Expressive Voting: Modelling a Voter’s Decision to Vote
Workshop on Logical Models of Group Decision Making

Dominik Klein
August 14, 2013
Content of the talk

- Relationship between Voting Theory and Rational Choice Theory
- Two explanatory schemes for voting: expressive vs. instrumental.
- Expressive voting-based analysis of voting systems
- Discuss a current approach by Gilboa et al. and present an alternative
Voting and Rational Choice

- Voting is a intentional, deliberative act.
Voting and Rational Choice

- Voting is an intentional, deliberative act.
- Voting decision is influenced by various kinds of considerations: future well-being (self/others), party alignment, general convictions...
Voting and Rational Choice

- Voting is a intentional, deliberative act.
- Voting decision is influenced by various kinds of considerations: future well-being (self/others), party alignment, general convictions...

Classic Rational Choice -theoretic perspective: Voter can be described as maximizing some (complex) utility function

- He strives to bring about the output that maximizes his utility
- Full behaviourism: can learn about utility function through revealed preferences
Voting and Rational Choice

- Voting is a intentional, deliberative act.
- Voting decision is influenced by various kinds of considerations: future well-being (self/others), party alignment, general convictions.

Classic Rational Choice-theoretic perspective: Voter can be described as maximizing some (complex) utility function

- He strives to bring about the output that maximizes his utility
- Full behaviourism: can learn about utility function through revealed preferences

Slogan: **Utility is the Utility of the outcome**
Voting and Rational Choice

- Slogan: Utility is the Utility of the outcome
- Voting as an instrument to influence outcome Instrumental Account of Voting
- Strategic Considerations prominently studied in voting theory: Gibbard Satterwaithe
Prominent criticism:

(Downs 1957): Extend the image of the rational voter by taking into account the cost L for going to the election booth. Leave home if

$$L \leq R$$
Prominent criticism:

(Downs 1957): Extend the image of the rational voter by taking into account the cost L for going to the election booth. Leave home if

$$L \leq h \cdot R$$

Where R is the difference in utility between the outcomes.
(Downs 1957): Extend the image of the rational voter by taking into account the cost L for going to the election booth. Leave home if

$$L \leq h \cdot R$$

Where R is the difference in utility between the outcomes

For prominent elections (first-past-the-post): $h < \frac{1}{12.500}$
Prominent criticism:

(Downs 1957): Extend the image of the rational voter by taking into account the cost \(L \) for going to the election booth. Leave home if

\[
L \leq h \cdot R
\]

Where \(R \) is the difference in utility between the outcomes
For prominent elections (first-past-the-post): \(h < \frac{1}{12.500} \)

Why do people vote?
Expressive Voting

Prominent disanalogy to Economic Reasoning:

- In economic interactions: expressing the preference ensures the outcome (buying a car...)
- Revealed preference deals with outcomes only. (Mostly...)
Expressive Voting

Prominent disanalogy to Economic Reasoning:

- In economic interactions: expressing the preference ensures the outcome (buying a car...)
- Revealed preference deals with outcomes only. (Mostly...)
- Prominently accepted answer: The fact of voting itself is an act that produces utility.

Thus \[L \leq h \cdot R + E \]

Where \(E \) is the utility of the expressive act

See Brennan/Lomasky (1993) for a deeper discussion

Expressive Voting

Prominent disanalogy to Economic Reasoning:

- In economic interactions: expressing the preference ensures the outcome (buying a car...)
- Revealed preference deals with outcomes only. (Mostly...)
- Prominently accepted answer: The fact of voting itself is an act that produces utility. Thus

\[L \leq h \cdot R + E \]

Where \(E \) is the utility of the expressive act
Expressive Voting

Prominent disanalogy to Economic Reasoning:

- In economic interactions: expressing the preference ensures the outcome (buying a car...)
- Revealed preference deals with outcomes only. (Mostly...)
- Prominently accepted answer: The fact of voting itself is an act that produces utility. Thus

\[L \leq h \cdot R + E \]

Where \(E \) is the utility of the expressive act

- See Brennan/Lomasky (1993) for a deeper discussion

Voting behaviour reflects a superposition of both kind of motivations
Voting behaviour reflects a superposition of both kind of motivations

Differential data showing that risk of being decisive changes voting behaviour
Voting behaviour reflects a superposition of both kind of motivations.

Differential data showing that risk of being decisive changes voting behaviour (french parliamentary election).
Voting behaviour reflects a superposition of both kind of motivations.

Differential data showing that risk of being decisive changes voting behaviour (french parliamentary election).

Study both kinds of motivations separately to understand voting behaviour.
Question:

Does the expressive vs. instrumental debate influence the discussion of voting systems?
Question:

Does the expressive vs. instrumental debate influence the discussion of voting systems?

- IIA, Condorcet, ...
- Manipulability
- Clear outcomes
Question:

Does the expressive vs. instrumental debate influence the discussion of voting systems?

