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Abstract

prosocs agents are software agents that are built according to the kgp
model of agency. kgp is used as a model for the mind of the agent, so
that the agent can act autonomously using a collection of logic theories,
providing the mind’s reasoning functionalities. The behaviour of the agent
is controlled by a cycle theory that specifies the agent’s preferred patterns
of operation. The implementation of the mind’s generic functionality in
prosocs is worked out in such a way so it can be instantiated by the
platform for different agents across applications. In this context, the de-
velopment of a concrete example illustrates how an agent developer might
program the generic functionality of the mind for a simple application.

1 Introduction

prosocs (Programming Societies of Computees) [Stathis et al., 2004] is a proto-
type platform 1 that allows a developer to build software agents in global comput-
ing environments [GC, 2000]. prosocs seeks to offer for free the reasoning and
communication capabilities an agent needs to operate in an open and distributed
environment. The agent developer, as a result, is only required to specify the set
of logic programming theories that describe the background knowledge necessary
for the agent to operate within a specific application environment.

prosocs is characterised by a number of novel features including the com-
bination of peer-to-peer computing and computational logic [Lu et al., 2003],
a society infrastructure (presented in a companion paper of this volume
[Alberti et al., 2004]), and an implementation reference model integrating the var-
ious components of the platform [Stathis et al., 2004]. The main focus and contri-
bution of this work, however, is to provide an in-depth report on the development
of one component, called in prosocs the mind [Stathis et al., 2004]. This com-
ponent is built according to the kgp model of agency [Kakas et al., 2004b] so, in
a sense, the work reported here summarises our attempt to implement the generic
functionality of kgp in prosocs including how one might program components
of an agent for a concrete application.

The development of prosocs has been motivated by the observation that
techniques for developing interactions in open computing environments result ei-
ther in low-level implementations with no obvious logical characterisation, which

1The platform is developed in SOCS (Societies of Computees), an EU research project in-
vestigating computational and logical models for the individual and collective behaviour of
computational entities called computees, i.e. software agents developed in computational logic.
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are, therefore, not verifiable, or in abstract specifications possibly employing ex-
pressive logics with modalities, but which – as argued in [Rao, 1996] – have shed
very little light on actual implementations of agent-based systems. To bridge the
gap between the logical specification and the implementation, agents in prosocs
are constructed following the logical model of kgp [Kakas et al., 2004b], which
has formal computational characteristics [Bracciali et al., 2004]. In this context,
another contribution of this work is to show how the gap between implementa-
tion and specification is bridged using very concrete computational logic tools and
techniques, to be discussed in the sequel.

The rest of this paper is structured as follows. Section 2 explains the kgp
model of agency and discusses its main characteristics. Section 3 outlines how the
logical kgp model is implemented to provide the generic functionality of an agent’s
mind. Then, in the context of a concrete scenario, Section 4 illustrates how to
program agents and how to run them within prosocs. Section 5 discusses related
work and, finally, Section 6 concludes by summarising the work and discussing
our plans for the future.

2 The Architecture of PROSOCS Agents

prosocs agents implement the kgp (Knowledge, Goals and Plan) model of
agency [Kakas et al., 2004b]. kgp is intended to represent logically the inter-
nal or mental state of an agent. Such a mental state in kgp is operated by a
set of reasoning capabilities that allow the agent to perform planning, temporal
reasoning, identification of preconditions of actions, reactivity and goal decision,
together with a sensing capability for the agent to perceive the environment in
which it is situated. The capabilities are used by a set of transition rules describ-
ing how the mental state changes as a result of the agent being situated in an
environment. Agent behaviour is controlled by combining sequences of transitions
determined by reasoning with a cycle theory.

2.1 KGP in a nutshell

The agent architecture of kgp is shown in Fig. 1 where the state of an agent
is a triple 〈KB, Goals, P lan〉. Moreover, a set of Temporal Constraints TCS is
associated with the time variables of the knowledge bases, goals, and plans.

• KB describes what the agent knows of itself and the environment and con-
sists of separate modules supporting the different reasoning capabilities:
KBplan for planning, KBGD for goal decision, KBpre for the identification
of preconditions, KBTR for temporal reasoning, KBreact for reactivity, and
KB0 holds the (dynamic) knowledge of the agent about its external world.
KB0 is the only part of the knowledge of the agent that changes over time,
typically due to information conveyed by the sensing capability.

• Goals is a set of properties that the agent has decided that it wants to
achieve by a certain time possibly constrained via some temporal constraints
(see TCS below). Goals are split into two types: mental goals that can be
planned for by the agent and sensing goals that cannot be planned for but
only sensed to find out from the environment whether they hold or not.

• Plan is a set of “concrete” actions, partially time–ordered, of the agent by
means of which it plans (intends) to satisfy its goals, and that the agent
can execute in the right circumstances. Each action in Plan relies upon
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Figure 1: The KGP Model.

preconditions for its successful execution. These preconditions might be
checked before the actions are executed.

• TCS (Temporal Constraints Store) is a set of constraints over integers
and variables using the set of predicates {<,≤, >,≤,=, 6=}. The constraints
put restrictions on the variables of goals in Goals and actions in Plan.

The state of an agent evolves by the cycle applying transition rules, which em-
ploy capabilities and a constraint solver for temporal constraints. The transitions
are:

• Goal Introduction (GI), changing the top-level Goals, and using Goal De-
cision.

• Plan Introduction (PI), changing Goals and Plan, and using Planning and
Identification of Preconditions.

• Reactivity (RE), changing Goals and Plan, and using the Reactivity capa-
bility.

• Sensing Introduction (SI), changing Plan by introducing new sensing ac-
tions for checking the preconditions of actions already in Plan, and using
Sensing.

• Passive Observation Introduction (POI), changing KB0 of KB by intro-
ducing unsolicited information coming from the environment, and using
Sensing.

• Active Observation Introduction (AOI), changing KB0 of KB, by introduc-
ing the outcome of (actively sought) sensing actions, and using Sensing.

• Action Execution (AE), executing all types of actions, and thus changing
KB0 of KB.

