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Abstract accept any set of bids from that bidder for which the bundles

: . . . do not overlap, and charge the sum of the specified prices.
We introduce a new type of combinatorial auction  1pig'is now sometimes called tk@R-languageBut other in-
that allows agents to bid for goods to buy, for goods o1 etations of a set of atomic bids are possible. For instance,
to sell, and for transformations of goods. One such o' 4y take it to mean that the auctioneer may accept at most
transformation can be seen as astep ina production 0 pid per hidder: this is now known as KOR-language
process, so solving the auction requires choosing Nisan's survey articld2006, the reference work in the
Fhe sequence in W.h'Ch the aCC?p“?d bids should be field of bidding languages, covers languagediicect single-
implemented. We introduce a bidding language for it combinatorial auctions. That is, the auctioneer is selling
this type of auction and analyse the corresponding (ather than buying) goods, and all goods are distinguishable.
winner determination problem. Our first aim in this paper is to generalise thisnbailti-unit
combinatorial auctions. As a second generalisation, we show
1 Introduction how to integrate direct and reverse auctidres,the auction-

A combinatorial auction is an auction where bidders can buyF€" Will bé able to both sell and buy goods within a single
auction. As a third and final generalisation, we are going to

(or sell) entire bundles of goods in a single transaction. Al- how how to int te the idea bansf bilitvrelat
though computationally very complex, selling items in bun-SNOW Now 1o integrate the jdea banstormaniityrefation-
ships between goods into our auction moft8lovannucci

dles has the great advantage of eliminating the risk for a bid ; . . o .
der of not being able to obtain complementary items at a reagt al, 2009. For instance, if the auctioneer is interested in

sonable price in a follow-up auction (think of a combinatorial obta|n|'ng cars, bqt is also able to transform various compo-
auction for a pair of shoes, as opposed to two consecutiviENtS INto @ working car (at a certain cost), then it may so-
single-item auctions for each of the individual shoes). Th icit bids offering both ready-made cars and individual com-
study of the mathematical, game-theoretical and algorithmi@cinetms'hwe furthﬁr extend the idea c;f thegettrans]cformab|llty
properties of combinatorial auctions has recently become %e ationships by allowing agents to also bid foansforma-
popular research topic in Al. This is due not only to their rel- lon servicesi.e. an agent may submit a bid offering to trans-
evance to important application areas such as electronic co orm a certain set .Of goods into anothgr set of goqu. We call
6 e resulting auction modehixed multi-unit combinatorial

merce or supply chain management, but also to the range . ;
; ; ; . : uctions(MMUCA). These are not to be confused with dou-
deep research questions raised by this auction model. This p Sl auctiondWurmanet al, 1994. In particular, theorder

per introduces a generalisation of the standard model of co : : :
In which agents consume and produce goods is of central im-

binatorial auctions and discusses the issuebiafling and portance in our model and affects the definition of the winner

winner determination determination problem
Winner determination is the problem, faced by the auction- ee ation probiem. . '
The paper is organised as follows. In Section 2 we define

eer, of choosing which goods to award to which bidder so as, i ft f N d valuati ltiset
to maximise its revenue. Bidding is the process of transmiti € Notions of transformation and valuation over (multisets

ting one’s valuation function over the set of goods on offer to°!) ransformations, and we define an expressive bidding lan-
the auctioneer. In principle, it does not matter how the valuaduage to represent such valuations. Section 3 discusses the

tion function is being encoded, as long as sender (bidder) an§f/"Ner determination problem for MMUCAs, including its
receiver (auctioneer) agree on the semantics of what is bé:_omputat!onal complexity. Finally, Section 4 concludes with
ing transmittedij.e. as long as the auctioneer can understand® discussion of related work and an outlook on future work.

the message(s) sent by the bidder. In practice, however, t C
choice of bidding language is of central importance. Earl Bidding Languages

work on combinatorial auctions has typically ignored the is-In this section, we first define the notions of transformation
sue of bidding languages. The standard assumption used to bad valuation over transformations, and then define a bidding
that if a particular bidder submits several atomic bids (a bunfanguage that can be used to transmit an agent's valuation
dle together with a proposed price), then the auctioneer magwhich may or may not be their true valuation) to the auction-



eer. We also formally define the semantics of the languag@&hat is, a valuation is normalised iff exchanging a multiset of
and introduce a number of additional language constructs thaems for an identical multiset does not incur any costs (this
allow for the concise encoding of typical features of valua-includes the special case f= O = { }, i.e. the case of not
tion functions. Finally, we discuss the expressive power ofexchanging anything at all). The next definitions refer to our
the language. subsumption relatioft (cf. Definition 1).

Definition 3 (Monotonic valuation) A valuationv is mono-

21 Transforrr_]atlons tonic iff v(D) < v(D’) wheneveD C D'.
Let G be the finite set of all the types of goods under con- ) ) . . .
sideration. Atransformationis a pair of multisets ove6: ~ 1hatis, an agent with a monotonic valuation does not mind

(I,0) € N¢ x NG. An agent offering the transformation taki_ng on more goods and g@ving fewer away. Any given val-
(Z,0) declares that it can delive? after having received. uation function can b&urned intoa monotonic valuatiof:
In our setting, bidders can offer any number of such transforpefinition 4 (Monotonic closure) The monotonic closuré

mations, including several copies of the same transformatiorof a valuationw is defined a$(D) = max{v(D’) | D’ C D}.