- IIA, Condorcet,…
- Manipulability
- Clear outcomes
Discuss voting systems in an expressive framework

- Majority voting: Voter votes for a single candidate
- Approval voting: Voter picks an arbitrary subset of candidates
- Majority Judgment/Graded voting: Voter gives grades to candidates (1-10)
We

- present a formal Framework of Gilboa, Aragones and Weiss (2011) to compare approval and majority voting under expressive voting
- discuss this approach
- present an alternative framework

The framework

- Political debate consists of n-topics $T_1 \ldots T_n$.
- Stance on a topic is a number in $[-1 : 1]$
- every party \vec{p} is a vector in $\{-1; 1\}^n$
- every voter \vec{v} is a vector in $[-1, 1]^n$
Political debate consists of n-topics $T_1 \ldots T_n$.

Stance on a topic is a number in $[-1 : 1]$.

every party \vec{p} is a vector in $\{-1; 1\}^n$.

every voter \vec{v} is a vector in $[-1, 1]^n$.

relative weights
The framework

- Political debate consists of n-topics $T_1 \ldots T_n$.
- Stance on a topic is a number in $[-1 : 1]$.
- Every party \vec{p} is a vector in $\{-1; 1\}^n$.
- Every voter \vec{v} is a vector in $[-1, 1]^n$.

Relative weights, uncertainty
Majority Vote

Let \mathcal{P} be the set of all parties. In **majority vote** each voter v votes for the closest party. That is he minimizes

$$\min_{p \in \mathcal{P} \cup \{0\}} \text{dist}(p, v)$$
Majority Vote

Let \mathcal{P} be the set of all parties.

In **majority vote** each voter v votes for the closest party. That is he minimizes

$$\min_{p \in \mathcal{P} \cup \{0\}} \text{dist}(p, v)$$

- \mathcal{P} is the set of parties
- dist is the euclidean distance
Majority Vote

Let \mathcal{P} be the set of all parties.

In **majority vote** each voter v votes for the closest party. That is he minimizes

$$\min_{p \in \mathcal{P} \cup \{0\}} \text{dist}(p, v)$$

- \mathcal{P} is the set of parties
- dist is the euclidean distance
- The party with the most votes gets elected.
Approval voting

Let \mathcal{P} be the set of all parties.
Approval voter: The position of a subset $I \subseteq \mathcal{P}$ is taken to be the straight average of its components:

$$
pos(I) := \frac{1}{|I|} \sum_{p \in I} p$$
Approval voting

Let \mathcal{P} be the set of all parties.
Approval voter: The position of a subset $I \subseteq \mathcal{P}$ is taken to be the straight average of its components:

$$\text{pos}(I) := \frac{1}{|I|} \sum_{p \in I} p$$

in approval voting each voter \vec{v} approves of the coalition whose position is closest to his own:

$$\min_{I \subseteq \mathcal{P}} \text{dist}(\text{pos}(I), \vec{v})$$
Results of Aragones, Gilboa and Weiss

General Question: How much is required to motivate all voters to participate
Results of Aragones, Gilboa and Weiss

General Question: How much is required to motivate all voters to participate

- In majority voting, the number of parties required to guarantee that everybody votes is exponential in the number of issues
- In approval voting 4 parties are enough to guarantee that everyone votes
- some stochastic results for number parties $= \text{number issues}$
Our critique

- Implicit coalition making highly improbable
 Equal weight assumption
 Discourse is shaped by single winner intuitions
Our critique

- Implicit coalition making highly improbable
 Equal weight assumption
 Discourse is shaped by single winner intuitions
- might facilitate the choice of the most undesirable parties
Our critique

- Implicit coalition making highly improbable
 Equal weight assumption
 Discourse is shaped by single winner intuitions
- might facilitate the choice of the most undesirable parties
Our critique

- Implicit coalition making highly improbable
 Equal weight assumption
 Discourse is shaped by single winner intuitions
- might facilitate the choice of the most undesirable parties
Our critique

- Implicit coalition making highly improbable
 Equal weight assumption
 Discourse is shaped by single winner intuitions
- might facilitate the choice of the most undesirable parties
Our Approach

Approval voting: Evaluate parties individually

If a party \(p \) implements its policy the utility \(v \) gets on \(T \) is:

\[
|v_i| \text{ if } v_i \cdot p_i > 0
\]

Thus the utility \(v \) gets is:

\[
\sum_{\text{all}} |v_i| - 2 \sum_{\text{disagree}} |v_i| = \sum_{p_i} v_i\]

\(v \) approves of \(p \) if \(\sum_{p_i} v_i \geq k \cdot \sum_{|v_i|} \)

