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Abstract

Dynamics pertaining to learning from the actions of others are modeled with focus

on a running example, showing how we may come to conclusions regarding an ontic

fact solely by observing others act on their beliefs regarding the fact in question. The

tools used are elements from dynamic epistemic logic, with the addition of decision

and interpretation rules, allowing local, rule-based choice and reasoning about such.

The paper reports on work in progress.

1 Introduction

We learn by watching others.1 We mimic language and movements, absorb norms and cus-
toms. In general, we may learn a lot from watching the actions of others, and in many
day-to-day practical settings, observing those around us is an easy way of obtaining infor-
mation: people leaving during dinner may indicate the direction of the bathroom, great
sales may be taken to indicate a great book, and a jaywalker that crossing the street is safe
despite a red light.

Though extraction of information from action is a fundamental learning method,2 the
deductive mechanics involved in a reconstruction or explication of such inferences is complex,
drawing on underlying assumptions about intentions, plans and rationality, as well as beliefs
and higher-order beliefs about such, on behalf of those involved. Seeing a performed action
does not a priori tell us much, but coupled with suitable beliefs about the possible purpose
of the action together with a belief that the actor is rational, leaves us with tentative
information regarding the actor's beliefs. Given further beliefs about the verisimilitude of
the beliefs of the actor may yield a belief regarding a proposition crucial to performing a
given action; e.g. coming to believe that the bathroom is in the back.

Taking the actions of others as indications of either prevailing norms or ontic facts has
been described as accepting social proof on the matter [5]. Social proof is often transmitted
non-linguistically, i.e. by the actions chosen.

In this paper, the dynamics of learning from the actions of others by social proof is
discussed by modeling a storyline using tools from Dynamic Epistemic Logic [1]. In this
process, we introduce decision rules, a variant of knowledge-based programs [9], suitable for
specifying agent actions in the DEL framework, interpretation rules, facilitating abductive
inference from actions to beliefs, and a belief adoption policy allowing inter-agent belief
transmission.

The former two devices are introduced due to the localized perspective of DEL. Where
extensive game trees and branching-time epistemic temporal logic would allow choices to
be made on the basis of rationality and expected utility, and interpretation of actions to be
done in the style of forward induction, this is not possible in DEL as the terminal histories
that grant pay-o�s simply does not exist. Each DEL model is restricted to a speci�c point in
time, with no embedded information pertaining to future developments. This `shortcoming'

1A previous version of this paper was presented at GIRL'13@LUND (Games, Interactive Rationality and
Learning, Lund 2013), the participants of which are thanked for helpful comments.

2Though far from all extraction of information via social proof ensures healthy learning; see e.g. [10] for
examples of how social proof may lead to `irrational' group behavior.



is extremely useful, as it allows one to work with small, easily digestible models. It is the
main goal of this paper to introduce modules suitably localized for DEL that allow modeling
choice and interpretation.

The paper is structured around modeling the following storyline. Two agents are standing
at a red light, both wanting to cross the street. However, neither crosses as they do not know
whether to do so is safe. This requires representation of knowledge, for which epistemic
plausibility models are used. The �rst agent, call her a, looks about and concludes that
crossing is indeed safe and so walks. The belief update is modeled using action plausibility
models and action-priority update [1], whereas the choice of what to do following update is
determined by the agents decision rules, for which a formalism is introduced. The second
agent, b, now contemplates and then crosses the street without orienting himself. Why? His
action is due to the epistemic in�uence a's action has on b. Seeing a's orientation act and
subsequent choice to walk makes b reason that a believes doing so is safe, something b now
takes a's word (well, action) for. To facilitate b's reasoning from a's action to a's belief,
action interpretation rules are introduced, specifying a hierarchy of abductive hypotheses.
To what degree b should adopt the perceived beliefs of a may again be controlled by a set
of decision rules (and a belief adoption policy), and so may b's decision to cross the street
or not. In the second to last section, it is shown how the model may be extended to allow
for multiple initial walkers. The main technical and conceptual achievement of the paper is
the speci�cation of decision and interpretation rules, allowing local, rule-based choice and
reasoning about such. The aim is not to construct an explanatory model of jaywalking,
but to present an addition to DEL that allows us to model dynamics involving decision,
action interpretation and hence social proof, with the future aim of modeling informational
phenomena from e.g. social psychology.

2 Epistemic States and Belief Update Transitions

The initial state in the jaywalker storyline involves two agents and their mutual lack of
knowledge regarding the safety of street crossing. This static epistemic state may be repre-
sented using an epistemic plausibility model.

