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Abstract

Condorcet extensions have long held a prominent place in
social choice theory. A Condorcet extension will return the
Condorcet winner as the unique winner whenever such an al-
ternative exists. However, the definition of a Condorcet ex-
tension does not take into account possible manipulation by
the voters. A profile where all agents vote truthfully may have
a Condorcet winner, but this alternative may not end up in the
set of winners if agents are acting strategically. Focusing on
the class of tournament solutions, we show that many natural
social choice functions in this class, such as the well-known
Copeland and Slater rules, cannot guarantee the preservation
of Condorcet winners when agents behave strategically. Our
main result in this respect is an impossibility theorem that es-
tablishes that no tournament solution satisfying a very weak
decisiveness requirement can provide such a guarantee. On
the bright side, we identify several indecisive but otherwise
attractive tournament solutions that do guarantee the preser-
vation of Condorcet winners under strategic manipulation for
a large class of preference extensions.

1 Introduction
The notion of strategyproofness has been studied across dis-
ciplines, including economics, game theory, and artificial in-
telligence (Arrow, Sen, and Suzumura 2010; Shoham and
Leyton-Brown 2009; Brandt et al. 2016; Meir 2018). For
multiagent systems, including those utilising voting to reach
a collective decision, ensuring some level of strategyproof-
ness is an important consideration (Amanatidis, Birmpas,
and Markakis 2016; Hajaj et al. 2015).

By a seminal result in social choice theory, we know that
every non-trivial resolute social choice function—or vot-
ing rule—is susceptible to strategic manipulation by voters
(Gibbard 1973; Satterthwaite 1975). Our proposal in this pa-
per is to define a more fine-grained strategyproofness axiom
that dictates a specific kind of “undesirable” manipulation
should not occur. We do not examine whether strategyproof-
ness can be satisfied alongside a set of other desirable ax-
ioms, but whether the fact that strategyproofness fails can
affect the “strength” of the other axiom(s). Our focus is on
Condorcet extensions, and how failure of strategyproofness
affects Condorcet consistency.
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If an agent manipulates under a Condorcet extension—
meaning she submits a preference other than her true one—
it is possible that this will result in a reported profile without
a Condorcet winner, despite the fact that the truthful profile
has one. In particular, it is possible that a Condorcet exten-
sion in some cases fails to return the Condorcet winner of the
truthful profile as the outcome. We examine exactly when
the lack of strategyproofness affects whether we can trust
that a Condorcet extension will give us all “true” Condorcet
winners, even under the assumption that agents might vote
strategically.

Strategyproofness on profiles with a Condorcet winner is
also appealing from a practical viewpoint as real-world elec-
tions have a high probability of giving us a Condorcet win-
ner (Gehrlein 2006; Gehrlein and Lepelley 2011).

Related work. There are various methods in the literature
for circumventing the impossibility result due to Gibbard
(1973) and Satterthwaite (1975). A well-employed strategy
is to consider a restricted domain for the social choice func-
tion, where strategyproofness is guaranteed. Among these
domain restrictions, the best-known is the single-peaked do-
main of Black (1948).1 There are also many examples of
positive results relative to more fine-grained axioms that fo-
cus on—and limit—the type of manipulation performed by
the agent (Sato 2013; Bossert and Sprumont 2014; Kruger
and Terzopoulou 2020). Similar positive results have been
obtained by considering voters’ ignorance of others’ prefer-
ence as an informational barrier (Conitzer, Walsh, and Xia
2011; Reijngoud and Endriss 2012; Osborne and Rubinstein
2003). Another approach has been to argue for the compu-
tational hardness of computing a successful manipulation
strategy as a barrier to manipulation (Bartholdi, Tovey, and
Trick 1989; Conitzer and Walsh 2016).

While the Gibbard-Satterthwaite Theorem pertains to res-
olute social choice functions, there are similar impossibil-
ity results for irresolute rules (Gärdenfors 1976; Kelly 1977;
Barberà 1977; Duggan and Schwartz 2000; Sato 2008).
These results differ in how they define manipulability, as
they by necessity must make assumptions about agents’
preferences over sets of alternatives. Duggan and Schwartz
(2000), for example, work with optimistic and pessimistic

1For a more thorough treatment of single-peakedness and many
other domain restrictions, see Gaertner (2001).



agents, while Gärdenfors (1976) defines manipulability rel-
ative to his eponymous preference extension.

Shifting focus away from resoluteness has also led to pos-
itive results regarding the strategyproofness of social choice
functions. For example, Gärdenfors (1976) identifies two
such strategyproof functions for the Gärdenfors extension
and Brandt (2015) identifies social choice functions that are
strategyproof under the Kelly preference extension.