For some threshold \(k \in (-1; 1] \). (Typically \(k \geq 0 \))
Our Approach

Approval voting: Evaluate parties individually
If a party \vec{p} implements its policy the utility \vec{v} gets on T_i is:

$$|v_i| \text{ if } v_i \cdot p_i > 0$$
$$-|v_i| \text{ else}$$
Our Approach

Approval voting: Evaluate parties individually
If a party p implements its policy the utility v gets on T_i is:

$$|v_i| \text{ if } v_i \cdot p_i > 0$$
$$-|v_i| \text{ else}$$

Thus the utility v gets is:

$$\sum_{all} |v_i| - 2 \sum_{disagree} |v_i| = \sum p_i v_i$$
Our Approach

Approval voting: Evaluate parties individually
If a party \(\bar{p} \) implements its policy the utility \(\bar{v} \) gets on \(T_i \) is:

\[
|v_i| \text{ if } v_i \cdot p_i > 0 \\
-|v_i| \text{ else}
\]

Thus the utility \(\bar{v} \) gets is:

\[
\sum_{\text{all}} |v_i| - 2 \sum_{\text{disagree}} |v_i| = \sum p_i v_i
\]

\(\bar{v} \) approves of \(p \) if

\[
\sum p_i v_i \geq k \cdot \sum |v_i|
\]

For some threshold \(k \in (-1; 1] \). (Typically \(k \geq 0 \))
Geometric Interpretation

The algebraic definition is equivalent to: Accept a party p if it is within an α-cone round \vec{v}

\[\alpha \text{ depends upon } n, k \text{ and } \vec{p}. \]
\[\text{Holds } \arccos(k) \leq \alpha \leq \arccos\left(\frac{k}{\sqrt{n}}\right) \]
Justification of cone

- Reasoning about individual alternatives: Individual Criterion
- ν gives the relative weights of the different positions
- Cone represents level of satisfaction
Remark

Approval and Majority vote are compatible in the following sense: For any voter \vec{v} and every party \vec{p} holds:

$$p \text{ minimizes } dist(p, \vec{v}) \text{ iff } p \text{ maximizes } \frac{\vec{p} \cdot \vec{v}}{\sum |v_i|}$$
Results

For $k = 0$, i.e. $\alpha = 90^\circ$ we have exactly the same results as in Gilboa et al:

- 4 (resp $2n$) parties are enough to make everyone vote
- For fixed \vec{v} and randomly chosen n parties:
 \[\lim_{n \to \infty} P(\exists \vec{p} | \vec{v} \text{ approves of } \vec{p}) = 1 \]
- For $k > 0$ exponentially many parties needed.
The critique reconsidered

- Plausible/in line with reasoning
The critique reconsidered

▶ Plausible/in line with reasoning ✓
The critique reconsidered

- Plausible/in line with reasoning ✓
- Does not facilitate the election of unfavourable parties
The critique reconsidered

- Plausible/in line with reasoning ✓
- Does not facilitate the election of unfavourable parties ✓
- Easily extendible to grade voting
Extension/Outlook: Focus Dynamics

- Focus of public attention changes over time
- Focus change has bigger impact on electoral outcome than opinion change
- Parties attempt to guide public focus to their areas of expertise
- Relative weights are not intrinsic
- Focus modelled by relative weights
Extension/Outlook: Focus Dynamics

▶ Each component \(v_i \in [-1; 1] \) consists of a direction in \(\{-1; 1\} \) and a weight in \([0; 1]\).
Each component $v_i \in [-1; 1]$ consists of a direction in $\{-1; 1\}$ and a weight in $[0; 1]$.

Focus can change weights, but not the direction.
Extension/Outlook: Focus Dynamics

- Each component $v_i \in [-1; 1]$ consists of a direction in $\{-1; 1\}$ and a weight in $[0; 1]$.
- Focus can change weights, but not the direction.
- Model every focus change as a vector $\vec{f} = (f_1 \ldots f_n) \in (0; 1)^n$.

General Question: Which focus change should a party induce to maximize their electoral outcome?
Each component \(v_i \in [-1; 1] \) consists of a direction in \((-1; 1)\) and a weight in \([0; 1]\).

Focus can change weights, but not the direction.

Model every focus change as a vector \(\vec{f} = (f_1 \ldots f_n) \in (0; 1)^n \).

Focus change transforms voter \(\vec{v} = (v_1 \ldots v_n) \) into \((f_1 \cdot v_1 \ldots f_n \cdot v_n) \).
Extension/Outlook: Focus Dynamics

- Each component $v_i \in [-1; 1]$ consists of a direction in $\{-1; 1\}$ and a weight in $[0; 1]$.
- Focus can change weights, but not the direction.
- Model every focus change as a vector $\vec{f} = (f_1 \ldots f_n) \in (0; 1)^n$.
- Focus change transforms voter $\vec{v} = (v_1 \ldots v_n)$ into $(f_1 \cdot v_1 \ldots f_n \cdot v_n)$

General Question: Which focus change should a party induce to maximize their electoral outcome?
Wrap up

- Interplay between rational choiße theory and voting theory: Algebraic models as input
- Expressive voting changes discussion of voting systems
- Semantics for approval voting in line with natural intuitions
- Dynamic Aspects: Focus Change
Thank You