Epistemic Plausibility Models. A (�nite) epistemic plausibility frame (EPF) is a struc-
ture (S,≤i)i∈A where S is a �nite set of worlds with typical elements s, t, and ≤i is a pre-
order on S for each agent i ∈ A. A (pointed) epistemic plausibility model (EPM) is an EPF
augmented with i) a valuation set ‖Φ‖ consistent of a doxastic proposition P for every atom
in Φ, where P is a map assigning to every EPF S a subset PS ⊆ S, and ii) a designated
state s0 called the actual world. An EPM is typically denoted S = (S,≤i, ‖Φ‖ , s0)i∈A.

Given an EPM, the indistinguishability relation for agent i is the equivalence relation
∼i:=≤i ∪ ≥i. Further, the information cell of agent i at state s is Ki[s] = {t : s ∼i t}
and the plausibility cell of agent i at state s is Bi[s] = Min≤i

Ki[s] = {t ∈ Ki[s] : t ≤i

s′, for all s′ ∈ Ki[s]}. The plausibility cell Bi[s] contains the worlds the agent �nd most
plausible from the information cell Ki[s] and represent the �doxastic appearance� [1, p. 25]
of s to i.3 Notice that s ≤i t means that s is at least as plausible as t for i.

Doxastic Propositions. Where P,Q ∈ Φ, let the set Prop of doxastic propositions be
given by ϕ := >|⊥|P |¬ϕ |ϕ∧ψ |Biϕ |Kiϕ, speci�ed for individual models by >S = S,⊥ =
∅, PS := PS, (¬ϕ)S := S\ϕS, (ϕ∧ψ)S := ϕS∩ψS, (Kiϕ)S := {s ∈ S : Ki[s] ⊆ ϕS}, (Biϕ)S :=
{s ∈ S : Bi[s] ⊆ ϕS}. Boolean connectives are de�ned as usual. A proposition P is true

3The de�nition of EPMs is based on [1], with slight alterations and omissions due to page constraints.
The notation for information and plausibility cells are adopted from [6].



at state s in model S i� s ∈ PS, also written S, s |= P . Entailment is given by ϕ |= ψ i�
ϕS ⊆ ψS for all S.

Note two things: �rst, every doxastic proposition speci�es a regular modal logical propo-
sition (i.e. a set of worlds) relative to each model. Doxastic propositions simply allow looking
at the same (doxastic) proposition across models. Second, KiP and BiP are equivalent to
standard notions from epistemic logic: a world is a KiP/BiP -world just in case every world
in i's information/plausibility cell is a P -world. For all intents, Ki and Bi re�ect respectively
S5 and S4 modalities with Kiϕ→ Biϕ valid.

Initial Uncertainty. The initial state of uncertainty may be represented as an EPM
S0 = (S0,≤i, ‖Φ‖ , s)i∈{a,b} with S0 = {s, t}, taking the atom S ∈ Φ, read `it is safe to
cross the street', to have assignment SS0

= {s}. By the latter, (¬S)S0
= {t}. This model is

illustrated in Figure 1.4

S ¬Ss t
a,b

Fig. 1. The EPM S0. Labeled arrows represent plausibility relations, with s←−i t

depicting that s ≤i t. Re�exive loops are omitted for all but singleton information cells.

States are labeled with their true atoms or the true negations of atoms (here S at s and ¬S
at t). The actual world in underlined.

In S0, neither a nor b knows whether it is safe to cross or not, as both s, t ∈ Ka[s] = Kb[s].
Hence S0, s |= ¬KiS ∧ ¬Ki¬S, for i ∈ {a, b}. Neither do either agent believe that it is safe
to cross, as s and t are equi-plausible for both, as indicated by the bidirectional arrow.

To capture the event that a orientates herself about safety, we use models very similar
in structure to EPMs, but where states represent ongoing actions/events, rather than static
worlds.

Action Plausibility Models. A (pointed) action plausibility model (APM) is a structure
E = (Σ,�i, pre, post, σ0)i∈A where Σ is a �nite set of actions with typical elements σ, τ ,
each �i is a pre-order on Σ, pre : Σ −→ Prop is a precondition map and post : Σ −→ Prop
a postcondition map such that post(σ) = ψ where ψ ∈ {>,⊥} or ψ =

∧n
1 ϕn with ϕi ∈

{P,¬P : P ∈ Φ}. Finally, σ0 is the actual event. Note that (Σ,�i)i∈A is an epistemic
plausibility frame.5

Just as every world in an EPM represents a possible state of a�airs, speci�ed by the
world's true propositions, so every action in an APM represents a possible change. What
change is speci�ed by the pre- and postconditions; preconditions determine what is required
for the given action to take place, i.e. what conditions a world must satisfy for an action to
executable in that world, and postconditions what factual change the action brings about.6

The event where a checks tra�c is captured by the APM E1, illustrated in Figure 2.

⟨S;⊤⟩ ⟨¬S;⊤⟩σ1 τ1

a

⟨S;⊤⟩ ⟨¬S;⊤⟩
σ2 τ2

a

b

Fig. 2. The APM E1 representing a's orientation

act, and both agents uncertainty about what is

happening. State labels 〈ϕ;ψ〉 specify pre- and

postconditions.