• Goal Revision (GR), revising Goals, and using Temporal Reasoning and
Constraint Satisfaction.
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• Plan Revision (PR), revising Plan and using Constraint Satisfaction.

Given an agent’s knowledge, capabilities, transitions and cycle theory, the kgp
model assumes (possibly infinite) vocabularies of time constants (e.g., the set of
all natural numbers), time variables (indicated with t, t′, s, . . .), fluents (indicated
with f, f ′, . . .), action operators (indicated with a, a′, . . .), and names of agents
(indicated with c, c′, . . . ). Given a fluent f , f and ¬f are referred to as fluent
literals. We use l, l′, . . . to denote fluent literals. Moreover, given a fluent literal
l, by l we denote its complement, namely ¬f if l is f , f if l is ¬f .

kgp also assumes that the set of fluents is partitioned in two disjoint sets:
mental fluents and sensing fluents. Mental fluents represent properties such that
the agent itself is able to plan for so that they can be satisfied, but can also be
observed. On the other hand, sensing fluents represent properties which are not
under the control of the agent and can only be observed by sensing the exter-
nal environment. For example, problem fixed and get resource may represent
mental fluents, namely the properties that (given) problems be fixed and (given)
resources be obtained, whereas request accepted and connection on may repre-
sent sensing fluents, namely the properties that a request for (given) resources is
accepted and that some (given) connection is active.

The set of action operators is further divided in three disjoint sets: sensing,
physical, and communication action operators. Sensing actions represent actions
that the agent performs in order to establish whether some fluents hold in the
environment. These fluents may be sensing fluents, but they can also represent
effects of actions that the agent may need to check in the environment. On the
other hand, physical actions are actions that the agent performs in order to achieve
some specific effect, which typically causes some changes in the environment. Fi-
nally, communication actions are actions which involve communications with other
agents. For example, sense(connection on, t) is a sensing action, aiming at check-
ing whether or not the sensing fluent connection on holds; do(clear table, t) may
be a physical action operator, and tell(c1, c2, request(r1), d, t) may be a commu-
nication action expressing that agent c1 is requesting from agent c2 the resource
r1 within a dialogue with identifier d, at time t.

2.2 A closer look at the state of a KGP agent

A goal G is a pair of the form 〈l[t], G′〉 where:

• l[t] is the fluent literal of the goal, referring to the time t;

• G′ is the parent of G.

Top-level goals are goals of the form G = 〈l[t],⊥〉. As an example, we may have a
top-level goal G of the form: 〈problem fixed(p2, t),⊥〉 and a subgoal G′ of G of
the form 〈get resource(r1, t′), G〉, with TCS = {5 ≤ t ≤ 10, 5 ≤ t′ ≤ t}, meaning
that to fix problem p2 within a certain time interval, the agent needs to have (or
acquire) a resource r1 within an appropriate other time interval. Mental (sensing)
goals are goals whose fluent is mental (sensing, resp.).

An action A is a triple of the form 〈a[t], G,C〉 where:

• a[t] is the operator of the action, referring to the execution time t;

• G the goal towards which the action contributes (i.e., the action belongs to
a plan for the goal G). G may be a post-condition for A (but there may be
other such post-conditions);

• C are the preconditions which should hold in order for the action to take
place successfully; syntactically, C is a conjunction of (timed) fluent literals.

4



As an example, we may have an action 〈tell(c1, c2, request(r1), d, , t′′), G′, {}〉
where G′ is given above and 5 ≤ t′′ ≤ t′ also belongs to TCS. (Non-)Sensing
actions are actions whose operator is a (non-)sensing one.

In both a timed fluent literal l[t] and a timed operator a[t], the time t is a
time variable. This variable is treated as an existentially quantified variable, the
scope of which is the whole state of the agent. Whenever a goal (resp. action)
is introduced within a state, the time variable associated with the goal (resp.
action), is to be understood as a distinguished, fresh variable. When a time
variable is instantiated (e.g., at action execution time) the actual instantiation
is recorded in (KB0 in) the state of the agent. This allows us to keep different
instances of the same action (resp. goal) distinguished.

For simplicity, we assume that, given a state 〈KB, Goals, P lan, TCS〉, all
occurrences of variables in Goals and Plan are time variables. In other words, our
goals and actions are ground except for the time parameter. Variables other than
time variables in goals and actions can be dealt with similarly. We concentrate
on time variables as time plays a fundamental role in our model, and we avoid
dealing with the other variables to keep the model simple.

Amongst the various modules in KB, we distinguish KB0, which records the
actions which have been executed (by the agent or by others) and their time of
execution as well as the properties (i.e. fluents and their negation) which have
been observed and the time of the observation. Formally, KB0 contains assertions
of the form:

• executed(a[t], τ) where a[t] is a timed operator and τ is a time constant,
meaning that action a has been executed at time t = τ by the agent.

• observed(l[t], τ) where l[t] is a timed fluent literal and τ is a time constant,
meaning that the property l has been observed to hold at time t = τ .

• observed(c, a[τ ′], τ) where c is an agent’s name, different from the name of
the agent whose state we are defining, τ and τ ′ are time constants, and a is
an action operator. This means that the given agent has observed at time
τ that agent c has executed the action a at time τ ′ (τ ′ ≤ τ).

Assertions in KB0 of the third kind are variable-free. These are intended, e.g.,
to represent reception of communication from other agents. Instead, assertions of
the first two kinds refer explicitly to a time t. This representation with explicit
variables allows us to link the record in KB0 of observed properties and execution
of actions by the agent with the time of actions in Plan and goals in Goals. As
a consequence, the time variables in KB0 are not strictly speaking variables but
they can be equated to “named variables”.

Since KB0 is used in all the remaining modules in KB, and these are repre-
sented in a logic programming style, we are not allowed to have assertions with
existentially quantified variables. Hence, the various knowledge bases will include
a variant of KB0, namely KB0Σ(S), where Σ(S) is defined below. We will refer
to KB0Σ(S) simply as KB0.

