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Abstract

We propose a logical framework combining a game-theoretic study of abilities of
agents to achieve quantitative objectives in multi-player games by optimizing payoffs
or preferences on outcomes with a logical analysis of the abilities of players for
achieving qualitative objectives of players, i.e., reaching or maintaining game states
with desired properties. We enrich concurrent game models with payoffs for the
normal form games associated with the states of the model and propose a quantitative
extension of the logic ATL∗ enabling the combination of quantitative and qualitative
reasoning.

1 Introduction

Amongst the different traditions in studying strategic abilities of agents in multi-player
games we can distinguish two rather characteristic ones:

Quantitative reasoning about strategic abilities to achieve quantitative objectives, such
as optimizing payoffs (e.g., maximizing rewards or minimizing cost). This tradition comes
from game theory and economics and usually studies one-shot normal form games, their
(finitely or infinitely) repeated versions, and extensive form games.

Qualitative reasoning deals with strategic abilities of players for achieving qualitative
objectives: reaching or maintaining outcome states with desired properties, e.g., winning
states, or safe states, etc. It comes from logic and computer science.

Put as a slogan, the former tradition is concerned with how a player can become max-
imally rich, or how to pay as little cost as possible, while the latter tradition – with how
a player can achieve a state of ‘happiness’, e.g. winning, or to avoid reaching a state of
‘unhappiness’ (losing) in the game.

The most essential technical difference between qualitative and quantitative players’
objectives is that the former typically refer to (a temporal pattern over) Boolean properties
of game states on a given play and can be monitored locally whereas the latter are determined
by the entire history of the play (accumulated payoffs) or even the whole play (its value, being
a limit of average payoffs, or of discounted accumulated payoffs). It is therefore generally
computationally more demanding and costly to design strategies satisfying quantitative
objectives or to verify their satisfaction under a given strategy of a player or coalition.

Remark. More generally, decision theory and game theory study rational behaviour
of players aiming at optimizing their preferences between outcomes. Preferences can be
regarded as both qualitative and quantitative objectives and, if equipped with a suitable
mechanism for preference aggregation over a series of outcomes accumulated in the course
of the play, then our work presented here, based on quantitative payoffs in naturally ordered
domains, can be suitably generalized to that setting.

1This is a slightly revised version of [10].



The two traditions above have followed rather separate developments, with generally
quite different agendas, methods and results, including, inter alia:

• on the purely qualitative side, logics of games and multiagent systems, such as the
Coalition logic CL [29], the Alternating time temporal logic ATL [4], and variations
of it, see e.g. [23], [32], [26], etc., formalizing and studying qualitative reasoning in
concurrent game models;

• some single-agent and multi-agent bounded resource logics [9, 3, 27] extending or mod-
ifying concurrent game models with some quantitative aspects by considering cost of
agents’ actions and reasoning about what players with bounded resources can achieve.

• extensions of qualitative reasoning (e.g., reachability and Büchi objectives) in multi-
player concurrent games with ’semi-quantitative’ aspects by considering a preference
preorder on the set of qualitative objectives, see e.g., [6], [7], thereby adding payoff-
maximizing objectives and thus creating a setting where traditional game-theoretic
issues such as game value problems and Nash equlibria become relevant.

• deterministic or stochastic infinite games on graphs, with qualitative objectives: typ-
ically, reachability, and more generally – parity objectives or objectives specified as
ω-regular languages over the set of plays, see e.g. [19], [17], [18], [20], [11], [15].

• on the purely quantitative side, first to mention repeated games, extensively studied
in game theory (see e.g., [28]), which can be naturally treated as simple, one-state
concurrent game models with accumulating payoffs paid to each player after every
round and no qualitative objectives;

• from a more computational perspective, various stochastic games with quantitative
objectives, such as energy games and discounted and mean-payoff games have been
studied, see e.g. [30].

• the conceptually different but technically quite relevant study of counter automata,
Petri nets, vector addition systems, etc. – essentially a study of the purely quantitative
single-agent case of concurrent game models (see e.g. [22]), where only accumulated
payoffs but no qualitative objectives are taken into account and a typical problem is
to decide reachability of payoff configurations satisfying formally specified arithmetic
constraints from a given initial payoff configuration.