Expl.: Agent a checks whether it is safe to cross or not. In fact, she sees that it is safe (σ1),

a judgment she trusts, but not completely (hence σ1 �a τ1). b sees that a looks, but cannot

tell what she sees. As the act of observation changes no ontic facts: postconditions are empty

(>) for all events.

4More atoms are introduced later; all are assumed false at S0.
5Again, this presentation follows [1], with the addition of postconditions as formulated in [7, 4].
6To exemplify, the action `agent a plays a Queen' is only executable when a has a Queen on hand

(precondition), and brings the factual change that the given Queen has now been played (postcondition).



E1 includes uncertainty for both agents, but this may be restricted by looking at doxastic
programs over E1. A doxastic program is the action model equivalent of a proposition, i.e. a
subset of all actions in the models' event space: Γ ⊆ Σ. Over E1, the program Γ1 = {σ1, τ1}
captures the event where a sees it's safe, but is still uncertain, and b can tell that a sees
either that it's safe or not, that she is not certain, but leans towards σ1. ∆1 = {σ1, τ2}
captures that a sees it's safe, and is certain about this, and b sees that a either sees that
it's safe or not and that a is certain about which, while b cannot tell which is seen. For
the present case, either ∆1 or E1 seems the reasonable modeling choice7, depending on how
much credit is given to a's eyesight, and focus will be on the latter. To incorporate this new
information into S0, the APU product of the two models is taken.

Action-Priority Update Product. The action-priority update is a binary operation
⊗ with �rst argument an EPM S and second argument a doxastic program Γ ⊆ Σ over
some APM E with action space Σ. The APU product is an EPM S ⊗ Γ = (S ⊗ Γ,≤ ↑i
, ‖Φ‖↑ , (s0, σ0)) where the updated state space is S ⊗ Γ = {(s, σ) ∈ S × Γ : S, s |= pre(σ)};
each updated pre-order ≤ ↑i is given by (s, σ) ≤ ↑i (t, τ) i� either σ ≺i τ and s ∼i t, or else

σ wi τ and s ≤i t;
8 the valuation set ‖Φ‖↑ is given by the following: for every atom P ∈ Φ,

PS⊗Γ = ({(s, σ) : s ∈ PS}\{(s, σ) : post(σ) |= ¬P}) ∪ {(s, σ) : post(e) |= P} for states
(s, σ) ∈ S ⊗ Σ. Finally, (s0, σ0) is the new actual world.

The APU product gives priority to new information encoded in Γ over the old beliefs from
S by the `anti-lexicographic' speci�cation of ≤ ↑i that gives priority to the APM plausibility
relation �i. The de�nition further clari�es the role of pre- and postconditions; if a world
does not satisfy the preconditions of an action, then the given state-action pair does not
survive the update, and if postconditions are speci�ed, these override earlier ontic facts,
else leave all as was. The de�nition is based on [1] for the APU product with the valuation
clause from [7, 4].

After Orientation. Updating S0 with E1 produces the EPM S1 := S0 ⊗ E1, depicted
in Figure 3, with a frame structure identical to that of E1 with SS0⊗E1 = {(s, σ1), (s, σ2)}
and ¬SS0⊗E1 = {(t, σ1), (t, σ2)}. In the actual state (s, σ1), the following are all satis�ed:
BaS∧¬KaS, ¬BbS∧¬Bb¬S, ¬BbBaS∧¬BbBa¬S, Kb(BaS∨Ba¬S)∨¬KbBaS∧¬KbBa¬S.
That is, a believes S, but doesn't know; b believes neither S nor ¬S; nor does b have speci�c
beliefs about a's beliefs about S; though he knows that a believes either S or ¬S.

S ¬S
(s,σ1) (t,τ1)

a

S ¬S
(s,σ2) (t,τ2)

a

b

Fig. 3. The updated EPM S1 := S0 ⊗E1.

3 Acting on Beliefs: Decision Rules

Agent a stands to choose between either walking or staying put, her choice done publicly and
her action post-factually represented by an atom, Wa or W a.

9 Ex post, the action should

7Γ1 is too strong for present purposes as it would entail that b learns that a believes S following the
update. This would skip chapters of the jaywalker story being told.

8�i is from E and ≤i from S. σ ≺i τ denotes (σ �i τ and not σ �i τ), σ wi τ denotes (σ �i τ and
σ �i τ).

9On the propositions Wa and Wa: as the event of walking takes place in an APM, the action has been

executed in the resulting APU product model. Hence a past-tense reading of Wa is in order: a has walked/a



hence be known to all. A suitable APM for both actions is depicted in Fig. 4. Which is
actually executed depends on which singleton doxastic program, {γ1} or {γ2}, is chosen .