Given a state S = 〈KB, Goals, P lan, TCS〉, we denote by Σ(S) (or simply Σ,
when S is clear from the context) the valuation:

Σ(S) = {t = τ | executed(a[t], τ) ∈ KB0} ∪ {t = τ | observed(l[t], τ) ∈ KB0}

Σ extracts from KB0 the instantiation of the (existentially quantified) time vari-
ables in Plan and Goals, derived from having executed (some of the) actions in
Plan and having observed that (some of the) fluents in Goals hold (or do not
hold). Also, Σ(t), for some time variable t, will return the value of t in Σ, if there
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exists one, namely, if t = τ ∈ Σ, then Σ(t) = τ . The valuation of a temporal
constraint Tc in a state S will always take Σ into account. Namely, any ground
valuation for the temporal variables in Tc must agree with Σ on the temporal
variables assigned to in Σ.

2.3 Reasoning features of KGP Agents

In the kgp model we commit to a number of computational logic mecha-
nisms to support the agent’s reasoning capabilities. We rely on abduction
[Kakas et al., 1998] to make the mind of the agent capable of reacting, plan-
ning, and reasoning temporally. We also use logic programming with priorities
[Kakas et al., 1994] so that the mind of the agent can perform preferential rea-
soning for deciding goals and selecting transitions. Changes in the environment
are interpreted in the mental state of the agent using a specialised version of the
abductive event calculus [Shanahan, 1989].

2.3.1 Abductive reasoning

A kgp agent is capable of reasoning abductively using a new proof proce-
dure called ciff [Endriss et al., 2004c]. This integrates abductive and con-
straint reasoning in a logic programming-like environment. It extends the iff
procedure [Fung and Kowalski, 1997] for Abductive Logic Programming (ALP)
[Kakas et al., 1998], which derives its name from the fact that it operates on com-
pleted logic programs that can be represented as sets of “iff-definitions”, i.e. as
formulas of the form:

p(X1, . . . , Xk)↔ D1 ∨ · · · ∨Dn (1)

where each of the disjuncts Di is a conjunction of literals.
Motivated by prosocs, ciff extends iff in two ways: (i) by dealing with

constraint predicates (hence the C in the acronym); and (ii) by relaxing re-
strictions on allowed patterns on quantification in the input (this is achieved by
replacing overly restrictive static definitions with a so-called dynamic allowedness
rule [Endriss et al., 2004c]). The knowledge bases used for three of the reasoning
capabilities in the kgp model (i.e. planning, reactivity and temporal reasoning),
expressed in the abductive event calculus, can be mapped to a suitably expres-
sive ALP framework. Temporal constraints, in particular, can be modelled using
constraint predicates over integers.

In our framework, an abductive logic program is a pair 〈Th, IC 〉, consisting of
a theory Th and a finite set IC of integrity constraints. Th is a logic program in
iff-form that provides definitions for certain predicates (but not special predicates
such as = or ⊥). Any predicate that is neither defined nor special is called
abducible and instances of these abducible predicates may be assumed to be either
true or false. Integrity constraints are formulas that restrict the range of possible
interpretations of these predicates and, in our framework, they are all of the form:

L1 ∧ · · · ∧ Lm → A1 ∨ · · · ∨An (2)

where each of the Li is a literal and each of the Ai is an atom.2

Finally, a query Q is simply a conjunction of literals. A query may be regarded
as an observation against the background of the world knowledge encoded in a
given abductive logic program. An answer to such a query would then provide

2Integrity constraints are not to be confused with constraint predicates (as in constraint logic
programming).
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an explanation for this observation: it would specify which instances of the ab-
ducible predicates have to be assumed to hold for the observation to hold as well.
In addition, such an explanation should also validate the integrity constraints.
ciff can compute such an abductive answer for inputs expressed in a first-order
language that includes constraint predicates. Details of the proof-procedure, such
as the rewrite rules or the relevant soundness results, are outside the scope of the
present paper and may be found in [Endriss et al., 2004c].

2.3.2 The Abductive Event Calculus

kgp agents reason temporally using a specialised version of the event calculus
[Kowalski and Sergot, 1986], based on abduction [Shanahan, 1997], and appropri-
ately extended to fit the kgp mode of operation. The specialised event calculus
used is shown in Fig. 2, showing how a situated kgp agent concludes that a fluent
F holds at a time T .

holds at(F, T2)← happens(O, T1), initiates(O, T1, F ),
T1 < T2,¬ clipped(T1, F, T2).

holds at(¬F, T2)← happens(O, T1), terminates(O, T1, F ),
T1 < T2,¬ declipped(T1, F, T2).

holds at(F, T )← holds initially(F ), 0 < T,¬ clipped(0, F, T ).
holds at(¬F, T )← holds initially(¬F ), 0 < T,¬ declipped(0, F, T ).
holds at(F, T2)← observed(F, T1), T1 ≤ T2,¬ clipped(T1, F, T2).
holds at(¬F, T2)← observed(¬F, T1), T1 ≤ T2,¬ declipped(T1, F, T2).
holds at(F, T )← assume holds at(F, T ).
clipped(T1, F, T2)← happens(O, T ), terminates(O, T, F ), T1 ≤ T < T2.
declipped(T1, F, T2)← happens(O, T ), initiates(O, T, F ), T1 ≤ T < T2.
clipped(T1, F, T2)← observed(¬F, T ), T1 ≤ T < T2.
declipped(T1, F, T2)← observed(F, T ), T1 ≤ T < T2.
happens(O, T )← executed(O, T ).
happens(O, T )← observed(O, T ′, T ).
happens(O, T )← assume happens(O, T ).

Integrity Constraints: holds at(F, T ), holds at(¬F, T )→ false
assume happens(A, T ),
precondition(A,P )→ assume holds at(P, T ).

Figure 2: The Abductive Event Calculus for KGP.

From Fig. 2 we can see that fluents holding at the initial state are represented
by what holds initially. Fluents are clipped and declipped by events happening
at different times. Events that happen will initiate and terminate fluents holding
at or between times. Fluents will also hold if they have been observed or result
from actions that have been executed by the agent. An operation can be made
to happen and a fluent can be made to hold simply by assuming them. In kgp
we also use domain-independent integrity-constraints, to state that a fluent and
its negation cannot hold at the same time and, when assuming (planning) that
some action will happen, we need to enforce that each of its preconditions hold.