The idea of preserving Condorcet winners has also been
examined in the setting of probabilistic social choice. Hoang
(2017) shows that maximal lotteries (Fishburn 1984) are
strategyproof on profiles with Condorcet winners when
based on the majority relation. Brandl, Brandt, and Stricker
(2018) extend this result to all maximal lotteries.

Contribution. To distinguish between social choice func-
tions that do not incentivise manipulation in profiles with a
Condorcet winner and those that do, we introduce the notion
of a robust Condorcet extension. We then show that no ir-
resolute tournament solution that is weakly resolute—in the
sense of returning a single winning alternative in at least one
profile that does not have a Condorcet winner—can possibly
be such a robust Condorcet extension. This class of weakly
resolute rules includes the well-known social choice func-
tions of Copeland (1951) and Slater (1961). Finally, we iden-
tify several attractive social choice functions that are robust
Condorcet extensions (and thus fail weak resoluteness) for
a large class of preferences. This includes, in particular, the
minimal extending set (Brandt 2011) and its coarsenings.

Paper outline. The remainder of the paper is organised as
follows. We introduce the framework and relevant literature
in Section 2. In Section 3 we present an impossibility result
for weakly resolute rules. In Section 4 we we present a num-
ber of sufficient conditions for a Condorcet extension to be
robust. We conclude in Section 5.

2 The Model
In this section we introduce the framework and notation we
will be using throughout the paper. Much of the material up
to Section 2.5 is familiar from social choice theory (Arrow,
Sen, and Suzumura 2010; Brandt et al. 2016). In Section 2.5,
we introduce the novel notion of a robust Condorcet exten-
sion, the central concept of this paper.

2.1 Preference Profiles
LetA be a finite set of alternatives, andN = {1, . . . , n} a fi-
nite set of agents. A preference profile P = (�P

1 , . . . ,�P
n )

is a vector of strict linear orders over A, where �P
i is the

preference relation of agent i in the profile P . For two pro-
files P and P ′, and agent i ∈ N , we write P =−i P

′, and
say they are i-variants, if �P

j = �P ′

j for all j ∈ N \ {i}.
L(A) denotes the set of all linear orders over A, and L(A)n
denotes the set of all profiles for n agents.

For a profile P , �P (with asymmetric part �P ) is the
majority relation for P and is defined such that a �P a′ if
and only if |{i ∈ N | a �P

i a′}| ≥ |{i ∈ N | a′ �P
i a}|, for

all a, a′ ∈ A. An alternative a ∈ A is a Condorcet winner
in profile P if it defeats every other alternative in a pairwise

majority contest, meaning a �P a′ for all a′ ∈ A \ {a}. We
define DCondorcet as the set of all profiles with a Condorcet
winner.

We say a relation � over A is complete if for all a, b ∈ A
it is the case that a � b or b � a. A relation � is connex if
a � b or b � a for all distinct a, b ∈ A. Note that the ma-
jority relation of any profile is complete, and any individual
preference relation is connex.

2.2 Social Choice Functions
An irresolute social choice function (SCF) is a mapping
from profiles to nonempty subsets of alternatives:

f : L(A)n → 2A \ {∅}
To avoid having to break majority ties, we define SCFs for
odd n. Of course we do not strictly speaking need odd n, but
rather that profiles input to the function have a strict majority
relation. A SCF f is a Condorcet extension, or is Condorcet-
consistent, if it returns (only) the Condorcet winner when-
ever one exists.

For irresolute SCF, the size of the set of winning alter-
natives is an important consideration. As an example of a
rule that returns quite large sets, take the rule that returns the
Condorcet winner if one exists, and returns the whole set of
alternatives otherwise. While this is clearly a Condorcet ex-
tension, it is a very indecisive rule, as it often results in many
ties in the outcome.

A SCF is resolute if it always returns a singleton. In order
to quantify how decisive an irresolute rule is, we define a
weaker notion of resoluteness. We say f is weakly resolute
if there exists a profile P ∈ L(A)n \ DCondorcet for which
|f(P )| = 1. So, a rule is weakly resolute if it sometimes
returns a singleton for a profile without a Condorcet winner.
For some SCFs, we can directly compare how decisive they
are relative to each other. A SCF f is a refinement of f ′ if for
all profiles P ∈ L(A)n it is the case that f(P ) ⊆ f ′(P ),
meaning f always returns a subset of f ′. If f is a refinement
of f ′, we say f ′ is a coarsening of f . If a rule is a refinement
of another, it is clearly the more decisive of the two.

2.3 Tournaments and Tournament Solutions
A tournament T is a pair (S,�T ), where S is a set of nodes
and�T is an asymmetric and connex relation over S, which
we call the dominance relation of the tournament. For a set
S, we denote by T (S) all tournaments on S.