⟨⊤;Wa⟩ ⟨⊤;W a⟩
γ1 γ2

a,b a,b

Fig. 4. The APM E2, representing a's two op-

tions: a may either choose to walk (γ1) or may

choose to not walk (γ2). In either case, b has no

uncertainty about what the ongoing event is: he clearly sees whether a walks or not.

Given her belief that S, for a to act reasonably, it is intuitively clear that the next transition
should be an update with γ1. However, simply performing this update as modeler does not
present a with much of a choice. Put di�erently, if we as modelers have to inspect the model
and hand pick a next update for each agent action, the agents are not very autonomous:
their decision architecture is not incorporated in the sequence model, but only in the mind
of the modeler.

One way incorporate the decision architecture of agents suitable for epistemic logic is
the knowledge-based programs of [9], being simple directions of the form `if BaS, do Wa',
specifying an action based on local epistemic state. De�ning such a rule for each relevant
belief allows for the de�nition of various agent types with choices speci�ed for also counter-
factual situations. These rules may then be considered constituent parts of the sequence
model, or `system', exempli�ed below.10 As DEL terminology includes doxastic programs,
the term transition rules will be used to denote the version of [9]'s programs here tailored
to the DEL framework.

Transition Rules. A transition rule T is an expression ϕ  [X]ψ where ϕ,ψ ∈ Prop.
Call ϕ the trigger and ψ the e�ect. Typically, the trigger will be a proposition of the form
Biϕ

′ or Kiϕ
′, and if so, call the expression a decision rule for agent i. If EPM S satis�es

the trigger of some transition rule T at S's actual world, T is said to be active in S (else
inactive).

In deciding whether to cross the street, the only determining factor for a is whether she
believes to do so is safe or not. These beliefs are naturally correlated with walking/not
walking by decision rules D1 and D2:

D1 : BaS  [X]Wa

D2 : Ba¬S  [X]W a

Here, D1 is read �if a believes S, then choose the next action such that after it, a will have
walked.� Note that any set of decision rules may be taken as de�ning an agent type; some
may act oddly, some even have inconsistent directions, and some, like the type given by
{D1,D2}, will capture a reasonable behavior pattern.

Dynamic Modalities. Note that decision rules are not doxastic propositions: the �modal-
ity� [X] has no interpretation, and construed as a formula, D1 has no truth conditions.
Instead, transition rules are prescriptions for choosing the next action model.11 The choice
of model is made by implementing a transition rule over an EPM S and a set G of dox-
astic programs over one or more APMs using dynamic modalities. For any program Γ
over APM E, [Γ] is a dynamic modality, and the doxastic proposition [Γ]ϕ is given by

chose to walk. With the latter reading, it is natural to di�erentiate between ¬Wa and Wa, with the �rst
stating that a has not chosen to walk, and the latter that a has chosen not to walk. This makes ¬Wa∧¬Wa

consistent, as one would expect (e.g.: in S0, a has chosen nothing). It is however natural to require that
(Wa ∧Wa)S = ∅ for all S.

10No de�nition of system is given here; see [14] for details and an application to informational cascades.
11Or more generally, the next model transformer, i.e. function from EPM to EPM, of which many types

may be found in the DEL literature. Any APM together with the APU product induces such a function.



([Γ]ϕ)S := {s ∈ S : ∀σ ∈ Γ, if (s, σ) ∈ S ⊗ Γ then (s, σ) ∈ ϕS⊗Γ}. That is, a world s from
S is a [Γ]ϕ-world i� every resolution of Γ over s is a ϕ-world in S⊗ Γ.

Solutions and Next APM Choice. A set of transition rules dictates the choice for next
APM by �nding the transition rule(s)'s solution. A solution to T = ϕ [X]ψ over pointed
EPM (S, s) is a doxastic program Γ such that S, s |= ϕ → [Γ]ψ. Γ is a solution to the set
T= {T1, ..., Tn} with Ti = ϕi  [X]ψi over (S, s) if S, s |=

∧n
1 (ϕi → [Γi]ψi), i.e. if Γ is

a solution to all Ti over (S, s) simultaneously.12 Finally, a set of doxastic programs G is a
solution to T over S i� for every t of S, there is a Γ ∈ G such that Γ is a solution to T over
(S, t).13,14

Where G is a solution to T over S, let the next APM choice of (S, s0) be a solution to
T over (S, s0), with s0 the actual world of S.

If G is a solution to T over S, then for each state from S, the transition rules in T will
specify one (or more) programs from G as the next choice. A deterministic choice will be
made if G is selected suitably, in the sense that it contains a unique Γ for each s. Note that
a next choice speci�ed for each state makes the evolving model sequence sensitive which
state is actual. Hereby next choice becomes `localized': change which state is actual, and a
di�erent choice may be made.