Besides all these, there have been several recent threads of research proposing the com-
bination of qualitative and quantitative game analysis, and thus coming closer in spirit to
the present work:

• Zelonka [33] considers infinite 2-player turn-based games where every move is associ-
ated with a ‘reward’ (e.g., priority in parity games) after every move and eventually
player 2 pays player 1 a payoff determined by the resulting infinite sequence of re-
wards. The objectives of the players are to optimize payoff (for player 1), respectively
cost (for player 2).

• mean-payoff parity games [16], [14], [13], [5] study 2-player games combining parity
objectives with quantitative requirements for the mean payoff;

• parity energy games [12] study 2-player turn-based games combining parity objectives
with requirements for maintenance of non-negative energy.

Other relevant references discussing the interaction between qualitative and quantitative
reasoning in multi-player games, include [31], [24],



Among the most studied models in the qualitative reasoning tradition are concurrent
game models [4, 29]. On the one hand they are richer than normal form games, as they
incorporate a whole family of such games, each associated with a state of a transition system;
but on the other hand, they are somewhat poorer because the outcomes of each of these
normal form games, associated with a given state, are simply the successor states with their
associated games, etc. whereas no payoffs, or even preferences on outcomes, are assigned.
Thus, plays in concurrent game models involve a sequence of possibly different one-shot
normal form games played in succession, and all that is taken into account in the purely
logical framework are the properties – expressed by formulae of a logical language – of the
states occurring in the play. Concurrent game models can also be viewed as generalization
of (possibly infinite) extensive form games where cycles and simultaneous moves of different
players are allowed, but no payoffs are assigned.

This project purports to combine the two agendas in a common logical framework,
by enriching concurrent game models with payoffs for the one-shot normal form games
associated with the states, and thus enabling the combination of quantitative game-theoretic
reasoning with the qualitative logical reasoning. Again, put as a slogan, our framework
allows reasoning about whether/how a player can reach or maintain a state of ‘happiness’
while becoming, or remaining, as rich as (rationally) possible, or paying the least possible
price on the way. Here we introduce and discuss a general framework of models and logics
for combined quantitative and qualitative reasoning that would naturally cover each of the
topics listed above, and to initiate a long term study on it.

2 Preliminaries

A concurrent game model [4] (CGM) S = (Ag,St, {Acta}a∈Ag, {acta}a∈Ag, out,Prop, L)
comprises:

• a non-empty, fixed set of players Ag = {1, . . . , k} and a set of actions Acta 6= ∅ for
each a ∈ Ag.
For any A ⊆ Ag we will denote ActA :=

∏
a∈A Acta and will use −→α A to denote a tuple

from ActA. In particular, ActAg is the set of all possible action profiles in S.

• a non-empty set of game states St.

• for each a ∈ Ag a map acta : St→ P(Acta) setting for each state s the actions available
to a at s.

• a transition function out : St× ActAg → St that assigns the (deterministic) successor
(outcome) state out(q,−→α Ag) to every state q and action profile −→α Ag = 〈α1, . . . , αk〉
such that αa ∈ acta(q) for every a ∈ Ag (i.e., every αa that can be executed by player
a in state q).

• a set of atomic propositions Prop and a labelling function L : St→ P(Prop).

Thus, all players in a CGM execute their actions synchronously and the combination
of these actions, together with the current state, determines the transition to a (unique)
successor state in the CGM.

The logic of strategic abilities ATL∗ (Alternating-Time Temporal Logic), introduced
and studied in [4], is a logical system, suitable for specifying and verifying qualitative ob-
jectives of players and coalitions in concurrent game models. The main syntactic construct
of ATL∗ is a formula of type 〈〈C〉〉γ, intuitively meaning: “The coalition C has a collec-
tive strategy to guarantee the satisfaction of the objective γ on every play enabled by that
strategy.” Formally, ATL∗ is a multi-agent extension of the branching time logic CTL*,
i.e., multimodal logic extending the linear-time temporal logic LTL–comprising the tempo-
ral operators X (“at the next state”), G (“always from now on”) and U (“until”)–with



