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Abstract

Judgment aggregation is a social choice method for aggregating information on log-
ically related issues. In distance-based judgment aggregation, the collective opinion
is sought as a compromise that satisfies several structural properties. It would seem
that the standard conditions on distance and aggregation functions are strong enough
to guarantee existence of feasible procedures. In this paper, we show that it is not
the case, though the problem becomes easier under some additional assumptions.

1 Introduction

It is often convenient to ascribe information-related stances (such as judgments, opinions,
beliefs, etc.) to collectives of agents. External agents may ascribe opinions to institutions
and groups in order to simplify their model of the world and reasoning about it. Agents
inside the group may need to reach consensus about issues of interest, and in particular to
obtain collective decisions that will lead to consistent collective action. One of the formal
frameworks that try to explain how collective judgments are formed from individual stances
is judgment aggregation theory [17].

Distance-based judgment aggregation [20, 18] comprises the largest class of judgment
aggregation rules. Inspired by belief merging rules, the idea is to define the collective opin-
ion as a “well-behaved compromise” among the individual opinions of the group members.
Distance-based aggregation rules are supposed to satisfy a number of structural constraints
(see Section 2 for details) to make sure their output is indeed “well-behaved” in the math-
ematical sense. It seems – at least at the first glance – that the constraints should lead to
computationally well-behaved procedures. In this paper, we show that it is not necessarily
true.

Why is computational complexity important for aggregating judgments? Essentially,
judgment aggregation provides an intuitive representation for decision problems in collec-
tive reasoning. In this context, its computational complexity is crucial. More specifically,
judgment aggregation rules are procedures that determine the collective view based on in-
dividual inputs. The procedure is only useful if it returns the result in reasonable time.
Consider, a team of 100 robots reaching a collective decision based on the input from 400
sensors with different (but overlapping) range, or 500 stakeholders trying to agree on a
company agenda. Scalability of the procedure becomes clearly of utmost importance.



Complexity analysis of distance-based judgment aggregation has, to the best of our
knowledge, been focused on analysis of particular aggregation rules. The complexity of
the most “typical” aggregation rule, based on the sum of Hamming distances, was studied
in [2, 9, 8, 10]. In contrast to studies of particular “natural” distance-based judgment
aggregators, we take the opposite approach and explore the bounds of the framework. That
is, we investigate what kind of complexity can be expected from arbitrary distance-based
aggregation rules.

Relation to research on preference aggregation. Besides the papers cited above,
works on complexity of distance-based belief merging [14] and especially distance-based
preference aggregation [1, 7, 6] must be also mentioned. In particular, the complexity of
winner determination problem for the Kemeny rule has been studied in [1] and [13], the
latter proving it to be ΘP

2 complete. This strand connects to the research on complexity
of distance-based judgment aggregation through the result of [7] where it was shown that
the Kemeny rule of voting coincides, for strict preference orders, with judgment aggregation
based on the sum of Hamming distances.

It has been shown that judgment aggregation is related to preference aggregation by
showing when a preference aggregation problem can be translated to a judgment aggregation
problem and vice versa [16, 4, 12]. Still, the relationship between judgment aggregation rules
and voting rules (or preference aggregation rules) has not been formally established on the
general level, despite a number of studies on the topic [5, 19, 15]. Without such formalization,
it is hard to draw general conclusions on the relationship between the complexity of voting
rules and judgment aggregation rules. We present some preliminary intuitions below.

A judgment set can be used to characterize a strict preference order [4] by using a formula
ϕa
b to represent that alternative a is preferred to alternative b. In complexity of preference

aggregation, one is typically interested in the winner determination problem, that is, the
problem of deciding whether an alternative is top ranked in at least one of preference orders
produced by the preference aggregation rule. Considering only aggregation of strict prefer-
ences and sticking to the analogy that a preference order is a judgment set, an alternative in
preference aggregation corresponds to a judgment, and the winner determination problem
can be interpreted as that of determining whether a particular judgment ϕa

b is a part of the
collective judgment set produced by the judgment aggregation rule. The difficulty lies in the
fact that a judgment aggregation rule can produce multiple collective judgment sets, some
containing ϕa

b and some not. Therefore two different meaningful questions can be studied:
(1) whether a judgment set as a whole can be selected as the collective opinion, correspond-
ing to our definition of the winner verification problem in Section 3, or (2) whether a given
judgment is an element of all collective opinions, as in [10]. For preference aggregation, (1)
corresponds to checking if a preference order is selected by the preference aggregation rule,
while (2) is about determining whether a given alternative is highest ranked in all selected
preference orders. Both decision problems are at least as hard as the problem of deciding
whether an alternative is a winner of the election. Therefore we can expect decision problems
in judgment aggregation to be no easier than their counterparts in preference aggregation.