For a tournament T = (S,�T ), we say an alternative
a ∈ S dominates a′ ∈ S in the tournament T if a �T a′.
The dominion of a in T is defined as DT (a) = {a′ ∈ S |
a �T a′}, the set of alternatives it dominates. The domina-
tors of a in T is defined as DT (a) = {a′ ∈ S | a′ �T a},
the set of alternatives that dominate it. For S′ ⊆ S, we de-
fine the restriction �T

S′= {(a, a′) ∈ S′ × S′ | a �T a′},
which is �T restricted to the set S′. A subtournament of
T = (S,�T ) is a tournament (S′,�T

S′) where S′ ⊆ S.
Thus, a subtournament of T is a subset of the nodes in T ,
and the edges between those nodes.

We say π : S → S′ is an isomorphism between two tour-
naments T = (S,�T ) and T ′ = (S′,�T ′) if π is a bijec-
tion, and a �T a′ ⇔ π(a) �T ′ π(a′) for all (a, a′) ∈ S×S.



We say a profile P ∈ L(A)n induces tournament T =
(A,�T ) if �P = �T . So a profile induces a tournament
if they range over the same alternatives, and the strict part of
the majority relation is exactly the dominance relation of the
tournament. Note that if a profile induces a tournament, the
strict component of the majority relation of that profile must
be connex. As tournaments do not speak about agents, we
cannot directly talk about two tournaments being i-variants
for some agent i ∈ N . Instead, we say two tournaments
T = (A,�T ) and T ′ = (A,�T ′) are single-agent variants,
and write T =−1 T ′, if there exist a set of agents N and
profiles P ,P ′ ∈ L(A)n, for n = |N |, such that P =−i P

′

for some agent i ∈ N , and the profiles P and P ′ induce the
tournaments T and T ′, respectively.

We say an element a ∈ S is the Condorcet winner of
the tournament T = (S,�T ) if DT (a) = ∅. This corre-
sponds to the notion of a Condorcet winner of a profile; if a
tournament has a Condorcet winner, that alternative will be
the Condorcet winner in any profile that induces this tourna-
ment. We write TCondorcet to refer to the set of tournaments
that have a Condorcet winner. A tournament solution is a
mapping from tournaments to sets of alternatives, that does
not distinguish between isomorphic tournaments:

F : T (S)→ 2S \ {∅}

So F (T ′) = {π(a) | a ∈ F (T )} if π is an isomorphism
between T and T ′. For ease of reading, we sometimes write
F (�T ) to mean F (S,�T ) when S is clear from context.

A SCF f is equivalent to a tournament solution F if
f(P ) = F (A,�P ) for all P ∈ L(A)n. Note that the major-
ity relation of this profile P must be a strict order, as the SCF
f is defined for odd n only. In a slight muddling of terminol-
ogy, we will refer to SCFs that are equivalent to tournament
solutions as tournament-solution SCFs.

Tournament solutions roughly correspond to Fishburn’s
C1 functions (Fishburn 1977), which require only the in-
formation in the majority graph to determine the winners.
More precisely, tournament-solution SCFs correspond to
neutral C1 functions,2 as tournament solutions do not dis-
tinguish between isomorphic tournaments, and therefore do
not favour any alternatives over others.

2.4 Extending Preferences
Because the rules we examine are irresolute—meaning they
do not always return a single winner—we need to specify
how agent preferences over alternatives are extended to pref-
erences over sets of alternatives.

A preference extension e maps any given preference rela-
tion� over alternatives inA, to a relation�e (with strict part
�e) over sets of alternatives. We define two requirements for
any preference extension e:

(i) x � y implies {x} �e {y} and,

(ii) X �e Y implies that there exist some x ∈ X and
y ∈ Y such that x � y and {x, y} 6⊆ X ∩ Y .

2A SCF satisfies neutrality if for any profile P and any permu-
tation π : A→ A it is the case that f(π(P )) = π(f(P )).

The first requirement simply dictates that e stays faithful to
the agent’s preferences when comparing singleton sets. The
second requires that e does not extend the preferences in a
way that completely disagrees with an agent’s preferences
over alternatives. Our first requirement corresponds to the
Extension Rule of Barberà, Bossert, and Pattanaik (2004),
while our second requirement is similar in spirit to the l-
extension of Kruger and Terzopoulou (2020). For an agent i
with preference relation �P

i in profile P , we write �P ,e
i

to denote her preferences over sets of alternatives, extended
according to e. We say an agent has e-preferences, if �P ,e

i
is her preference relation over sets of alternatives.

We say a preference extension e is pessimistic if X �e Y
implies that there exists some y ∈ Y such that x � y for
all x ∈ X . Note that this defines a class of preference exten-
sions. We highlight the Gärdenfors extension (Gärdenfors
1976) as a well-known example of a pessimistic preference
extension. The Gärdenfors extension dictates that if one set
is preferred over another, then any alternative added to the
first set to reach the second is preferred to the alternatives in
the initial set. Similarly, those alternatives removed from the
initial set should be less preferred.