strategic path quantifiers 〈〈C〉〉 indexed with coalitions C of players. There are two types of
formulae of ATL∗, state formulae, which constitute the logic and that are evaluated at game
states, and path formulae, that are evaluated on game plays. These are defined by mutual
recursion with the following grammars, where C ⊆ Ag, p ∈ Prop: state formulae are defined
by ϕ ::= p | ¬ϕ | ϕ∧ϕ | 〈〈C〉〉γ, and path formulae by γ ::= ϕ | ¬γ | γ ∧ γ | Xγ | Gγ | γU γ.

The logic ATL∗ is very expressive and that comes at a high computational price: satis-
fiability and model checking are 2ExpTime-complete. A computationally better behaved
fragment is the logic ATL, which is the multi-agent analogue of CTL, only involving state
formulae defined by the following grammar, for C ⊆ Ag, p ∈ Prop: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ |
〈〈C〉〉Xϕ | 〈〈C〉〉Gϕ | 〈〈C〉〉(ϕUϕ). For this logic satisfiability and model checking are
ExpTime-complete and P-complete, respectively. We will, however, build our extended
logical formalism on the richer ATL∗ because we will essentially need the path-based seman-
tics for it.

Arithmetic Constraints. We define a simple language of arithmetic constraints
to express conditions about the accumulated payoffs of players on a given play. For this
purpose, we use a set VAg = {va | a ∈ Ag} of special variables to refer to the accumulated
payoffs of the players at a given state and denote by VA the restriction of VAg to any group
A ⊆ Ag. The payoffs can be integers, rationals2, or any reals. We denote the domain of
possible values of the payoffs, assumed to be a subset of the reals R, by D and use a set of
constants symbols X, with 0 ∈ X, for names of special real values (see further) to which we
want to refer in the logical language.

For fixed sets X and A ⊆ Ag we build the set T (X,A) of terms over X and A from
X ∪ VA by applying addition, e.g. va + vb. An evaluation of a term t ∈ T (X,A) is a
mapping η : X ∪ VA → D. We write η |= t to denote that t is satisfied under the evaluation
η. Moreover, if some order of the elements X ∪ VA is clear from context, we also represent
an evaluation as a tuple from D|A|+|VA| and often assume that elements from X have their
canonic interpretation. The set AC(X,A) of arithmetic constraints over X and A consists
of all expressions of the form t1 ∗ t2 where ∗ ∈ {<,≤,=,≥, >} and t1, t2 ∈ T (X,A). We use
ACF(X,A) to refer to the set of Boolean formulae over AC(X,A); e.g. (t1 < t2)∧ (t2 ≥ t3) ∈
ACF(X,A) for t1, t2, t3 ∈ T (X,A). We note that the language ACF(X,A) is strictly weaker
than Presburger arithmetic, as it involves neither quantifiers nor congruence relations.

We also consider the set APC(X,A) of arithmetic path constraints being expressions
of the type wa ∗ c where a ∈ Ag, ∗ ∈ {<,≤,=,≥, >} and c ∈ X. The meaning of wa
is to represent the value of the current play for the player a. That value can be defined
differently, typically by computing the accumulated payoff over the entire play, by using
a future discounting factor, or by taking the limit – if it exists – of the mean (average)
accumulated payoff (cf. [28]). We note that the discounted, accumulated, mean or limit
payoffs may take real values beyond the original domain of payoffs D; so, we consider the
domain for X to be a suitable closure of D.

3 Concurrent Game Models with Payoffs and Guards
Definition 1 (Guards) Let a ∈ Ag. An (individual) a-guard is an arithmetic constraint
formula α over X ∪ V{a}.

We now extend concurrent game models with utility values for every action profile applied
at every state and with guards that determine which actions are available to a player at
a given configuration, consisting of a state and a utility vector, in terms of arithmetic
constraints on the utility of that player.