Example: Looping System. Consider the very simple `system', consistent of an EPM
S with s0 ∈ PS, and APM E ∈ APM with pre(σ0) = P , post(σ0) = ¬P , and the set
T= {T0, T1} of transition rules:

T0 = P  [X]¬P
T1 = ¬P  [X]P

S :
s0

P
E :

σ0 σ1

〈P ;¬P 〉 〈¬P ;P 〉

With Γ0 = {σ0} and Γ1 = {σ1}, G = {Γ0,Γ1} is a solution to T over S. For T1, S, s0 |=
¬P → [Γ0]P as s0 6∈ (¬P )S. For T0, it is easy to check that S ⊗ Γ, (s0, σ0) |= ¬P , why
S, s0 |= [Γ0]¬P . As Γ0 is unique, this is chosen as next update. It should be easy to see
that G is also a solution to T over S⊗ Γ0, where Γ1 is chosen. Further re-application of T
loops the system.

Choosing toWalk. ForDRa = {D1,D2} over S0 ⊗E1, the setGa consistent of singleton
programs {γ1}, {γ2} over APM E2, as depicted in Fig. 4, is a solution. Consulting the actual
world of S1, only {γ1} is a solution to DRa: as (s, σ1) |= BaS, the antecedent of D2 is false,
and hence {γ1} is a solution to this rule. For D1, {γ1} will ensure the satisfaction of the
consequent by the postconditions of γ1. Further, {γ1} is the unique solution as may easily
be checked. Hence the (deterministic) next APM choice of (S1, (s, σ1)) is {γ1}.

In short, given her belief that it is safe, a's decision rules dictates the choice to walk.
Clearly, this choice could simply have been dictated by the modeler; the inclusion of decision
rules however allows the choice to be made autonomously by the `system'. This also goes
for counter-factual cases: had a had a di�erent belief, she would have chosen di�erently.

12Note the analogy with numerical equations; for both 2 + x = 5 and {2 + x = 5, 4 + x = 7}, x = 3 is the
(unique) solution.

13A broader solution space may possibly be used, replacing the role of doxastic programs with model

transformers, i.e. maps f(S) = S′. A doxastic program applied using the APU product is such an f . The
action model solution space may then be re�ned by using a notion of action model equivalence and action

emulation [8] suitable altered to APMs with postconditions.
14The latter is de�ned thusly to ensure that G includes actions for both active and inactive decision rules.

Inactive decision rules does not a�ect the choice, but if solutions to these are not included, agents would
have no possible choice in counter-factual situations (or runs with other initial states).



Transition Rules, Runs, Protocols and Systems. The primary role of transition rules
is to provide a speci�cation of the next APM to be added to the model sequence, where
the choice is determined by what propositions the latest model in the sequence satis�es. As
such, transition rules may be seen as partial functions from locally satis�ed conditions to
actions, a la the programs of [9]. Notions of runs, protocols and systems based on the local
next model choice provided by a set of transition rules may therefore be de�nable. One
important obstacle for doing so is concurrent choice, i.e. cases with multiple active rules.
Apart from the obvious problem of two active decision rules having inconsistent e�ects,
there is a challenge in �joining solutions�. Where each decision rule in a set DR of active
rules with consistent e�ects each has a solution in G, it is not guaranteed that G will be
a set solution to DR as two (or more) rules may each pick a di�erent Γ ∈ G. Moreover,
it is not obvious how a �joint solution� should be constructed from individual choices.15 In
the ensuing, these problems will not arise as only one decision rule will be active at the
time and no attempt to de�ne the mentioned notions is made. It is hoped that putting the
present approach in relation to recent work on DEL protocols (see e.g. [3, 6]) will shed light
on these issues.

4 From Action to Belief: Abduction and Adoption

Updating S0 ⊗E1 with a's choice {γ1} produces the EPM S2 := S1⊗{γ1}, identical to S1

except that all states in S2 satisfy Wa. The model is depicted in Fig. 5.

S,Wa ¬S,Was1 t1

a

S,Wa ¬S,Wa
s2 t2

a

b

Fig. 5. The EPM S2 := S1 ⊗ {γ1}: no change

has occurred but the switch in truth value of Wa.

From this it follows that both agents now know

that a has walked.

For future reference, it is noted that s1 = ((s, σ1), γ1), s2 = ((s, σ2), γ1) and t1 = ((t, τ1), γ1),

t2 = ((t, τ2), γ1).

Following a's action, her choice to walk is known to both agents, but b has not received
any new information about a's beliefs pertaining to safety. Neither does b have any means
of deducing these beliefs given the introduced formal framework. Such a deduction would
require e.g. the ability to rationalize by forward induction, which require information from
both past play and future possibilities [2] couched in a game framework representing pref-
erences, rationality and more (see e.g. [16]). Though structures akin to game trees can
be de�ned using EPMs, APMs and protocols [6], a simpler, more super�cial construct may
be used to facilitate the reasoning. The suggested approach utilizes an `inverse' version of
decision rules, brute forcing conclusions about belief from observations about action.