2.5 Robust Condorcet Extensions
We say an irresolute SCF f is Condorcet-manipulable by
agent i in profile P , under preference extension e, if there
exists another profile P ′ =−i P such that f(P ′) �P ,e

i
f(P ) and P ∈ DCondorcet. We are now ready to present our
central definition.

Definition 1. A SCF f is a robust Condorcet extension
(or simply, is robust) under a preference extension e if f
is Condorcet-consistent and not Condorcet-manipulable in
any profile P ∈ DCondorcet, by any i ∈ N with e-preferences.

We sometimes write that a SCF is robust to mean that it is
a robust Condorcet extension, as robustness is a property of
Condorcet extensions. So a SCF is robust under a certain
preference extension, if it is not Condorcet manipulable by
any agent whose preferences over alternatives have been ex-
tended to sets of alternatives according to that extension.

While robustness is a weak strategyproofness require-
ment, it also speaks about how well a rule can preserve Con-
dorcet winners. A robust Condorcet extension ensures that,
if the truthful profile has a Condorcet winner, then it is a
weakly dominant strategy for all agents to report their true
preferences, thus ensuring that no Condorcet winner loses
that designation because of strategic manipulation. A ro-
bust Condorcet extension therefore ensures that profiles with
Condorcet winners are, in a sense, stable. We give an exam-
ple of a Condorcet manipulation of the Copeland SCF,3 to
demonstrate what failure of robustness looks like.

Example 1. Suppose the profile below, along with the corre-
sponding majority graph, is the “truthful” profile, meaning

3The Copeland score of an alternative in a profile (for odd n) is
the number of other alternatives it beats in a pairwise majority con-
test. The Copeland rule selects those alternatives with the highest
Copeland scores (Copeland 1951).



all three agents have reported their true preferences. As al-
ternative a is the Condorcet winner, Copeland will return a
as the sole winner if all agents vote truthfully. Note, how-
ever, that agent 1 has the ability to reverse the dashed edges
(a, b) and (a, d) in the majority graph, by moving b and d
above a in her own preference order, while keeping their
relative ranking as it is. Agent 1 also has an incentive to do
so, as this would result in a majority graph where c—her top
choice—is the only alternative with a single incoming edge.

agent 1 agent 2 agent 3

c a e
a c d
b e b
d d a
e b c

a b

e c

d
As the Copeland winner is the alternative with the smallest
number of incoming edges in the majority graph, c would
be the lone Copeland winner if agent 1 misreports her
preferences, meaning, Copeland incentivises a Condorcet-
manipulation in this profile.

While the profile in Example 1 has a Condorcet winner,
Copeland is not guaranteed to return this alternative as the
winner (or even among them) unless we assume all agents
vote truthfully. In the same profile, a robust Condorcet-
extension would ensure no agent would have an incentive
to misreport her preferences.

3 Impossibilites
We present a first impossibility result, showing there is no
function that can meet our robustness requirement for all
preference extensions.
Proposition 1. No tournament-solution SCF is robust under
all preference extensions.

Proof. Let A = {a, b, c}, N = {1, 2, 3},4 and let f be a
Condorcet-consistent SCF equivalent to the tournament so-
lution F . Suppose agent 1’s preferences over sets of alterna-
tives �P ,e

1 are such that X �P ,e
1 Y if and only if one of the

following holds:

• X = {a, b, c} and Y = {a}, or
• X = {x} and Y = {y} for some x, y ∈ A s.t. x � y.

These preferences satisfy both our requirements for prefer-
ence extensions, and are therefore a valid extension of �P

1 .
Let P be the profile shown below, with the induced

tournament T on the right. As f is a Condorcet extension,
f(P ) = {a}. Let P ′ =−1 P , where b �P ′

1 c �P ′

1 a,
meaning agent 1 reverses the edge (a, c) in the induced
tournament by reversing the order of these alternatives in
her ranking. The tournament T ′, induced by P ′, consists of

4While our proof uses three agents and three alternatives, we
can always construct profiles with a larger number m of alterna-
tives, where the majority relation is an m-cycle.

a 3-cycle.

agent 1 agent 2 agent 3

b a c
a b a
c c b

a b

c

As tournament solutions do not distinguish between iso-
morphic tournaments, f(P ′) = F (T ′) = {a, b, c}. As
{a, b, c} �P ,e

1 {a}, this would constitute a successful ma-
nipulation for agent 1, meaning f cannot be robust.

As no SCFs are robust for all preference extensions, we redi-
rect our search to those that may be robust for some prefer-
ence extension. We first recall a result by McGarvey (1953),
which we will use to prove the main result of this section.
We include the proof for the sake of completeness.