Thatiis, agents will be negotiating oveultisets of transfor- Observe that there could be infinitely many bundles an agent

. G G
mationsD € NI, may want to assign a (defined) value to. As we shall see in
For example{({ }, {a}), ({b}, {c})} means that the agent geciion 2.6, our bidding languages can only express valua-

in question is able to deliver (no input required) and that it tjong that ardinitely-peakedor that are the monotonic clo-
is able to deliver: if provided withb. Note that this is notthe gy of a finitely-peaked valuation):

same ag ({b}, {a,c})}. In the former case, if another agent e . L
is able to produce if provided with a, we can get: from  Definition 5 (Finitely-peaked val.) A valuationu is finitely-
nothing; in the latter case this would not work. peaked iffv is only defined over finite multisets of pairs of

We define asubsumption relatiof over transformations ~ finite multisets andD € N xN) | (D) £ 1} is finite.
as follows: (Z,0) C (Z/,0") iff T C 7" andO D O'. In- A
tuitively, this means that the second transformation is at Iea&‘3 Atomic Bids
as good as the first (for the bidder), because you receive mo/n atomic bidsip ({(Z*, O'),...,(Z",0™)},p) specifies a
and have to give away less. The following definition extenddinite multiset of finite transformations and a price. To make
this subsumption relation to multisets of transformations. Itthe semantics of such an atomic bid precise, we need to de-
applies to multisets of the same cardinality, where for eaclgide whether or not we want to makérae disposahssump-
transformation in the first set there exists a (distinct) transfortion. We can distinguish two types of free disposal:

mation in the second set subsuming the former. e Free disposaht the bidder's sidemeans that a bidder

- . , (NC xN%) would always be prepared to accept more goods and give
E;f'?ﬁg%g ?S(iubgiur;ne%'gzg), I(.gé) ’DY,)) iﬁe_ N - We fewer goods away, without requiring a change in pay-
y = : ment. This affects the definition of the valuation func-

(¢) D andD’ have the same cardinalityD| = |D’|. tions used by bidders.
(i) There exists a surjective mappirig D — D’ such that, o Free disposait the auctioneer’s sidmeans that the auc-
for all transformationg € D, we have C f(¢). tioneer can freely dispose of additional godds,accept

more and give away fewer of them. This affects the def-
inition of what constitutes a valid solution to the winner
determination problem (see Section 3).

For instance (using a simplified notation for the innermost
sets), we havé(a, bb), (cc,dd)} C {(cc, d), (aaa,b)}.

2.2 Valuations Under the assumption of free disposal at the bidder’s side, the
In an MMUCA, agents negotiate over bundles of transformabid Bid = BID(D, p) defines the following valuation:

tions. Hence, avaluationv : NN“*XN9) _ R is a (typi- ) p fDCD

cally partial) mapping from multisets of transformations to vpia(D') = { L otherwise

the real numbers. Intuitively;(D) = p means that the agent

equipped with valuation is willing to make a payment of To obtain the valuation function defined by the same bid with-
p in return for being allocated all the transformationsIin  out the free disposal assumption, simply replacen the

(in casep is a negative number, this means that the agen@bove definition by equality.

will accept the deal if iteceivesan amount oflp|). For in- L i

stancep({({oven, dough}, {oven, cake})}) :ﬂJQO means 2-4 Combinations of Bids

that | can produce a cake for 20 rupees if given an oven ané suitablebidding languageshould allow a bidder to encode
some dough, and that | will return the oven again afterwardshoices between alternative bids and the like. To this end,
We write v(D) = L to express that is undefinedover the  several operators for combining bids have been introduced in
multisetD. Again intuitively, this means the agent would be the literature[Nisan, 200§, which we are going to adapt to
unable to accept the corresponding deal. Valuation functionseur purposes here. Informally, an OR-combination of several

can often be assumed to be bottrmalisedandmonotonic: n ]
Here and throughout this paper, we assume that any occurrences

Definition 2 (Normalised valuation) A valuationv is nor-  of L are being removed from a set before computing its maximum
malised iffo(D) = 0 whenevefZ = O for all (Z,0) € D. element, and that the maximum of the empty set is



bids signifies that the bidder would be happy to accept anyrhis allows us to expredsundling constraintsn a concise
number of the sub-bids specified, if paid the sum of the asmanner: the bid{a, a, a, b}, —10)=°° expresses that we can
sociated prices. An XOR-combination of bids expresses thagell up to 50 packages containing three items of typnd
the bidder is prepared to accept at most one of them. We alsmne item of typeh each, for 10 rupees a package (for simplic-
suggest the use of an IMPLIES-operator to express that adgty, we omit©O here). We also use the following shorthand:
cepting one bid forces the auctioneer to also take the second. o ) )
We shall take an AND-combination to mean that the bidder Bid" = (Bid AND --- AND Bid)
will only accept the respective sub-bids together. ntimes

