorial

– Non-divisible, non shareable resources
– Agents have utility function, with no externalities
– The question is how to allocate efficiently (w.r.t the

utilitarian social welfare ∑ui)
• But: agents can only negotiate with their neighbours.



Outline of this talks

1. Miopic Agents
– Will optimal allocation be reached ? How

far from optimal ? What is the dynamic of
resources on the graph ?

2. Non-Miopic/Learning Agents
– Although agents know nothing about

other non-neighbour agents, is it possible
to do better than miopic ?



Graphs induce Sub-optimal outcomes

• Even in simple settings (additive utilities), optimal
allocation is no more guaranteed.

• If the graph was complete, optimal allocation would
be reached   (« Bottleneck effect »)

• To overcome this, we would need non-myopic/non
individualy ration agents

r2



Our goal

• Find a way to caracterize the bottleneck
effect, with parameters of the graph

• Study the number of « moves » of a resource
in a graph, and relate to the sw

• Find a « realistic » set of assumptions under
which this can be computed.



Setting/Assumptions

• Additive utilities
simpler setting to analyse, but: we expect our results to hold for
arbitrary utilities

• Utilities drawn from an
unknown distribution D
Unrealistic: equivalently, agents are
placed randomly on the graph,
and cannot change their
placement the way
they want.



Trajectory of a resource

• Which path can it take ?

For e.g., r1:
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Trajectory of a resource

• Which path can it take?

For e.g., r3:



Trajectory of a resource

• Which path can it take?

For e.g., r3:



Utilities -> digraph



Trajectory of a resource
• When utilities are modular, trajectories are

independant

• With the initial allocation, the directed graph
contains all the information to compute the
trajectory of r.

• Goal : estimate the number of steps accross
the graph made by each resource.



Expected trajectory length on chains (1/4)

• Consider a graph with three agents 1,2,3

• Suppose their utilities are drawn randomly

• Focus on a single resource

• This induces an order among agents and a digraph



Expected trajectory length on chains (2/4)

• Utilities are drawn randomly from D
• This implies that all orders are equiprobable

• but not all digraphs !!!



Expected trajectory length on chains (2/4)

• Utilities are drawn randomly from D
• This implies that all orders are equiprobable

• but not all digraphs !!!



Expected trajectory length on chains (3/4)

• Utilities are drawn randomly from D
• This implies that all orders are equiprobable

• but not all digraphs !!!

Pr=1/6

Pr=2/6

Pr=2/6

Pr=1/6



Expected trajectory length on chains (4/4)

• Suppose resource r1 is located on agent 0.
• Compute trajectory of each digraph
• Compute length of expected trajectory

Pr=1/6 , len=2

Pr=2/6 , len=0

Pr=2/6 , len=1

Pr=1/6 , len=0

E[len]=2/3



Average Length of a walk
in any graph of bounded degree δ

Corrolary: If coefficients of utilities are distributed
uniformly on [0,α] we get:



Removing assumptions
• Addivity of utilities

– Conjecture : trajectory length is approximately the same

• Independance of distribution of agents
– There are 2 categories of individual (e.g. red & white)

caracterized by two different distributions. Each agent can
choose to be one of those

– Conjecture: 2



Conclusion

• Assuming conjectures, result is quite
« general »

• Better bounds to be found
– Bound could be much tighter than O(d2)
– bounds based on the degree distribution.

• Except for graphs with high degree (small
world, complete graphs, expander graphs),
resources do not move a lot.

• Many other types of sw can be estimated with
this method.



Outline of this talks

1. Miopic Agents
– Will optimal allocation be reached ? How

far from optimal ? What is the dynamic of
resources on the graph ?

2. Non-Miopic/Learning Agents
– Although agents know nothing about

other non-neighbour agents, is it possible
to do better than miopic ?



MARA on Graphs : finding opt allocation

• With central authority
– Global optimization

• Finding the opt allocation w.r.t. a criterion

• Without central authority
– Local optimization/learning, depending on

the agents knowledge



From optimization to learning

– Assume at each time step, each agent can propose a transaction
with one of its neighbors.

– Local optimization/learning, depending on the agents knowledge
(privacy issues)

• Agents know everything (graph+utilities+allocation)
Agents know the graph only
Agents know nothing except the identity of their neighbor

optimization

learning



Knowing the graph…what can we do ?

• No knowledge about:
– Current allocation (except own goods)
– Utilities

• With which neighbor should agents trade ?
• Assume resources travel

freely on the graph, and
randomly

• Then, for w,  v1 > v2

U1 U2 U3

W

V1 V2



Knowing the graph…what can we do ?

• Assumption: resources travel freely on the graph
and randomly, what is the prob that r is on v ?

• Related to:
– network flow problems
– Stationary distributions in markov models
– Spectral graph theory

U1 U2 U3

W

V1 V2

P=18% P=18% P=11%

P=29% P=10%

P=14%

v1 > v2



Reasoning with very partial information:
Multiagent Learning

• Mal Learning:
« given that an agent has no
control/knowledge over its opponent,
how should it act ? »

• Mainly Economic litterature / game
theory
 [Fudenberg,Leving]



Reasoning with very partial information
Multiagent Learning - Main aspects

• Information available to learner:
– The full matrix
– Payoffs of actions taken by others
– Payoffs of our actions only (partial

monitoring)+actions of others
– Our payoff only

• Define Criteria
– Rationality. (best response against a stationary

opponent)
– Convergence. (nash in self-play)

• Define possible States/actions



Our setting in MAL
• Types of agents

– Altruistic, maximizing sw (team game)
– Selfish (general sum game)

• From MARA to games:
– State = Allocation
– Actions = selling r to a for price x, buying r to b

or just: trade with x
• Modeling rewards:

– Independant learners (no interactions)
– Graphical games (interaction between neighbors only)
– Repeated game (no states)
– Stochastic games (each state has its matrix game)



Graphical Games
• Undirected graph G capturing local (strategic) interactions
• Each player represented by a vertex
• N_i(G) : neighbors of i in G (includes i)
• Assume: Payoffs expressible as M_i(a’), where a’ over only N_i(G)
• Graphical game: (G,{M’_i})
• Compact representation of game; analogous to graph + CPTs
• Exponential in max degree (<< # of players)
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• Computation of correlated equilibria : sparse LP [kearns]
• Learning in a cooperative setting [guestring’02]



over-simplified settings
• Independant learners (no interactions)

– Define States. e.g. state=owned resources.
Actions = « trade with a », « trade with b »..

– WPL [AAMAS’07]
– Wolf-PHC [IJCAI’01]
– Coin [NIPS’99]

• Suppose single negotiation process
=> not enough time to learn state space. What can be
done ?
 Independant learners without states

• Multi-armed bandit algorithms (no state)
– Can converge to nash in zero-sum game
– Minimizes regret in general sum game
– E.g. ε-greedy algorithm



Conclusion

• Learn quickly with bandits
• Learn slowly but accurately with

stochastic (graphical) games
• In fully cooperative setting (non-selfish),

many efficient learning algorithms