2.3.3 Preference Reasoning

A kgp agent is able to reason about preferences using gorgias
[Demetriou and Kakas, 2003, Kakas and Moraitis, 2003], a new proof-procedure
for preference reasoning in an environment of logic programming with priorities.
gorgias extends a previous proof procedure [Dimopoulos and Kakas, 1995] for
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the framework of Logic Programming without Negation as Failure (LPwNF )
allowing priorities between rules of the theory to be non-static, i.e. depending on
the particular context (external circumstances) at the time the reasoning takes
place.

In general, an extended LPwNF program is a pair 〈P,H〉 where P , called the
lower-level part, consists of labelled propositional rules of the form:

Label : L← L1 ∧ ... ∧ Ln (3)

where L,L1, ..., Ln are atoms a or explicitly negative literals ¬a, and H, called
the higher-level part, consists of propositional rules of the form:

Label : L � L′ ← L1 ∧ ... ∧ Ln (4)

where L1, ..., Ln are atoms or explicitly negative literals, L,L′ are labels of rules
in P or H, while the symbol � can be read as has higher priority. With these
rules we have a background entailment, |=LP , given by the single inference rule
of modus ponens. The program also contains rules defining the special predicate:

incompatible(p(X), q(X)) (5)

expressing the fact that any instance of the literal p(X) is incompatible with the
corresponding instance of the literal q(X). This notion of incompatibility includes
incompatible(p,¬p), for all atoms p, and incompatible(r � s, s � r), for all labels
of rules r and s. A LPwNF program may also contain the definitions of auxiliary
predicates used in the conditions of rules in P and H and rules.

The preference reasoning of LPwNF are realized through argumentation
[Bondarenko et al., 1997, Dung, 1995, Prakken and Sartor, 1997]. In this, a query
Q holds if and only if there exists a subset A of the rules of the given pro-
gram 〈P,H〉, in which Q holds under the background logic |=LP and this set
A is an admissible argument for Q. Informally, an argument A is admissible
[Kakas et al., 1994, Dung, 1995] iff all its counter-arguments, namely arguments
for conclusions that are incompatible with any of the conclusions of A, are not
stronger (under the priority of rules) than A. Hence this makes any query Q
supported by an admissible argument a preferred conclusion under the given pro-
gram.

gorgias is based on a general proof theory [Kakas and Toni, 1999] for com-
puting argumentation. This proof theory is given in terms of derivations of trees,
where nodes are arguments and each node is labelled as “attack” or “defense”.
A defense node is followed by a set of children attack nodes, one for each of its
possible counter-arguments to it. An attack node is followed by a defense node
containing a counter-argument against its parent. Successful derivations termi-
nate with a tree whose root is an admissible argument supporting the given query.
gorgias specialises this proof-theory by incorporating a specific way of comput-
ing arguments and counter-arguments and specific techniques to deal with the
dynamic nature of the attacking relation between arguments. Any node, N , of
the tree results from first choosing a “culprit” conclusion c of the parent node of
N and then reducing (by resolution) some conflicting incompatible literal, c, of c
so that N minimally entails c under the background logic |=LP . The root node of
the initial tree is computed by reducing the given query formula Q into a minimal
set that concludes Q via |=LP .
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3 The generic functionality of an agent’s mind

To situate the mind of a prosocs agent in a specific environment, the mind
component is wrapped by another component that in prosocs we call the body.
Through the body a prosocs agent is capable of accessing a networked environ-
ment consisting of other prosocs agents. The detailed interaction of the body
and the mind, or the body and the environment, is however beyond the scope of
this work; we refer the reader to [Stathis et al., 2004] for more details. Here we
prefer to discuss instead how the mind is implemented using logic-based tools and
prolog. We start from the representation of the mental state, we outline how
the agent interprets this state, we show how the capabilities (such as temporal
reasoning) build upon the agent’s interpretations, we continue with the implemen-
tation of the transitions that handle state changes, and we close with the cycle
theory that controls the agent’s behaviour.

3.1 The KGP State in PROSOCS

An important issue that we need to resolve when implementing kgp is the rep-
resentation of the existentially quantified variables (and the associated notion of
substitution) used in a kgp state, i.e. those occurring in goals and actions, to
keep them distinguished from normal prolog variables. In the current imple-
mentation, we represent existentially quantified variables by terms of the form
eqv(Id), where Id is an identifier of the form t1, t2, ..., uniquely generated
by the implementation. Variables in actions and goals may be instantiated when
actions are executed (to the execution time) and when fluents are observed (at
the time of observation). The instantiation cannot be performed explicitly on the
state since time variables are also used as identifiers of actions and goals. So we
choose to keep this instantiation implicit, by recording it in what we referred to
in the previous section as the valuation Σ. We represent the valuation Σ as an
assertion containing a list of equalities of the form:

[eqv(t1) = 18, eqv(t2) = 21, ..., eqv(t12) = 39].

We also define a predicate get Sigma/1 to access the list at any time, as well
as predicates that append to that list as required. Similarly, we implement all
the temporal variables of the temporal constraint store TCS (to be shared by all
transition and capabilities) as a list of inequality constraints of the form:

[eqv(t1) #>= 18, ..., eqv(t12) #< 32].

The # symbol indicates a constraint of TCS. As before, we define a predicate
get TCS/1 to access the list at any time, together with predicates that update
the list when new goals and plans are introduced. Constraint satisfaction with the
TCS is handled by the proof-procedure ciff, which is discussed in Section 2.3.1.

Goals and actions in a kgp state are hierarchically organised and represented
as a tree with goals and actions as nodes. Goals are represented as:

goal(Child, Parent, TCs).