In making decisions, our beliefs about the relevant state of a�airs dictate our action, up
to error and human factors. Hence the route from beliefs to actions can be mapped as a
function. As this function will often not be a injection, moving from actions to beliefs is not
as straight forward, as multiple di�erent belief states may result in the same action. Having
to provide a rationalization of a given action will therefore often include abductive reasoning.
An abductive hypothesis to rationalize an action allows inferring as explanation of the action
a belief state of the acting agent. Below, such hypotheses are called interpretation rules.

Interpretation Rules. An interpretation rule is a doxastic proposition ϕ → [S]Biψ,
where we call ϕ the basis and ψ the content. The idea behind interpretations rules is that

15See [15] for a suggestion in relation to the bystander e�ect, utilizing Cartesian products of APMs.



on the basis of an action (e.g. Wa), agents must deduce something about the content of
i's beliefs (e.g. that BiS). Doxastic propositions involving the modality of the consequent
are given by ([S]χ)S′ := {s′ ∈ S′ : s′ ∈ s and (s,S) |= χ}, where s′ ∈ s means that s is
a predecessor16 of s′. Hence [S]χ is true in (S′, s′) just in case s′'s predecessor in S was a
χ-world. The modality is included to respect the temporal aspect introduced by updates,
and S is to be substituted with the EPM based on which i made the choice in question.

A set of interpretation rules is implemented using an APM where the preconditions of
each state is a conjunction of interpretation rules with di�erent bases. Hereby each state
represents a di�erent way of interpreting the possible `action propositions' included in the
bases (Wa and W a in the running example). The plausibility order of the APM is de�ned
depending on what picture agents should obtain about how agent i makes decisions, about
i's �type�.

Why did a cross the street? A plausible explanation for b of a's choice to walk would be
that she believed it safe, but a could for all b knows be of an odd agent type that walks when
they believe it to be unsafe. The latter, however, might seem implausible to b. Likewise, a
plausible explanation of a not walking could be that she believed it unsafe, and less plausibly
that a is odd and chooses to not walk if safe. Assuming that b only considers it possible
that a is either consistently odd or not odd at all (normal), and that a knows whether she
is odd or normal, these interpretation rules can be implemented by updating S2 with E3,
depicted in Fig. 5.

⟨Wa→[S1]BaS∧
Wa→[S1]Ba¬S;⊤⟩

⟨Wa→[S1]Ba¬S∧
Wa→[S1]BaS;⊤⟩

ρ
1 ρ2

a a
b

Fig. 6. The APM E3 representing a and

b's interpretations of a's possible actions.

There is no uncertainty for a, but b con-

siders it possible that a is either normal

(ρ1), or that she is odd (ρ2).

From Then to Now. In S2, only in the states s1, t1 has agent a behaved normally and
only in states s2, t2 has she behaved oddly. Only s1, t1 satisfy [S1]BaS: their respective
predecessors (s, σ1) and (t, τ1) satisfy BiS is S1. This is not the case for s2, t2: their
predecessors both belong to (Ba¬S)S1 . Hence (pre(ρ1))S1 = {s1, t1} and (pre(ρ2))S1 =
{s2, t2}, why S3 := S2 ⊗E3 again contains four states, as illustrated in Figure 7.

S,Wa ¬S,Wa(s1,ρ1
) (t1,ρ1)

a

S,Wa ¬S,Wa
(s2,ρ2) (t2,ρ2)

a

b

Fig. 7. The EPM S3 := S2 ⊗E3 cap-

turing a and b's epistemic states after b's

interpretation of a's action. b now believes

that a believes S.

Unrealistically, a now knows that b believes that she believes S. This could be eliminated

using a larger model. This is noted and ignored.

Notice that b has now formed correct beliefs about both a's beliefs prior to her action
((s1, ρ1) ∈ ([S1]BaS)S3), but also about a's beliefs in the current state (([S1]BaS)S3 =
(BaS)S3 (∗)). Furthermore, b knows that a's beliefs have not changed (by (∗) and
([S1]Ba¬S)S3 = (Ba¬S)S3). This is more than what is enforced by the interpretation
rules in general, and is a consequence of the fact that a has not changed her beliefs about S
since S1. It eliminates an interesting temporal di�culty in the current story, namely which
set of a's beliefs b should consider relevant to his own decision: those upon which a made

16When constructing APU products, a state in the product model is an ordered pair (s, σ) of a state s
and and action σ. In this pair, s may again be such a pair. We say that a predecessor of s′ is any s that
occurs in any of the ordered pairs of s′, including s′ itself.



her decision, or her most recent? Clearly, if a learns that it is not safe to walk while doing
so, this information would be of importance to b. It should not be portrayed by her action
Wa, though, why b could �nd himself in a situation where he has a belief about a's earlier
beliefs, but does not know whether they have changed.