2Note that models with rational payoffs behave essentially like models with integer payoffs, after once-off
initial re-scaling.
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(D ,D )

(C ,D )
(D ,C )

(C ,C )
(D ,D )

(C ,D )
(D ,C )

I \ II C D
C 2, 2 − 3, 3
D 3, − 3 − 1, − 1

Prisoners Dilemma

I \ II C D
C 4, 3 0, 2
D − 1, − 2 2, 3

Battle of Sexes

I \ II C D
C 1, 1 − 1, − 1
D − 1, − 1 1, 1

Coordination Game

Figure 1: A simple CGMGP .

Definition 2 (Guarded CGM with payoffs) A guarded CGM with payoffs (CGMGP )
is a tuple

M = (S, payoff, {ga}a∈Ag)
where S = (Ag,St, {Acta}a∈Ag, {acta}a∈Ag, out,Prop, L) is a CGM and:

• payoff : Ag × St × ActAg → D is a payoff function assigning for every state s and
action profile applied at s a payoff to every agent. We will write payoffa(s,

−→α ) for
payoff(a, s,−→α ).

• ga : St × Acta → ACF(X, a), for each a ∈ Ag, is a guard function that assigns for
each state s ∈ St and action α ∈ Acta an arithmetic constraint formula ga(s, α) that
determines whether α is enabled for a at the state s given the value of a’s current
accumulated payoff in the play.

A guard ga(s, α) is called state-based if ga(s, α) ∈ ACF(X).

Every guard ga must satisfy consistency conditions that enable at least one action for
a at s. Formally, for each s ∈ St, the formula

∨
α∈Acta ga(s, α) must be valid.

An initialized CGMGP (ICGMGP ) is a pair (M, init) where M is a CGMGP and
init = (s0, u

0
1, . . . , u

0
k) is an initial configuration, where s0 ∈ St is an initial state and−→u0 = (u01, . . . , u

0
k) is the vector of initial utilities of all players.

The guard ga refines the function acta from the definition of a CGM, which can be
regarded as a guard function assigning to every state and action a constant arithmetic
constraint true or false. In our definition the guards assigned by ga only depend on the
current state and the current accumulated payoff of a. The idea is that when the payoffs
are interpreted as costs, penalties or, more generally, consumption of resources the possible
actions of a player would depend on her current availability of utility/resources.

Example 1 Consider the CGMGP shown in Figure 1 with 2 players, I and II, and 3 states,
where in every state each player has 2 possible actions, C (cooperate) and D (defect). The
transition function is depicted in the figure. The normal form games associated with the
states are respectively versions of the Prisoners Dilemma at state s1, Battle of the Sexes at
state s2 and Coordination Game at state s3.

The guards for both players are defined at each state so that the player can apply any
action if she has a positive current accumulated payoff, may only apply action C if she



has accumulated payoff 0; and must play an action maximizing her minimum payoff in the
current game otherwise. The initial payoffs of both players are 0.

Configurations, plays, and histories. Let M be a CGMGP defined as above. A
configuration (in M) is a pair (s,−→u ) consisting of a state s and a vector −→u = (u1, . . . , uk)
of currently accumulated payoffs, one for each agent, at that state. Hereafter we refer to
accumulated payoffs as utility, at a given state. We define the set of possible configurations
as Con(M) = St× D|Ag|. The (partial) configuration transition function is defined as

ôut : Con(M)× ActAg → Con(M),

such that ôut((s,−→u ),−→α ) = (s′,
−→
u′ ) iff:

(i) out(s,−→α ) = s′ (s′ is a successor of s if −→α is executed).

(ii) assigning the value ua to va satisfies the guard ga(s, αa) for each a ∈ Ag, i.e. ua |=
ga(s, αa) (each agent’s move αa is enabled at s by the respective guard ga applied to
the current accumulated utility value ua).

(iii) u′a = ua + payoffa(s,
−→α ), for each a ∈ Ag.