Theorem 1 (McGarvey, 1953). Let A be a set of alterna-
tives, and let ≥ be a complete relation over A. Then there is
a profile P ∈ L(A)n for some even n such that�P = ≥,
and if a > b, there are n

2 + 2 agents ranking a over b in P .

Proof. For a set of alternatives A and a relation ≥ (with
strict component >) over A, the profile P is constructed for
an even number of agents N = {iab, jab | (a, b) ∈ >} as
follows. For every pair of alternatives such that a > b, there
are two voters iab and jab, with the following preferences:

a �P
iab

b �P
iab

x1 �P
iab
· · · �P

iab
x|A|−2 and

x|A|−2 �P
jab
· · · �P

jab
x1 �P

jab
a �P

jab
b,

Here {x1, . . . x|A|−2} = A \ {a, b}. For each agent in N \
{iab, jab} who prefers a over b, there will be exactly one
corresponding agent who prefers b over a, meaning in the
profile P exactly n

2 + 2 agents prefer a to b. As this holds
for any pair of alternatives, it is clear that �P = ≥.

Note that while our statement of McGarvey’s Theorem is
slightly stronger than the classical formulation, the proof and
the profile constructed in the proof remain the same. We now
show that weakly resolute rules fail robustness for all prefer-
ence extensions, and further, that they are the only rules that
do so. This strengthens an observation from Brandt, Brill,
and Harrenstein (2016) stating that all weakly resolute rules
are Kelly-manipulable.

Theorem 2. A tournament-solution SCF is weakly resolute
if and only if it fails robustness under all preference exten-
sions.

Proof. For the right-to-left direction we prove the contra-
positive. That is, we suppose f is a tournament-solution SCF
that fails weak resoluteness and show it must be robust under
some preference extension. To see that this must be the case,
note that any rule failing weak resoluteness never returns
singletons outside DCondorcet. This means the preference ex-
tension ranging only over singletons would never (strictly)
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Figure 1: Tournaments T and T ′—with winners marked in
bold—and relation �M from the proof of Theorem 2. Ties
are represented by bidirectional arrows.

favour a larger set over the singleton set with the Condorcet
winner.5 As f will always return a set larger than a single-
ton outside the Condorcet domain, Condorcet-manipulation
with these preferences is not possible, thereby making f ro-
bust under this preference extension.

For the left-to-right direction, let A be our set of alterna-
tives. Suppose f is a weakly resolute tournament-solution
SCF, equivalent to a tournament solution F . We show it is
possible for an agent to manipulate f from a profile with a
Condorcet winner under an arbitrary preference extension e,
meaning f cannot be robust under any preference extension.

We first define two tournaments T and T ′, which we
will show are single-agent variants. As F is equivalent to
a weakly resolute SCF, there is some tournament T ′ =

(A,�T ′) ∈ T (A) \ TCondorcet such that F (T ′) = {x} for
an alternative x ∈ A. As x is not a Condorcet winner in T ′,
there must be some y ∈ A such that y �T ′ x, and by the
same reasoning, there must be at least one alternative z ∈ A
such that z �T ′ y. We conclude that the nodes {x, y, z} and
the edges (y, x), (z, y) must be present in T ′. For a visual
representation, see Figure 1.

Let S = DT ′(y) be the dominators of y in T ′. We define a
second tournament T = (A,�T ), where y �T a for all a ∈
S, and�T agrees with�T ′ on all other pairs of alternatives.
In other words, we simply reverse all incoming edges of y in
T ′ to obtain T . Note that this makes y a Condorcet winner
in T , meaning F (T ) = {y}.

We now show that T and T ′ are single-agent variants.
We start by constructing a profile P that induces T . To this
end, consider a complete relation �M (with strict compo-
nent �M , and symmetric component ∼M ) over A, such that
�M = �T ∪ {(a, y) | a ∈ S}. This means �M and
�T agree on all pairs of alternatives except those for which
T and T ′ differ. In those cases, �M gives a tie between the

5Note that all relevant manipulations here would be between
singleton outcomes, meaning we are taking advantage of strat-
egyproofness of the Condorcet, or majority, rule (Campbell and
Kelly 2003).

alternatives. By Theorem 1, we know there exists a profile
P ∗ = (�P ∗

1 , . . . ,�P ∗

n ) with majority relation�M . Further,
we know that we can construct P ∗ with an even number of
agents n, such that for any a, a′ ∈ A, where a �M a′, there
are exactly n

2+2 agents who prefer a to a′ in P ∗. We use P ∗

to construct the profile P . Let P = (�P ∗

1 , . . . ,�P ∗

n ,�P
i ),

where x �P
i y �P

i a for all a ∈ A \ {x, y}.
To see that P induces tournament T , note that for any pair

of alternatives (a, a′), either

(i) a �M a′—meaning a �T a′, and n
2 +2 prefer a to a′

in P ∗, or
(ii) a ∼M a′—meaning a′ = y, and a ∈ S (or vice versa).