Belief Adoption. Though b has formed the belief BbBaS in S3, he has not changed his
opinion regarding S; b neither believes nor disbelieves it. He has however obtained (fallible)
�evidence� for the truth of S, namely that a believes it. In case b trusts a's beliefs to be
more often correct than not, it seems reasonable for b to accept BaS as evidence for S if
b has nothing else to go on. This belief adoption policy may be captured by the following
decision rules:

D3 : BbBaS ∧ ¬Bb¬S  [X]BbS
D4 : BbBa¬S ∧ ¬BbS  [X]Bb¬S

Di�erent adoption policies may be obtained by modifying the triggers. E.g., if one wishes
that b adopts a's beliefs no matter what, the two last two conjuncts could be removed. Such
rules would capture that b trusts a's judgment higher than his own.

A solution to {D3,D4} over S3 is the set {∆1,∆2} of programs over APM E4, Fig. 8,
with ∆1 = {µ1, η1, τ} and ∆2 = {µ2, η2, τ}.

⟨S;⊤⟩ ⟨¬S;⊤⟩µ
1 η1

a

τ
⟨⊤;⊤⟩

⟨S;⊤⟩ ⟨¬S;⊤⟩µ2 η2

a

b b

Fig. 8. The APM E4. The doxastic program ∆1 = {µ1, η1, τ} captures that b makes a

�soft update� with S (µ1 �b η1), while it appears to a that nothing is going on (τ).

The interpretation of ∆1 is that while b makes a soft update with S to align his beliefs with
a's, a perceives the ongoing event as vacuous: with both pre- and postconditions set to >,
τ represents the event where nothing happens. It seems the natural choice that a should
stay as unaware of b's revision as possible.

Following Footsteps. Given that S3 satis�es only the trigger of D3, the next choice of
next update is the program ∆1. In ensuing EPM S4 := S3⊗∆1, b has updated his beliefs,
and the actual world satis�es S ∧ BbS. Provided that b makes his decision to walk or
not using decision rules D1 and D2 with X ranging over the two programs from E2 (with
D1,D2,Wa and W a indexed for b), he will choose to follow in the footsteps of a by also
crossing the street.

5 Being Led by a Crowd

Extending the above model to one where b is in a bigger crowd is unproblematic, and only
two aspects requires answering. First, how is concurrent choice to be implemented and how
may such actions be interpreted by b? Second, how is b to treat social proof from a crowd?
Here, a di�erent belief adoption policy must be de�ned.

Concurrent Choice and Interpretation. Assume b is standing in a crowd C of agents,
where each agent has orientated themselves as a did above. Let C1 be an EPM analogous
to S1 above, in which CS ⊆ C believe it is safe to walk, C¬S believe is not and b is agnostic
whether S, knows every other agent believes either S or ¬S, but does not know which. This
state is easily constructed.



Assuming that every i ∈ C acts in accordance with D1 : BiS  [X]Wi and D2 : Bi¬S  
W i, a suitable solution space for any con�guration of beliefs in C simply consists of 2C states,
one for each possible conjunction over {Wi,W i : i ∈ C} with exactly one conjunct for each
i, each state with such a conjunction as postcondition. Clearly, this model will serve as
solution space for any distribution of beliefs about S/¬S in C, and implementing D1 and
D2 over C1 with this solution space will result in all i in CS choosing Wi, while all i in C¬S
will choose W i.

The actual world of the EPM after the concurrent choice will satisfy some conjunction
over {Wi,W i : i ∈ C} which b must now interpret. The interpretation rules from the
APM E3 may be reused for each i ∈ C. A suitable `abductive hierarchy' of agent type
combinations in line with E3 may be constructed as the lattice with most plausible state
that where all agents are `normal' and least plausible state that where all agents are `odd'
and where ρ <b ρ

′ i� ρ has strictly less `odd' agents than ρ′, ρ and ρ′ being equi-plausible
just in case they have an equal number of `odds'. Applying this interpretation, b will (as in
the above) come to have a correct belief about the beliefs of C in the ensuing EPM. On this
higher-order belief, b may now revise his agnostic stance.

Belief Adoption in the Crowd. Given that b is considers social proof a reasonable
source of information and further assuming that he considers the members of C equally
reliable as information gatherers, May's Theorem [11] provides good reason as to why b
should apply simple majority voting on the issue of whether he should believe S or ¬S.
More speci�cally, a belief adoption policy may be de�ned that makes b change his beliefs
in accordance with the perceived majority (under di�erent circumstances, b's higher-order
beliefs could have been wrong).