An initialized CGMGP with a designated initial configuration (s0,
−→u0) gives rise to a

configuration graph on M consisting of all configurations in M reachable from (s0,
−→u0) by

the configuration transition function. A play in a CGMGP M is an infinite sequence
π = c0

−→α 0, c1
−→α 1, . . . from (Con(M) × Act)ω such that cn ∈ ôut(cn−1,

−→α n−1) for all n > 0.
The set of all plays in M is denoted by PlaysM. Given a play π we use π[i] and π[i,∞]
to refer to the ith element and to the subplay starting in position i of π, respectively. A
history is any finite initial sequence h = c0

−→α 0, c1
−→α 1, . . . , cn ∈ (Con(M) × Act)∗Con(M)

of a play in PlaysM. The set of all histories is denoted by HistM. For any history h we
also define h[i] as for plays and additionally h[last ] and h[i, j] to refer to the last state on
h and to the sub-history between i and j, respectively. Finally, we introduce functions
·c, ·u, and ·s which denote the projection of a given play or history to the sequence of
its configurations, utility vectors, and states, respectively. For illustration, let us consider
the play π = c0

−→α 0, c1
−→α 1, . . . . We have that π[i,∞] = ci

−→α i, ci+1
−→α i+1, . . . ; π[i] = ci

−→α i;
πc[i,∞] = ci, ci+1, . . . ; π

c[i] = ci; π
a[i] = −→α i; πu[i] = vi; and πs[i] = si where ci = (si,

−→ui).

Example 2 Some possible plays starting from s1 in Example 1 are given in the following
where we assume that the initial accumulated payoff is 0 for both agents. We note that this
implies that the first action taken by any agent is always C.

1. Both players cooperate forever: (s1, 0, 0), (s1, 2, 2), (s1, 4, 4), . . .

2. After the first round both players defect and the play moves to s2, where player
I chooses to defect whereas II cooperates. Then I must cooperate while II
must defect but at the next round can choose any action, so a possible play is:
(s1, 0, 0), (s1, 2, 2), (s2, 1, 1), (s2, 0,−1), (s2, 0, 1), (s2, 0, 3), (s2, 0, 5), . . .

3. After the first round player I defects while II cooperates and the play moves to s3,
where they can get stuck indefinitely, until – if ever – they happen to coordinate, so a
possible play is:
(s1, 0, 0), (s1, 2, 2), (s3, 5,−2), (s3, 4,−3), (s3, 3,−4), . . . (s3, 0,−7), (s3,−1,−8), . . ..

Note, however, that once player I reaches accumulated payoff 0 he may only apply C at
that round, so if player II has enough memory or can observe the accumulated payoffs
of I he can use the opportunity to coordinate with I at that round by cooperating, thus
escaping the trap at s3 and making a sure transition to s2.



4. If, however, the guards did not force the players to play C when reaching accumulated
payoffs 0, then both players could plunge into an endless misery if the play reaches s3.

Strategies. A strategy of a player a is a function sa : Hist→ Act such that if sa(h) = α
then hu[last]a |= ga(h

s[last], α); that is, actions prescribed by a strategy must be enabled by
the guard. Our definition of strategy is based on histories of configurations and actions, so it
extends the notion of strategy from [4] where it is defined on histories of states, and includes
strategies, typically considered e.g. in the study of repeated games, where often strategies
prescribe to the player an action dependent on the previous action, or history of actions,
of the other player(s). Such are, for instance, Tit-for-tat or Grim-trigger in repeated
Prisoners Dillemma; likewise for various card games, etc. Since our notion of strategy is very
general, it easily leads to undecidable model checking problems. So, we also consider some
natural restrictions, such as: state-based, action-based or configuration-based, memoryless,
bounded memory, of perfect recall strategies 3. Here we adopt a generic approach and assume
that two classes of strategies Sp and So are fixed as parameters, with respect to which the
proponents and opponents select their strategies, respectively. The proponent coalition A
selects a Sp-strategy sA (i.e. one agreeing with the class Sp) while the opponent coalition
Ag\A selects a So-strategy sAg\A. The outcome play outcome playM(c, (sA, sAg\A), l) in
a given CGMGP M determines the play emerging from the execution of the (complete)
strategy profile (sA, sAg\A) from configuration c in M.

4 The Logic: Quantitative ATL*
We now extend the logic ATL∗ to the logic QATL∗ with atomic quantitative objectives being
state or path arithmetic constraints over the players’ accumulated payoffs. The semantics
of QATL∗ naturally extends the semantics of ATL∗ over CGMGP s, but parameterised with
the two classes of strategies Sp and So.