If (i) is the case, a majority of agents in P will prefer a to a′
regardless of agent i’s preferences; n

2 +2 agents still form a
strict majority of n+1 agents. If on the other hand (ii) is the
case, we know from agent i’s preferences that y �P

i a. As
these alternatives were tied in P ∗, adding agent i to the pro-
file breaks these ties in favour of y, so a majority of agents in
P will now prefer y to a. Thus the only differences between
�M and�P relate to the pairs on which�M and�T differ.
As the changes agree with �T , this makes �T = �P ,
meaning P induces T . As F (T ) = {y}, we can conclude
that f(P ) = {y}.

It now remains to construct a profile P ′ such that P =−i
P ′ and P ′ induces T ′. Let P ′ = (�P

1 , . . . ,�P
n ,�P ′

i ), and
x �P ′

i a �P ′

i y, for all a ∈ A \ {x, y}, meaning agent
i moves y to the bottom of their ranking. Clearly, P ′ is an
i-variant of P . In the tournament induced by P ′, it must be
the case that the edges (a, y) for all a ∈ S are present as
the majority on these alternatives is dictated by agent i (and
all other edges remain as they were in T ). As these edges
correspond exactly to those where T and T ′ differ, P ′ must
induce T ′, and as F (T ′) = {x} we conclude f(P ′) = {x}.

Finally, let �P ,e
i be agent i’s true preferences over sets

of alternatives, extended according to e. It is immediately
clear, as both outcomes are singletons and x �P

i y, that
f(P ′) �P ,e

i f(P ). As P has a Condorcet winner, this con-
stitutes a Condorcet-manipulation, meaning f cannot be ro-
bust under preference extension e.

We note that Theorem 2 applies to two of the most promi-
nent Condorcet extensions—Copeland, and Slater.6

4 Robust Tournament Solutions
In this section, we present our robustness results for several
tournament-solution SCF, and their coarsenings. Our results
hold for all pessimistic extensions.

4.1 Relation to Kelly-Strategyproofness
While strategyproofness for say, Gärdenfors preferences, is
not easily satisfied, there are several tournament-solution
SCFs that have been shown to be strategyproof for the Kelly
preference extension (Kelly 1977)—which we will refer to
as k. For any two sets X and Y in 2A \ {∅}, X �k Y if and

6The result also extends to Slater’s weighted counterpart, the
Kemeny rule (Kemeny 1959).



only if x � y for all x ∈ X and all y ∈ Y , and there exists
an x ∈ X and a y ∈ Y such that x � y. We say a SCF f is
Kelly-strategyproof if no agent with Kelly preferences can
successfully manipulate.

A SCF satisfying Gärdenfors-strategyproofness implies it
also satisfies Kelly-strategyproofness, as the former must ex-
clude more cases of manipulation to be satisfied. However,
as robustness only requires taking into account comparisons
where at least one singleton set is present, we can use strate-
gyproofness results for Kelly preferences to show robustness
for all pessimistic extensions, including Gärdenfors.
Proposition 2. If a Condorcet-consistent SCF f is Kelly-
strategyproof, then it is a robust Condorcet extension under
any pessimistic preference extension.

Proof. Suppose we have a rule f that is Kelly-strategyproof
and let e be a pessimistic extension. That is, for any two
profiles P and P ′, and any agent i ∈ N , if P ′ =−i P ,
then f(P ′) 6�P ,k

i f(P ). Suppose P has a Condorcet win-
ner, meaning f(P ) = {a} for some a ∈ A. Because
f(P ′) 6�P ,k

i f(P ), it cannot be the case that all elements
of f(P ′) are preferred to a. So either f(P ′) = f(P ) or
there is some a′ ∈ f(P ′) s.t. a �P

i a′. It is then im-
mediate from the definition of a pessimistic extension that
f(P ′) 6�P ,e

i f(P ).

We therefore get robustness under pessimistic preferences
“for free” for Condorcet extensions known to be Kelly-
strategyproof, such as the bipartisan set and the minimal
covering set (Brandt 2015).7

4.2 Minimal Extending Set & Beyond
In this section we show that robustness for Condorcet exten-
sions diverges from Kelly-strategyproofness, as we can find
rules which satisfy the former while failing the latter. Before
we present our positive robustness results, we need to define
the Banks set and the minimal extending set.

A tournament T ′ = (S′,�T ′) is a maximal transitive
subtournament of T = (S,�T ) if
(i) T ′ is a subtournament of T ,

(ii) �T ′ is a transitive relation, and

(iii) there is no other transitive subtournament (S′′,�T ′′)
of T such that S′ ⊂ S′′.