Child and Parent are both of the form (Fluent, Time), indicating that the
agent is trying to achieve the sub-goal Child specified as Fluent at a Time; a
time point or a temporal variable is constrained by the temporal constraints TCs.
For example, the goal:

goal((have(ticket),eqv(t4)), root, [eqv(t4) #=< 10]).
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is a top-level goal (i.e. a goal with root as a Parent) for an agent to have a ticket
before or at time 10 (note the existentially quantified variable). Similarly:

action(Action, Goal, Preconditions, TCs).

represents an action Action that contributes to the parent goal Goal, where
Action is a pair (Operator, Time), whose Operator must be executed at a Time
(constrained as before by a list of temporal constraints TCs), provided that the
list of Preconditions is satisfied in the current state of the agent. The example
below:

action((call_taxi(Taxi), eqv(t17)),
(get_to_station, eqv(t5)),
[taxi_is_available(Taxi)],
[eqv(t17) #=< 12]).

describes an action call taxi(Taxi), with parent goal get to station, precon-
ditions taxi is available(Taxi), and a constraint on the time of the action to
be less than or equal to 12.

The knowledge base of an agent is represented as a set of assertions represent-
ing facts and rules. The (dynamic) knowledge of the agent about the external
world in KB0 consists of initial facts and happened events of the form:

observed(Property, Time).

for the Fluent observed to hold at Time, or:

observed(Agent, Action, Time).

for an Agent that is observed to execute an Action at a specific Time. For instance
a typical utterance in agent dialogues, stating that “agent c1 has recorded at time
7 that the agent itself informed agent c2, within dialogue d, at time 5 that there
are no member seats” is represented as:

observed(c1, tell(c1, c2, inform(no_member_seats), d, 5), 7).

As discussed before, variable instantiations are recorded in the valuation Σ dy-
namically when the observation is asserted in the knowledge base.

3.2 Interpreting the state using Proof-Procedures

CIFF. To build prosocs we have implemented in prolog the ciff proof-
procedure 3, whose implementation is described in [Endriss et al., 2004b]. Iff-
definitions of a ciff program, as described in equation 1 of section 2.3.1, are
written in the form:

p(X1,...,Xk) iff [D1,...,Dn].

Similarly, integrity constraints, as described in equation 2 of section 2.3.1, are
written in the form:

[L1,L2,...,Lm] implies [A1,...,An].

To interpret rules of the above kind, we call the predicate ciff/4:

ciff(Theory, ICs, Query, Answer).

3The ciff system is available at http://www.doc.ic.ac.uk/∼ue/ciff/.
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The first argument is a list of iff-definitions, the second is a list of integrity
constraints, and the third is the list of goals in the query. The answer con-
sists of three parts: a list of abducible atoms, a list of restrictions on the an-
swer substitution, and a list of temporal constraints. The procedure relies on a
constraint solver based on the built-in finite domain solver of SICStus prolog
[Carlsson et al., 1997]. In principle, ciff could be integrated with different con-
straint solvers; in practice we require a constraint system that is suitable to reason
about temporal constraints as they are used in the kgp model.

GORGIAS. We have also implemented the gorgias proof-procedure in pro-
log 4. The lower-level part of preference rules of a gorgias program, as described
in equation 3 of section 2.3.3, are written in the form:

rule(Theory, Label, L, [L1,...,Ln]):- Conditions.

The translation requires that a Theory argument is added in rules, a term that dis-
tinguishes between different theories, such those required for goal decision and the
cycle theory. Rules for the higher-level part of a gorgias program, as described
in equation 4 of section 2.3.3, are described similarly as:

rule(Theory, Label, prefer(L, L’), [L1,...,Ln]):- Conditions.

Also, we write:

incompatible(Theory, p(X), q(X)).

to express facts, as described in equation 5 of section 2.3.3. Then to call the
gorgias interpreter on preference rules such as those above, we need to call the
predicate gorgias solve/2 as:

gorgias_solve(Theory, Query).

The first argument is a term representing an identifier that denotes a preference
theory, and the second is a list of goals in the query. gorgias implements a
general proof-theory [Kakas and Toni, 1999] for computing argumentation. This
proof theory is given in terms of derivations of trees, where nodes are arguments
and each node is labelled as “attack” or “defense”.

3.3 Calling Proof-Procedures in Capabilities

Goal Decision. The goal decision capability, when called, allows the agent to
decide the preferred goals at a given current time. Conditions about goals, e.g.
rules of the form holds at(P, T ) for the fluent P being true at time T , are evaluated
using the temporal reasoning capability. The derivability relation of goal decision
is implemented by the following top-level rule:

goal_decision(OrderedGoals):-
now(Tnow),
findall(Goal, gorgias_solve(kb_gd(Tnow), gd(Goal)), Goals),
list_to_ordered_set(Goals, OrderedGoals).

which, via the gorgias solve/2 predicate, links to the gorgias proof-procedure
to select the list of goals to be considered next. Goals are returned by finding
first the list of possible goals, and then filtering out incompatible goals in the
returned answer set. Non-ground goals, i.e. goals with a non-fixed but possibly
constrained time, may be returned.

4gorgias can be obtained from http://www2.cs.ucy.ac.cy/∼nkd/gorgias/.
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Planning, Reactivity & Temporal Reasoning. The Planning, Reactiv-
ity, and Temporal Reasoning capabilities are implemented by means of ciff,
which is used to reason about knowledge on fluents and actions that ei-
ther initiate or terminate these fluents. Our approach to planning has
been described in [Endriss et al., 2004a] and has been currently extended
in [Mancarella et al., 2004]. The reactivity capability is closely related to plan-
ning; the reactivity knowledge base is an extension of the planning knowledge
base. The main difference is that there is not a specific selected goal passed to
reactivity, as in the case of planning, but rather a list of assumptions (goals and
actions in the current state) and the list of temporal constraints with respect to
which it is checked whether some reaction is needed.

Temporal Reasoning uses ciff to check whether a fluent F holds at a given
time point T, i.e. [holds at(F, T) | CS] is entailed by the temporal reasoning
knowledge base KBtr, with T an existentially quantified temporal variable, pos-
sibly subject to a constraint set CS. A credulous entailment, accounting for the
possibility for a fluent to hold, and a skeptical one, for the certainty, are defined:

query_credulously_TR(KBtr, [holds_at(F,T) | CS], Answer):-
extract_significant_points(KBtr, SPT),
instantiate_theory(SPT, KBtr, GKBtr, GICs),
ciff(GKBtr, GICs, [holds_at(F,T) | CS], Answer).

query_skeptically_TR(KBtr, [holds_at(F,T) | CS], Answer):-
query_credulously_TR(KBtr, [holds_at(F,T) | CS], Answer),
\+ query_credulously_TR(KBtr, [holds_at(neg(F),T) | CS], _).