To de�ne the policy, we make use of the notion of collective belief of degree m
l that ϕ

from [13] given by

Pm
l Gϕ :=

∨
K∈K

∧
i∈K

Biϕ

where G is a group of agents and K is the set of all sets K ⊆ G such that |K| > m
l |G|.

Using degree 1
2 makes PG

2
ϕ true just in case a (strict) majority of G believes ϕ.

The majority voting belief adoption policy may now be implemented using the decision
rules

D′
3 : BbP C

2
S ∧ ¬Bb¬S  [X]BbS

D′
4 : BbP C

2
¬S ∧ ¬BbS  [X]Bb¬S

with the same solution as above (E4), only with a indexes replaced by the group C. Em-
ploying this policy, b will believe S just in case a strict majority of C is believed to do so, and
vice versa for ¬S. In case of a tie in C, neither D′3 or D′4 is active, and b will not perform an
revision, but stay agnostic. Notice further that b's �nal beliefs will re�ect the perceptions
of agents in C during their initial orientation act: if the majority of these were correct, then
b will cross the street safely.

6 Conclusion

The story of two jaywalkers crossing the street have been told using a sequence of models
as storyboard, leading from their mutual uncertainty about the safety of crossing, to the
decision of the second agent to walk. As it happens, the second agent got to cross the
street safely, as he believed he would. Taking a bird's eye view of the model sequence,
the interesting question now becomes what made b succeed? In essence, the answer to this



question is that b learned (in a weak sense) from the action of a, which again invites the
question of what made the learning successful. For this, several factors where determining.

First, a got lucky: in the initial orientation act, a formed the correct belief that crossing
was safe. Ceteris paribus, if a had had a wrong perception of the event, either both agents
would have walked while it was unsafe, or both would have stayed though they could have
crossed the street safely. Generalizing from this single case, we may therefore postulate that
in learning from the actions of others, the student's beliefs are only as good as the teacher's.
In this case, learning from the actions of others merely reiterates the common sense lessons
that basing your beliefs on misdirecting information will most likely lead to incorrect beliefs.

Second, b's �rst choice of abductive hypothesis regarding a's type was correct. Had b's
primary interpretation rule not correctly mirrored a's decision rule, b would have come to
the wrong conclusion about what a believed. All other being equal, b would have concluded
that it was not safe to walk. This is a general consequence of the fact that actions often un-
derdetermine conclusions about the underlying beliefs: where actions to beliefs is functional,
belief to action may not be.

Third, the correctness of a's belief was stable over su�cient time. Had the street turned
unsafe during a's crossing, then a's initial belief would stopped being correct without b
being informed hereof. As a result, b would have formed beliefs based on �old� information,
causing him to make an unsafe choice. Hence, in attempting to deduce ontic facts from the
actions of others, one should try to ensure that conclusions are drawn presently.

Though these three points played important roles in the story, neither are necessary for
the end result. Pertaining to the third point, time enough could have been made to pass for
S to switch truth-value twice. For point one and two, two wrongs could here have made a
right.

Future work. In the above, it has been shown how transition- and interpretation rules
may be used to model dynamics involving decisions and decision interpretation, allowing
subsequent agents to be informed by social proof. Many elements amiss for the presented
to be a fully working framework. Most notably, de�nitions of systems and runs are required
to rigidly investigate how the modules used in the modeling a�ect the overall picture, and
how the present approach relates to DEL protocols and ETL [3, 6]. Being able to consider
runs allows a macro view, where di�erences in �nal results may be mapped to changes in
initial conditions, decision rules, etc. Taking a run-based approach would further allow one
to investigate the role of interpretation rules. Though handy as a brute force approach
to facilitate action to belief conclusions, a deeper analysis involving intentions, plans and
rationality will render them obsolete, at the cost of working with large temporal structures,
as opposed to the localized approach taken here. How these local and global perspectives
relate is an obvious venue for further research.

The idea of treating decision rules as `equations' requiring solutions from a given set or
class of actions models (or model transformers) seems technically potent. It may be used
e.g. to classify the `strength' of an action model class in terms of what decision rules the
class will contain solutions to. E.g., the class of action models without postconditions is
weaker than that with, as the latter will contain solutions to the active rule P → [X]¬P
for atomic P , where the former will not. There are many venues of exploration: is there a
`complete' class of action models, containing a solution to ϕ → [X]ψ for all ϕ,ψ? Is there
a weakest or minimal such? Is there a de�nable class of non-solvable rules? Etc.

Further, there are three strands of literature that should be consulted. The �eld of
epistemic logic broadly construed contains much work that must surveyed, and relevant rec-
ommendations will be much appreciated. Further, game-theoretic work on forward induction
(as reviewed in e.g. [12]) will be relevant, and thirdly, recent works on observational learning
(e.g. [17]) from theoretical economy will also provide interesting perspectives. Hopefully,
the author will get a chance to learn something from looking at these others' work.
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