We write T̂ to denote the set of all maximal transitive sub-
tournaments of tournament T , and top(�) to denote the
maximal element of the strict linear order �. Note that if
a tournament T has a Condorcet winner, it will be the maxi-
mal element of all maximal transitive subtournaments.8 The
Banks set (Banks 1985) is the set of maximal elements of all
maximal transitive subtournaments of a tournament:

BA(T ) = {top(�T
S ) | (S,�T

S ) ∈ T̂ }.
7For a thorough treatment of Kelly-strategyproofness and func-

tions which satisfy it, as well as definitions of the SCFs we have
mentioned, we refer to Brandt, Brill, and Harrenstein (2016).

8As the existence of a Condorcet winner does not imply no cy-
cles are present, there may indeed be several maximal transitive
subtournaments.

Because the Condorcet winner will top all maximal transi-
tive subtournaments, the Banks set is a Condorcet extension.

A set S ⊆ A is a BA-stable set of a tournament T if
a 6∈ BA(S ∪ {a},�T

S∪{a}) for all a ∈ A \ S. A BA-stable
set of a tournament T is minimal if there is no BA-stable set
S′ of T such that S′ ⊂ S. The minimal extending set ME(T )
(Brandt 2011) of a tournament T is the union of all minimal
BA-stable sets of T :

ME(T ) =
⋃
{S ⊆ A | S is a minimal BA-stable set of T }.

We give an example to shed some light on these definitions.
Example 2. In the tournament T below, the two maximal
transitive subtournaments are indicated using darker edges.
It is clear that the subtournaments are transitive, and they
are both maximal; adding the last alternative will break
transitivity. From examining these subtournaments, we can
see that BA(T ) = {a, b}.

a

d

b

c

a

d

b

c

The tournament has two minimal BA-stable sets: {a, b, d}—
because c 6∈ BA(T ), and {a, b, c}—because d 6∈ BA(T ).
ME will output the union of these sets: ME(T ) =
{a, b, c, d}. Note that the set {b, c, d} is not BA-stable, as
a ∈ BA(T ).
ME is one of several tournament solutions that can be de-
fined based on this notion of stability. The top cycle for ex-
ample, is the union of all minimal CNL-stable sets (Brandt
2011), where CNL is the tournament solution returning the
set of all Condorcet nonlosers—meaning alternatives with
at least one outgoing edge. We will use BA and ME to refer
both to the tournaments solutions, and the equivalent SCFs.

The minimal extending set is Kelly-manipulable. How-
ever, we show it is still robust under pessimistic preferences,
and extend this result to all coarsenings of ME.
Theorem 3. ME is a robust Condorcet extension under all
pessimistic preference extensions.

Proof. For a set of alternatives A, and a set of agents N ,
let P =−i P ′ be i-variant profiles for an agent i ∈ N .
Let P be such that x ∈ A is the Condorcet winner in P .
Let T = (A,�T ) and T ′ = (A,�T ′) be the (single-agent
variant) tournaments induced by P and P ′, respectively.

We assume ME(T ′) 6= ME(T ).9 Because of this, we
know DT ′(x) is nonempty, as the two outcomes cannot dif-
fer if x remains a Condorcet winner in T ′. As P =−i P

′,
any changes going from T to T ′ must be counter to agent
i’s preferences. This implies x �P

i a for all a ∈ DT ′(x).
So, all alternatives in DT ′(x) are worse than x to agent i.

We want to show that there is some minimal BA-stable
set S of T ′, such that S ∩ DT ′(x) 6= ∅. This would guar-
antee the existence of an alternative a ∈ DT ′(x) that is also

9If no such i-variants exist, robustness of the rule would imme-
diately follow.



in ME(T ′), precluding agent i with pessimistic preferences
from preferring this outcome to ME(T ).

So suppose for contradiction that S is a minimal BA-
stable set of T ′ such that S ∩ DT ′(x) = ∅. The only way
this can be the case is if S ⊆ DT ′(x) ∪ {x}. We consider
two cases.

Case 1: Suppose x 6∈ S. As x dominates all alterna-
tives in DT ′(x), it will dominate all alternatives in S, as
S ⊆ DT ′(x). This means x is a Condorcet winner in the
tournament (S∪{x},�T ′

S∪{x}), and thus, x ∈ BA(�T ′

S∪{x}).
So S cannot be a BA-stable set, contradicting our assump-
tion that it is a minimal one.

Case 2: Suppose instead x ∈ S. To reach our contradic-
tion, we want to show there exists an alternative a ∈ DT ′(x)

such that a ∈ BA(�T ′

S∪{a})—which would imply S is not
BA-stable. We use an algorithm proposed by Hudry (2004)
to find such an alternative a ∈ BA(�T ′

S∪{a}). We start at

step 1 with a transitive subtournament of (S∪{a},�T ′

S∪{a}).