The credulous predicate eventually calls ciff over a grounded theory and uses
ciff’s constraint solver. The skeptical predicate is defined in terms of the credu-
lous one to prove the fluent and to check that the negation of the fluent cannot
be proved. For the details of the temporal reasoning framework used in prosocs
the interested reader is referred to [Bracciali and Kakas, 2004].

3.4 Implementing the Transitions

Transitions are implemented in prosocs following the formal computational
model of kgp as described in [Bracciali et al., 2004]. To give an implementa-
tion example, we present here the definition of the goal revision (GR) transition,
which is called to enable the agent to revise its goals. This is done by building
the new goals for the tree, further updating the state with these new goals at
the current time Tnow supplied as input. The following predicate implements this
transition:

goal_revision(Tnow) :-
sub_trees(SubTrees),
select_children(SubTrees, TopLevelGoals),
revised_goals(Tnow, TopLevelGoals, [], NewGoals),
update_goals(NewGoals).

sub trees/1 above accesses a list with two members, one indexing the reactive
and the other the non–reactive sub-trees of the goal tree. From these the TopLevel
goals are selected as the children of the sub-trees using select children/2. The
TopLevel goals are then revised in order to build up the NewGoals. Revision is
achieved using the predicate:
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revised_goals(Tnow, Tocheck, Goals, Goals) :-
persist_goals(Tnow, Tocheck, [], []), !.

revised_goals(Tnow, Tocheck, GoalsSoFar, NewGoals) :-
persist_goals(Tnow, Tocheck, [], Persistent),
append(GoalsSoFar, Persistent, IntermGoals),
select_children(Persistent, Children),
revised_goals(Tnow, Children, IntermGoals, NewGoals).

The recursive predicate revised goals/4 builds the new goals from the current
state incrementally, that is, by adding only goals whose parent is in the list of the
NewGoals. Checking that a list of goals persist involves checking that a single goal
persists, and if it does, the goal is added in the list of (new) Goals; otherwise the
goal is ignored in the new state. This process continues until checks are carried
out for every top–level goal. To check that a goal persists we make sure that the
goal has not been achieved and its time has not run out:

persists_goal(Tnow, G):-
\+ goal_achieved(Tnow, G),
goal_not_timed_out(Tnow, G).

In this context, the definition of an achieved goal is represented as:

goal_achieved(Tnow, Goal):-
time_of(Goal, T),
get_TCS(TCS),
append(TCS, [T #< Tnow], TCS_U_Tnow),
kb_0(KB0),
get_Sigma(EqvSigma),
temporal_reasoning_skeptical(KB0, Goal, TCS_U_Tnow, EqvSigma).

The above definition shows how the capability of temporal reasoning, invoked
through its API, assists the checking of the temporal constraints over the goal.
We define similarly when a goal has not timed out.

3.5 Engineering the Cycle Theory

In the current implementation of prosocs, the mind of an agent is called by
the agent’s body-control (as described in [Stathis et al., 2004]) to control the be-
haviour of the agent in atomic cycle steps, i.e. applications of the above illustrated
transitions, possibly provided with an opportune input. The program is therefore
named cycle step/3 and it is defined as:

cycle_step(TransitionStep, Tnow, Tnext):-
select_step(TransitionStep, Tnow),
apply_step(TransitionStep, Tnow, Tnext).

The details of the TransitionStep, namely, the name of the next Transition
and its Input are selected using the cycle theory represented in the mind of the
agent, which relies on preference reasoning. This allows the behaviour control of
an agent to be flexibly programmable, according to the environment where the
agent operates.

select_step(step(Transition, Input), Tnow) :-
now(Tnow),
gorgias_solve(ct(Tnow, normal), step(Transition, Input)).
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The execution of the query step(Transition, Input) depends on the given
cycle theory ct of the agent and its state at the current time Tnow. Execution of
the query chooses the first transition that can be proved admissible by gorgias
from the theory ct(Tnow, normal). The parameter normal indicates that the
cycle relies on a pre-specified sequencing of transitions that in prosocs we call
a pattern of behaviour. For example, to specify a rule in the normal pattern of
behaviour in order to respond to communications received by another agent via
the passive observation introduction (POI) transition (see section 2.1), we need
to write:

rule(ct(_, normal), prefer(step(’GI’,_), step(_,_)), []) :-
last_transition(’POI’, Obs),
comm_msg(Obs).

The rule states that the goal introduction transition GI is preferred to any other
transition after a POI transition. Hence, the agent will then decide on the response
to the observation Obs through its goal decision capability. Such a pattern can
be reused across applications, provided the agent developer chooses to select it as
appropriate for the application at hand.

Once a transition is selected it is applied on the state of the agent as follows:

apply_step(NextStep, Tnow, Tnext) :-
commit(NextStep),
record(NextStep, Tnow),
increment(Tnow, Tnext).

The application of a selected step involves calling commit/1 to execute the code
implementing the transition. For example, to call the goal revision transition GR,
discussed in the previous section, we write:

commit(step(‘GR’, [Tnow])) :- goal_revision(Tnow).

Once a transition is committed to, any state changes will have been implicitly
performed as an effect of the call, and then the system will invoke record/2 to
add the current step in the history of the transitions applied so far. Finally, the
application of a transition is completed by calling increment/2, to increase by one
the current time-stamp, which is recorded to indicate that the state has changed.
For a more detailed account of the cycle theory framework used in prosocs, the
reader is referred to [Kakas et al., 2004a].

4 Programming an agent’s mind

To illustrate how to program the mind of a prosocs agent we draw upon a sce-
nario that was originally reported in [Stathis, 2002] and has been recently related
to practical applications for ambient intelligence in [Stathis and Toni, 2004]. The
scenario describes a businessman who makes his trip easier by carrying with him
a personal communicator, a device that is a hybrid between a mobile phone and
a PDA. We assume that the application running on this personal communicator
provides the environment for an agent that augments the direct manipulation
interface of the device with proactive information management within the device
and flexible connectivity to smart services, assumed to be available in objects
available in the global environment the businessman travels within.