Definition 3 (The logic QATL∗) The language of QATL∗ consists of state formulae ϕ,
which constitute the logic, and path formulae γ, generated as follows, where A ⊆ Ag, ac ∈
AC, apc ∈ APC, and p ∈ Prop:

ϕ ::= p | ac | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ and γ ::= ϕ | apc | ¬γ | γ ∧ γ | Xγ | Gγ | γUγ.

Let M be a CGMGP , c a configuration, ϕ,ϕ1, ϕ2 state-formulae and γ, γ1, γ2 path formu-
lae. Further, let Sp and So be two classes of strategies as described above. The semantics of
the path constraints is specified according to the limit-averaging or discounting mechanism
adopted for computing the value of a play for a player. Then the truth of a QATL∗ formula
at a configuration in M is defined by mutual recursion on state and path formulae as follows:

M, c |= p for p ∈ Prop iff p ∈ L(cs);

M, c |= ac for ac ∈ AC iff cu |= ac,

M, c |= ϕ1 ∧ ϕ2 iff M, c |= ϕ1 and M, c |= ϕ2,

M, c |= ¬ϕ iff M, c |= ϕ,

M, c |= 〈〈A〉〉γ iff there is a collective Sp-strategy sA for A such that for all collective So-
strategies sAg\A for Ag\A we have that M, outcome playM(c, (sA, sAg\A)) |= γ.

M, π |= ϕ iff M, π[0] |= ϕ;

M, π |= apc for apc ∈ APC iff πu |= apc.

M, π |= Xγ iff M, π[1] |= γ,

3We note that all strategies need to be consistent with the guards, so state-based strategies are only
applicable in models where the guards only take into account the current state, but not the accumulated
payoffs.



M, π |= Gγ iff M, π[i] |= γ for all i ∈ N0,

M, π |= γ1Uγ2 iff there is j ∈ N0 such that M, π[j] |= γ2 and M, π[i] |= γ1 for all 0 ≤ i < j.

Ultimately, we define M, c |= ϕ as M, c, 1 |= ϕ.
If not clear from context, we assume |=(Sp,So) for |=.

The semantics presented above extends the standard semantics for ATL∗ and is amenable
to various refinements and restrictions, to be studied further. For instance, if appropriate, an
alternative semantics can be adopted, based on irrevocable strategies [1] or, more generally,
on strategy contexts [8] or other mechanisms for strategy commitment and release [2]. Also,
the nested operators as defined here access the accumulated utility values and require plays
to be infinite. Similarly to [9], one can consider variants of these settings which may yield
decidable model checking and better complexity results.

As the logic QATL∗ extends ATL∗, it allows expressing all purely qualitative ATL∗ prop-
erties. It can also express purely quantitative properties, e.g.: 〈〈{a}〉〉G(va > 0) meaning
“Player a has a strategy to maintain his accumulated payoff to be always positive”, or
〈〈A〉〉(wa ≥ 3) meaning “The coalition A has a strategy that guarantees the value of the play
for player a to be at least 3”. Moreover, QATL∗ can naturally express combined qualitative
and quantitative properties, e.g. 〈〈{a, b}〉〉((va + vb ≥ 1)Up)), etc.

Example 3 The following QATL∗ state formulae are true at state s1 of the CGMGP in
Example 1, where pi is an atomic proposition true only at state si, for each i = 1, 2, 3:
(i) 〈〈I, II〉〉F(p1∧vI > 100∧vII > 100)∧〈〈I, II〉〉XXX〈〈II〉〉(G(p2∧vI = 0) ∧ F vII > 100).
(ii) ¬〈〈I〉〉G(p1 ∨ vI > 0) ∧ ¬〈〈I, II〉〉F(p3 ∧G(p3 ∧ (vI + vII > 0))).