2 Preliminaries

2.1 Judgment Aggregation

Let L be a propositional language over a countable set of atomic propositions Prop, and
let T be a set of truth values such that 1 ∈ T (i.e., it includes the value for “absolutely
true”). Any v : Prop → T is called a propositional valuation; we denote the set of such
valuations as PV . We assume that each v ∈ PV extends to a valuation valv : L → T for all



p1 p2 p3
robot 1 1 1 0
robot 2 0 0 0
robot 3 0 1 1

majority 0 1 0

Figure 1: Guarding robots. N = {1, 2, 3},A = {p1, p2, p3}, C = {¬p1 ∧ p2 → p3}

formulae of L. Throughout this paper, we will also assume that L is the language of classical
propositional logic, T = {0, 1}, and valv is defined by the classical Boolean semantics of
negation, conjunction, etc.

Judgment aggregation can be defined as follows.1 Let N be a finite set of agents, A ⊆ L
a finite agenda of issues, and C ⊆ L a finite set of admissibility constraints. A judgment
set is a consistent and admissible combination of opinions on issues from A, that is, some
js : A → T for which there exists a valuation v ∈ PV such that: (i) valv(ϕ) = js(ϕ)
for every ϕ ∈ A, and (ii) valv(ψ) = 1 for every ψ ∈ C. The set of all judgment sets is
denoted by JS. Now, a judgment profile is a collection of judgment sets, one per agent, i.e.,
jp : N → JS. With a slight abuse of notation, we will denote the set of all such profiles by
JS|N |. Note that we can conveniently represent judgment profiles as |Agt|× |A| matrices of
elements from T . Finally, a judgment aggregation rule ∇ : JS|N | → P(JS) \ {∅} aggregates
opinions from all the agents into a collective judgment set (or sets). We allow for more than
one “winning” set to account for nondeterministic or inconclusive aggregation rules.

Example 1 Consider 3 robots guarding a building, that have just observed a person. Each
robot must assess whether the person is authorized to be there (proposition p1), if it has
malicious intent (p2), and whether to classify the event as dangerous intrusion (p3). Addi-
tionally, it is assumed that a non-authorized person with malicious intent implies intrusion:
¬p1 ∧ p2 → p3 (note that the converse does not have to hold). A possible judgment pro-
file is shown in Figure 1. The figure also shows that the most “obvious” aggregation rule
(majority) results in an inadmissible judgment set.

2.2 Distance-Based Aggregation Rules

A distance-based aggregation rule [20, 18] looks for a collective opinion that does not stray
too much from the individual judgments:

∇d,aggr(jp) = argminjs∈JS

{
aggr

(
d(js, jp[1]), . . . , d(js, jp[|N |])

)}
,

where d is a distance function [3, p.3-4 and 45], and aggr an aggregation function [11, p.3],
cf. the definitions below.

Definition 1 An algebraic aggregation is a function aggr : (R+)n → R+ such that: (min-
imality) aggr(0n) = 0, and (non-decreasing) if x ≤ y, then aggr(x1, . . . , x, . . . , xn) ≤
aggr(x1, . . . , y, . . . , xn).

Well known aggregators are: min, max, sum, and product.

Definition 2 A distance over set X is a function d : X × X → R+ ∪ {0} such that:
(minimality) d(x, y) = 0 iff x = y, (symmetry) d(x, y) = d(y, x), and (triangle
inequality) d(x, y) + d(y, z) ≥ d(x, z).

1Our definition of judgment aggregation combines features of logic-based aggregation [17] and algebraic
aggregation [21]. It is easy to see that both formulations can be expressed in our notation.



Two well known distances over {0, 1}m are: the Hamming distance dH(x, y) =∑m
i=1 δH(x[i], y[i]), and the drastic distance dD(x, y) = maxj=1,...,m δH(x[i], y[i]), where

δH(x, y) = 0 if x = y and 1 otherwise.

Example 2 Consider the robots from Example 1, and let us use dH as the distance and∑
as the aggregator. Then, the winners are {000, 011, 110}, all with score (i.e., aggregate

distance) 3. In other words, the agents cannot do better than to accept one of their individual
opinions.

3 Complexity of Distance-Based Winner Verification

There are two natural computational problems related to judgment aggregation: the func-
tion problem of computing a “winning” judgment set, and the decision problem of verifying
that a given judgment set is one of the winners. We look closer at the latter.

Definition 3 winver∇ is the decision problem defined as follows:
Input: Agents N , agenda A, constraints C, judgment profile jp ∈ JS|N |(A, C), and judg-
ment set js ∈ JS(A, C).
Output: true if js ∈ ∇(jp), else false.

What is the complexity of winver? One could expect that, under the assumptions in
Definitions 1 and 2, distance-based aggregation should behave reasonably in computational
terms. Unfortunately, it is not the case.

3.1 Bad News

Theorem 1 There is a distance which is not Turing computable.

Proof. We construct the Turing distance dTR as follows. First, we assume a standard
encoding of Turing machines in binary strings; we use TM(X) to refer to the machine
represented by the string of bits X ∈ {0, 1}m. We also assume by convention that strings
starting with 0 or ending with 1 represent only machines that always halt (e.g., they can
represent various TM’s with only accepting states).