There are various kinds of interactions reported in the scenario, here we present
the ones that allow us to show (a) how to program an agent’s goal decision capabil-
ity, and (b) how to program an agent’s reactivity and planning capability. These
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two simple situations will let us show how we can specify the various domain-
specific parts of the capabilities, thus also exemplifying how to write a program
for a prosocs agent that operates in a dynamic environment.

4.1 The Goal Decision capability

To program the goal decision knowledge base KBGD involves writing two main
parts: the lower-level part with rules to generate goals and the higher-level part
with rules that specify priorities between other rules of the theory. A subset of
(fluent) predicates in the language of the knowledge base is separated out as the
set of goal fluents of the agent.

Rules in the lower-level (goal generation part) are written as gorgias rules
of the form:

rule(kb_gd(Tnow), Label, gd(Goal), []) :- Conditions.

where Label names the rule, Goal = (Literal, T ime) is a goal fluent literal and
Conditions has the syntax of a prolog rule body. As an example, the goal of
rising a low battery alarm (lba) within two time instants from when the low
battery is detected, can be expressed by the gorgias rule:

rule(kb_gd(Tnow), r(lba,T), gd((lba,T)), []) :-
ground(Tnow),
temporal_reasoning((low_battery, Tnow)),
T is Tnow + 2.

where temporal reasoning((Literal,Time)) is evaluated by calling the Tem-
poral Reasoning capability (the skeptical version) to check whether Literal holds
at time T . Conflicts of goals can be expressed by means of the predicate
incompatible/3, like, to state that the goals lsv and lba are incompatible:

incompatible(kb_gd(_), (lsv,T), (lba,T)).

Preferences over goal generation rules are expressed in the higher-level part of
KBGD by priority rules of the form:

rule(kb_gd(Tnow), Label, prefer(Label1,Label2)) : - Body.

where again Label is a Prolog term now naming this priority rule between two
rules whose names are Label1 and Label2 and Body is as above for rules in the
lower-level part.

Sometimes, rules may derive non-ground goals. For example, the previous rule
could also be written as:

rule(kb_gd(Tnow),r((lba,T,[Tnow<T<T1])),gd((lba,T,[Tnow<T<T1])),[]):-
ground(Tnow),
temporal_reasoning((low_battery, Tnow)),
T1 is Tnow + 2.

where the T that appears in the head is existentially quantified and it is con-
strained by constraints of the form Tlow < T < Thigh, and all the temporal
constraints of the heads of the rule have been passed in their names.
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4.2 Reactivity and Planning capabilities

To exemplify reactivity and planning, one of the interactions exemplified in the
scenario indicate that the agent of a businessman called Francisco (this agent is
identified here as f) is connected in an ad-hoc network to ask another agent that
provides train information for a train station called San Vincenzo Station (this
other agent is identified here as svs). We want to show next how to program
the train station agent to interact with any “passenger” agent that requires train
information. The ciff rule below, specified in KBreact, represents one of the rules
the train station agent needs to reply to requests in the context of the query-ref
protocol of FIPA:

[observed(Ag, tell(Ag, svs, query_ref(Q), D, T0), T1),
holds(have_info(Q, I), T1)
] implies
[assume_happens_after( tell(svs, Ag, inform(Q,I), D, T2), T1)].

The above rule simply states that if an agent Ag asks a query Q in a dialogue D
the agent svs and svs has the information I for Q, then svs must inform the
content of I after it receives the request from Ag. assume happens after(A,T)
can be thought of as a macro that can be used to express that action A should be
executed at any time after T.

We also need to specify information in the KBplan, for example:

holds_initially( have_info(arrival_time(tr123), 10:32) ).
precondition( tell(svs, _, inform(Q,I), _, _), have_info(Q, I) ).
executable( tell(svs, Ag, _, _, _) ) :- not (Ag = svs).

The above abductive event calculus program simply states that the agent holds
initially information about the arrival time of a train. It also provides the precon-
ditions of actions, in this case, this states that before giving a piece of information
the agent must have this information at hand. Other types of checks are required,
for example, that when a communicative action is executed by the agent, it is ex-
ecuted for other agents to receive it, but not the agent that sends it.

4.3 Example Run

Using the normal pattern of behaviour for the cycle theory, we have implemented
a number of interactions (taken from the previously represented scenario) in
prosocs and we have run examples using the facilities provided by the proto-
typing platform. Fig. 3 is taken from one of these experiments, showing the state
of the svs agent as it is animated by the platform’s interface.

On the top-left corner of the agent’s interface the platform presents informa-
tion about the other agents svs sees in the environment, including itself that
is denoted by the keyword me. On the top-right area of the agent’s interface
the platform shows the incoming communication by other agents, in this case, a
query ref request. Answers to incoming communication are then presented in
the bottom-right area of the agent’s interface, in this case, an inform message to
the agent that asked the query. Finally, the bottom-left area gives information
about the steps that have been executed by the cycle theory, in this case, the agent
has been started, has tried to introduce a goal through goal introduction (GI), but
as there were no goals selected, it has been waiting for input (i.e. the reactivity
transition (RE) has nothing to react to). Only when a message is received via
passive observation introduction (POI), the agent executes a reply action using
the action execution (AE) transition, and after that carries on waiting for input,
as before.
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Figure 3: An Example Run.

5 Related Work

A plethora of software platforms for building software agents is already
available [Logan, 1998, Eiter and Mascardi, 2002, Ricordel and Demazeau, 2000,
Dart et al., 1999, Serenko and Detlor, 2002]. This renders the task of reviewing
all the related work in this area gigantic [Eiter and Mascardi, 2002]. As a result,
to make our task more manageable, in this section we identify only a subset of
existing platforms that we believe to be most relevant to prosocs agents. For ex-
ample, we exclude platforms whose main focus is mobility. Also, the related work
presented next is focused on comparing single agents and not the generic plat-
forms in which these agents have been developed. For a comparison of prosocs
with other platforms the reader is referred to [Stathis et al., 2004].