5 (Un)Decidability: Some Preliminary Results

Generally, the CGMGP models are too rich and the language of QATL∗ is too expressive to
expect computational efficiency, or even decidability, of either model checking or satisfiability
testing. Some preliminary results and related work show that model checking of QATL∗ in
CGMGP s is undecidable under rather weak assumptions, e.g. if the proponents or the
opponents can use memory-based strategies. These undecidability results are not surprising
as CGMGP s are closely related to Petri nets and vector addition systems and it is known
that model checking over them is generally undecidable. In [21], for example, this is shown
for fragments of CTL and (state-based) LTL over Petri nets. Essentially, the reason is that
the logics allow to encode a “test for zero”; for Petri nets this means to check whether a
place contains a token or not. In our setting undecidability follows for the same reason, and
we will sketch some results below.

Undecidability results. The logic QATL restricts QATL∗ in the same way as ATL re-
stricts ATL∗, due to lack of space we skip the formal definition. As a first result we show
that model checking QATL is undecidable even if only the proponents are permitted to use
perfect recall strategies and the opponents are bound to memoryless strategies. More for-
mally, let Spr denote the class of perfect recall state-based strategies and Sm the class of
memoryless state-based strategies. That is, strategies of the former class are functions of
type St∗ → Act and of the latter class functions of type St→ Act.

Undecidability can be shown using ideas from e.g. [9, 21]. Here, we make use of the
construction of [9] to illustrate the undecidability by simulating a two-counter machine
(TCM). A TCM [25] can be considered as a transition system equipped with two integer
counters that enable/disable transitions. Each step of the machine depends on the current
state, symbol on the tape, and the counters, whether they are zero or not. After each step



the counters can be incremented (+1), or decremented (−1) , the latter only if the respective
counter is not zero. A TCM is essentially a (nondeterministic) push-down automaton with
two stacks and exactly two stack symbols (one of them is the initial stack symbol) and has
the same computation power as a Turing machine (cf. [25]). A configuration is a triple
(s, w1, w2) describing the current state (s), the value of counter 1 (w1) and of counter 2
(w2). A computation δ is a sequence of subsequent configurations effected by transitions.

For the simulation, we associate each counter with a player. The player’s accumulated
payoff encodes the counter value; actions model the increment/decrement of the counters;
guards ensure that the actions respect the state of the counters. The accepting states of the
two-counter machine are encoded by a special proposition halt. Now, the following lemma
stating the soundness of the simulation can be proved:

Lemma 1 (Reduction) For any two-counter machine A we can construct a finite CGMGP

MA with two players and proposition halt such that the following holds: A halts on the empty
input iff MA contains a play π with πc = (s0, (v01 , v

0
2))(s1, (v11 , v

1
2)) . . . such that there exists

j ∈ N with halt ∈ L(sj).

The next theorem gives two cases for which the model checking problem is undecidable.
By the previous Lemma we have to ensure that the halting state is reached which can
be expressed by 〈〈1〉〉Fhalt. We can also use purely state-based guards and encode the
consistency checks in the formula as follows: 〈〈1〉〉(v1 ≥ 0 ∧ v2 ≥ 0 ∧ test → (e1 ↔ v1 =
0 ∧ e2 ↔ v2 = 0))Uhalt where the proposition ei is added to the model to indicate that
the value of counter i is zero. This has to be tested at distinguished “test states” that are
labelled with proposition test. Not that this information is static and obtained from the
transition relation of the automaton.

Proposition 1 Model checking the logic QATL is undecidable, even for the 2 agent case
and no nested cooperation modalities, where Sp = Spr and So = Sm.

Restoring decidability. There are some natural semantic restrictions of QATL∗ where
decidability may be restored; these include for instance, the enabling of only memoryless
strategies, imposing non-negative payoffs, constraints on the transition graph of the model,
bounds on players utilities etc. Combined with restrictions on the language, esp. on the
arithmetic constraints on payoffs, these can enable reductions to known decidable problems,
e.g., reachability and coverability problems in Petri nets or to solving energy parity games.
Some such results will be reported in the full paper.

6 Concluding Remarks
This paper proposes a long-term research agenda bringing together issues, techniques and re-
sults from several research fields. It aims at bridging the two important aspects of reasoning
about objectives and abilities of players in multi-player games: quantitative and qualita-
tive, and eventually providing a uniform framework for strategic reasoning in multi-agent
systems.
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