Let S1 = ({x, a},�T ′

{x,a}), for some a ∈ DT ′(x). We la-
bel all remaining elements of S—which are all elements of
DT ′(x)—in any order from 2 to |S|. At step k, we look at
the alternative labelled k, and add it to the tournament Sk−1
to create Sk, if it does not break transitivity to do so. As
a dominates x, and x dominates all a′ ∈ DT ′(x), adding
any alternative outside the dominion of a will break transi-
tivity, as it will create a 3-cycle. Thus, at any step, an alter-
native a′ ∈ DT ′(x) will only be added to the tournament
if a �T ′ a′. When the algorithm terminates after iterating
through all alternatives, we will be left with a subtournament
S|S| of (S∪{a},�T ′

S∪{a}). It is easy to see the resulting tour-
nament will be transitive, and it will indeed be a maximal
transitive subtournament of (S∪{a},�T ′

S∪{a}), as no further
alternatives can be added to the tournament without breaking
transitivity. Importantly, the maximal element of the result-
ing subtournament will be a, meaning a ∈ BA(�T ′

S∪{a}).
Thus, S cannot be an BA-stable set, which contradicts our
assumption that it is a minimal one.

As we have shown that no subset of DT ′(x) ∪ {x} can
be a BA-stable set of T ′, any minimal BA-stable set must
contain at least one element ofDT ′(x), meaning it cannot be
the case that ME(T ′) �P ,g

i ME(T ) when e is a pessimistic
preference extension.

In terms of decisiveness, ME is among the more decisive
tournament solutions that fail weak resoluteness, as it is a re-
finement of several prominent tournament solutions, includ-
ing the top cycle and the Banks set (Brandt, Harrenstein, and
Seedig 2017). We now show that all coarsenings of a robust
SCF inherit the robustness property.

Proposition 3. If a Condorcet-consistent SCF f is robust
under pessimistic preferences, then all Condorcet-consistent
coarsenings of f are robust under pessimistic preferences.

Proof. Let f be a SCF that is robust under pessimistic pref-
erences, and let f ′ be a Condorcet-consistent coarsening of

f . Let P be a profile with a Condorcet winner a. Note that
f(P ) = f ′(P ) = {a} as both are Condorcet extensions.

Suppose P ′ is an i-variant of P for some agent i ∈ N .
Because f is robust under pessimistic preferences, either (i)
there must be some a′ ∈ f(P ′) such that a �P

i a′, or (ii)
f(P ) = f(P ′).

If (i) is the case, then as f(P ′) ⊆ f ′(P ′), a′ is also
an element of f ′(P ′). As f ′(P ) = {a}, we know a′ ∈
f ′(P ′) \ f ′(P ), meaning by definition of a pessimistic ex-
tension that it cannot be the case that f ′(P ′) �P ,e

i f ′(P )
for any pessimistic extension e.

If (ii) is the case, we know a must also be the Condorcet
winner in P ′ as f cannot satisfy weak resoluteness if it is
robust under any preference extension, and therefore does
not return singletons outside the Condorcet domain. Since
f ′ is also a Condorcet extension, we know f ′(P ′) = {a},
meaning f ′(P ′) 6�P ,e

i f ′(P ).

Corollary 1. Condorcet-consistent coarsenings of ME are
robust under pessimistic preferences.

Corollary 1 follows from Proposition 3 and Theorem 3, and
it establishes the robustness of the Banks set. Note that
Corollary 1 is not restricted to tournament-solution SCFs,
but holds for all Condorcet-consistent SCFs.

5 Conclusion
We have introduced the strategyproofness-related notion of a
robust Condorcet extension. We have argued that Condorcet
extensions that are robust are preferable to those that are
not, as we can trust that they will return true Condorcet win-
ners when they exists. We have introduced an axiom—weak
resoluteness—and shown that no weakly resolute tourna-
ment solution can be a robust Condorcet extension. Finally,
we have shown that the minimal extending set is a robust
Condorcet extension under all pessimistic preferences, and
have extended this result to all coarsenings of ME.

We have argued that in lieu of searching for fully strat-
egyproof rules, a fruitful endeavour is to explore immunity
against more specific manipulations that may interact with,
and compromise, other desirable properties satisfied by ma-
nipulable social choice functions. We have scratched the sur-
face in this paper, but have limited our exploration to ro-
bustness of irresolute rules in general, and tournament solu-
tions in particular. These are, of course, only a small class of
all Condorcet extensions, and it remains to be seen if sim-
ilar results can be obtained for other classes. Finally, there
are many other areas of social choice theory open to sim-
ilar notions of strategyproofness. For example, while pro-
portionality and strategyproofness cannot be satisfied by the
same multiwinner approval voting rule (Peters 2018; Kluiv-
ing et al. 2020), one might want to ask to what degree pro-
portionality is affected by the failure of strategyproofness.
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