At a first glance, the kgp model used in prosocs and a number of agents
systems built according to the classical BDI model [Bratman et al., 1988] appear
to be similar. However, at a closer look, the models are quite different. One
major difference is that kgp is not based on a modal-logic approach to represent
an agent’s beliefs but instead uses a non-monotonic computational logic that
supports defeasible reasoning for the knowledge of agents. Also, unlike bdi, kgp
is based on a cycle theory [Kakas et al., 2004a] that allows the specification of
flexible patterns of operation and not a fixed cycle. Like bdi, however, kgp allows
plans to be generated dynamically (as part of the reasoning process) and statically
through the use of plan libraries. For lack of space, we refer the interested reader
to [Kakas et al., 2004b], for a critical review of kgp with most logical models of
agency available in the literature, including bdi.

Another important characteristic of prosocs agents is that they can be
thought of as first-class objects, in the sense that the developer can start an agent
and inherit a set of tools supporting the development of both a reasoning compo-
nent and the interaction with the environment for free. Many fipa compliant plat-
forms, for example fipaos [Poslad et al., 2000], or zeus [Nwana et al., 1999], do
not commit to a model of agency but support only the interaction of the agent with
the environment. In such platforms the programmer has to develop from scratch

17



the reasoning capabilities of the agent. Other fipa compliant approaches, such
as jade [Bellifemine et al., 2001] and 3APL [Hindriks et al., 1999, 3APL, 2003],
make use of tools that support the reasoning capabilities of the agent (for the
mind). Unlike our logic-based approach which is closer to the specification of
an agent, jade can be used with jadex [Pokahr et al., 2003] to implement the
goal-directed behaviour found in bdi agents using a java api. On the other
hand, 3APL uses a logic-based language which, like bdi, is linked to a modal-logic
framework [Meyer et al., 2001].

An approach similar to prosocs is the recent development of the jason
[JASON, 2004] platform that implements AgentSpeak(L) [Rao, 1996] agents.
Like jason agents, prosocs agents attempt to narrow the gap between the
specification and executable model of an agent. Also like jason agents, agent
interactions in prosocs can be verifiable because prosocs is based on a formal
computational framework for individual agents and their social interactions. How-
ever, agents in prosocs and jason differ in the ways AgentSpeak(L) and kgp
differ: (a) in kgp there are explicit links amongst the goals and between the goals
and plans, and the priorities amongst potential goals, which are not restricted
to temporal orderings as in AgentSpeak(L). Also, the control of AgentSpeak(L)
agents is based on a fixed cycle, and not on the flexible cycle theory of kgp.

Like agents in jason, agents in the impact platform (see for example
[Arisha et al., 1999] and [Subrahmanian et al., 2000]) are treated too as first-class
objects. Unlike prosocs, where agents are built from scratch by assuming a logic
programming approach, an impact agent may be built on top of an arbitrary
piece of software, defined in any programming language. impact uses deontic
concepts to represent action and action policies which in kgp correspond to ab-
ductive integrity constraints, while the system relies on an interval–based logic
for temporal reasoning rather than the Event Calculus approach of prosocs.
Although impact agents have additional features, for example reasoning about
uncertainty and the representation of security policies, they do not have a flexible
cycle theory and thus cannot support (behaviourally) heterogeneous agents, as
we can in prosocs.

Agent programs developed in the high-level programming language indigolog
[DeGiacomo et al., 2001] support on-line planning and plan execution in dy-
namic and incompletely known environments. Such agent programs can also
perform sensing actions that acquire information at runtime and react to ex-
ogenous actions. indigolog is a member of the golog family of languages
[Levesque et al., 1997] that use a Situation Calculus theory of action to perform
the reasoning required in executing the program. Unlike indigolog agents in
prosocs we rely on abductive logic programming and logic programming with
priorities combined with an Event Calculus approach to program an agent. More-
over, goals cannot be decided dynamically in indigolog, instead in prosocs they
change according to the patterns specified in the goal decision theory.

congolog [DeGiacomo et al., 2000], an extension of the golog family, has
also been introduced to add support for concurrent processes with possibly differ-
ent priorities, interrupts, and exogenous events to agent programs. However, like
earlier planning-based systems, congolog assume an off-line search model. To
overcome the limitation of off-line search, indigolog uses the notion of exoge-
nous actions assuming that there is a concurrent process executing these actions
outside the control of the agent. This assumption implies that it is up to the
programmer of an agent to interface indigolog to the rest of the agents of an
application domain, something that in prosocs the programmer gets for free.

Finally, agents developed in the logic-based language GO!

[Clark and McCabe, 2003] has many features in common with multi-threaded
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prolog systems and provides types, higher–level programming constructs, such
as single solution calls, “iff” rules, and the ability to define ‘functional’ relations
as functions. However, as with indigolog, GO! does not directly rely on any
specific agent architecture or agent programming methodology, hence the system
does not yet treat agents as first-class objects. As a result, facilities such as
planning, temporal reasoning, and preference reasoning are not available, so the
programmer has to build them from scratch; the system though provides library
modules, so that components such a kgp module can be reused once developed
generically, as in prosocs.

6 Conclusion

We have discussed how to develop prosocs agents, software agents that are built
according to the kgp model of agency. kgp is a model for the mental state of
the agent, so that the agent can act autonomously using a collection of logic
theories, providing the mind’s reasoning functionalities. The behaviour of the
agent is controlled by a cycle theory that specifies the agent’s preferred patterns
of operation. In this context, we have shown how to implement the mind’s generic
functionality in such a way so that it can be instantiated by prosocs for different
agents across applications. We have illustrated through the development of a
concrete example how an agent developer might program (or instantiate) the
generic functionality of the mind for a simple application.

For future work we plan to experiment with the platform on global computing
applications and test the prosocs agents and social infrastructure with com-
plex problems, along the lines already presented in [Stathis and Toni, 2004]. For
this purpose, we have also started to extend prosocs to support interactions of
agents with objects in the environment, other than the communicative interaction
support available in the prosocs platform.
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