Let halts(X) = 0 if the TM(X) halts, and 1 otherwise. Now, for any
js, js′ ∈ {0, 1}m, we take

dTR(js, js′) = dD(js, js′) + halts(h(js, js′)),

where dD is the drastic distance (i.e., dD(js, js′) = 0 if js = js′ and 1 otherwise), and
h(js, js′) =

(
δH(js[1], js′[1]), . . . , δH(js[m], js′[m])

)
is the Hamming sequence for (js, js′).

We check that dTR is a distance:

1. dTR(js, js) = dD(js, js) + halts(0m) = 0;

2. dTR(js, js′) = 0⇒ dD(js, js′) = 0⇒ js = js′;

3. dTR(js, js′) = dTR(js′, js): straightforward;

4. Triangle inequality: the nontrivial case is js 6= js′ 6= js′′, then dTR(js, js′) +
dTR(js′, js′′) ≥ 2 ≥ dTR(js, js′′).

For incomputability, we observe that TM(X) halts iff dTR(X, 0|X|) ≤ 1. �

Theorem 2 There is a distance and an aggregation function for which winver is unde-
cidable.



Proof. We construct a Turing reduction from the halting problem. Given is a representation
X ∈ {0, 1}m of a Turing machine (same assumptions as in Theorem 1). We take dTR as the
distance, and aggr =

∑
. Let A = {p1, . . . , pm} consist of n unrelated atomic propositions,

C = ∅, and jp = {0m, X}. Now, for X = 1 . . . 0 (the other cases of X trivially halt), we
have that TM(X) halts iff js = 0m, X are the only winners. This is because the aggregate
scores of 0m and X are 1 if TM(X) halts and 2 otherwise, and no score can be less than 1.
Moreover, for all other candidates Y ∈ {0, 1}m the score is at least 2, and in particular for
Y = (1)m it is always 2.

Suppose now that deciding winver terminates in finite time. Then, the halting of
TM(X) could be verified by 2m winver checks, i.e., also in finite time – which is a contra-
diction. �

Thus, it turns out that the standard requirements on distance metrics and aggregation
function are not sufficient to guarantee even decidability of the winner verification problem.
Of course, the metric that we used to prove this is utterly artificial, and unlikely to appear
in any realistic context. Distance-based aggregation rules that are actually used have much
better computational properties, as we demonstrate in Section 3.2. Still, Theorem 2 shows
the bounds of the framework: in principle, the complexity of related decision problems can
be very bad. This means that, when trying a new variant of distance-based aggregation,
one should be cautious, and carefully examine its computational characteristic beforehand.

3.2 Positive Results

We now prove that, under reasonable conditions, winner verification sits in the first level
of the polynomial hierarchy. We recall that PNP[k] is the class of problems solvable by a
polynomial-time deterministic Turing machine asking at most k adaptive queries to an NP
oracle. It is easy to see that NP ⊆ PNP[k] ⊆∆P

2 = PNP.

Theorem 3 If aggr and d are computable in polynomial time then winver for ∇d,aggr is
in PNP[2].

Proof. We prove the inclusion by showing an algorithm for winver.

Algorithm: Winver(js, jp,N,A, C, d, aggr)
1. if Consistent(js,A, C) and not ExistsBetter(js, jp,N,A, C, d, aggr) then return(true) else

return(false);

Oracle: Consistent(js,A, C)

1. guess a valuation v ∈ PV for the atomic propositions in A;

2. if valv(ϕ) = js(ϕ) for every ϕ ∈ A and valv(ψ) = 1 for every ψ ∈ C then return(true) else
return(false);

Oracle: ExistsBetter(js, jp,N,A, C, d, aggr)

1. guess js′ ∈ JS;

2. guess a valuation v′ ∈ PV for the atomic propositions in A;

3. if valv′(ϕ) = js′(ϕ) for every ϕ ∈ A and valv′(ψ) = 1 for every ψ ∈
C and aggr

(
d(js′, jp[1]), . . . , d(js′, jp[|N |])

)
< aggr

(
d(js, jp[1]), . . . , d(js, jp[|N |])

)
then

return(true) else return(false); �

So, the idea is to ask an oracle if the judgment set is consistent and admissible and
whether there is no set with a better score. For combinations of the most typical distances
and aggregation functions, we get the following as a straightforward consequence.

Corollary 4 If aggr ∈ {min,max,
∑
,
∏
} and d ∈ {dH , dD} then winver for ∇d,aggr is in

PNP[2].



Note also that the problem is already known to be NP-complete for d = dH , aggr =∑
[9].

4 Conclusions

Complexity-theoretic properties of voting procedures are a frequent topic of study in com-
putational social choice. In contrast, the complexity of judgment aggregation has drawn
attention only recently. In this paper, we explore the complexity bounds of an important
family of judgment aggregation rules, namely those based on minimization of aggregate dis-
tance. More precisely, we study the decision problem of verifying if a given judgment set
can be selected as the collective opinion. It turns out that feasibility of distance-based ag-
gregation in general cannot be guaranteed. However, by assuming some requirements on the
possible outcomes of the distance and aggregation functions, we can tame the complexity
reasonably.
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