As it turns out, while all these operators are very useful ) )
for specifying typical valuations in a concise manner, anyNOW we can express quantity ranges. ketn, € N with
complex bid can alternatively be represented by an XOR0 < 71 < ny. The following expression says that we may
combination of atomic bids. To simplify presentation, ratheraccept between; andn; copies of the sam&id:
than specifying the exact semantics of all of our operators Cnine] < lns—ny ;ny
directly, we are simply going to show how any bid can be Bid™l = Bid=(">"") MPLIES Bid

translated into such mormal form Firstly, any occurrences These constructs also allow us to express important concepts
of IMPLIES and OR can be eliminated by applying the fol- gych as quantity discounts in a concise manner. For instance,

lowing rewrite rules: the bid[(a, 20)<19 IMPLIES (a, 25)%°] XOR (a, 25)<%0 says
X IMPLIESY ~ (X ANDY) XORY that we are prepared to buy up to 50 items of typer 25
XORY ~» X XORY XOR (X AND Y) rupees each, and then up to 100 more2forupees each.

Note that for single-unit auctions, OR cannot be translate®.6 Expressive Power

into XOR like this (if X andY overlap, then they cannot be Next we are qoi ; ;
- . going to settle the precise expressive power of
accepted together; in an MMUCA this depends on the supply, e ¥ oR_language, and thereby of the full bidding language.

of the auctioneer). Next we show how to d.istrlibute AND overyya have to distinguish two cases, as we have defined the se-
XOR, so as to push AND-operators to the inside of a formula:

mantics of the language both with and without free disposal.
(X XORY) AND Z ~+ (X AND Z) XOR (Y AND 2) Proposition 1 The XOR-language without free disposal can
Finally, we need to define how to turn an AND-combination represent all finitely-peaked valuations, and only those.
of atomic bids into a single atomic bid: Proof. Let v be any finitely-peaked valuation. To express
BID(D,p) AND BID(D,p’) ~ BID(DUD,p+p) the XOR-language, we first compose one atomic bid for each
_ . . D= {(T',0Y,..., (2", 0"} withv(D) =p # L:
It is not difficult to see that these rewrite rules together allow
us to translate any expression of the bidding language into BID({(Z',0"),...,(Z",0™},p)
an equivalent XOR-combination of atomic bids. We also call ) ) o
this theXOR-language To formally define the semantics of J0ining all these bids together in one large XOR-combination
this language, it suffices to define the semantics of the XORYi€lds a bid that expresses Vice versa, it is clear that

operator. Suppose we are givelbids Bid;, withi € {1..n}. the XOR-language cannot express any valuation that is not

Let Bid = Bid, XOR --- XOR Bid,,. This bid defines the finitely-peaked. 0

following valuation: Proposition 2 The XOR-language with free disposal can
vpia(D) = max{vpa, (D) | i€ {1.n}} represent all valuations that are the monotonic closure of a

) _ o ) finitely-peaked valuation, and only those.
That is, XOR simply selects the atomic bid corresponding to ) . . .
the valuation giving maximum profit for the auctioneer. Proof. The construction of a bid representing any given val-
uation works in analogy to the proof of Proposition 1. Note

2.5 Representing Quantity Ranges that for the semantics with free disposal we precisely obtain

As we are going to see in the next section, the XOR-languagi'e monotonic closure of the valuation we would get if we
is expressive enough to describe any (finitely-peaked) valua¥ere to drop the free disposal assumption. -

tion. Nevertheless, it may not be possible to express a giveMhese results correspond to the expressive power results for
valuation in a succinct manner. From a practical point ofthe standard XOR-language for direct single-unit combina-
view, it is therefore useful to introduce additional constructstorial auctions. With free disposal (the standard assump-
that allow us to express typical features more succinctly. Her@on), the XOR-language can express all monotonic valua-
we consider the case of quantity ranges: we want to be ablgons[Nisan, 200$; and without that assumption it can repre-
to express that a certain number of copies of the same trangent the complete range of valuations (note #mtvaluation

formation are acceptable to a bidder. is finitely-peaked if we move from multisets to sets).
Letn € N. To express that up te copies of the sam8id
are acceptable, we use the following notation: 3 Winner Determination
Bid=" = (Bid OR --- OR Bid) In this section, we define the winner determination problem

ntimes (WDP) for MMUCAs. For lack of space we only give the



definition for the case of free disposal (at the side of the aucef referring to a transformation: by its position in the collec-
tioneer), but this is easily adapted to the case without fre¢ion of bids receivedt(;) and by its position in the allocation
disposal. We first give an informal outline of the definition, sequence (if selected at all).

then a formal definition, and finally a formulation using inte- Given X we can obtain the set of goods held by the auc-
ger programming, providing a basis for implementation. Wetioneer after each transformation. For instance, say that the
also establish the computational complexity of the WDP andhuctioneer begins withf;,, = {a,a,d,d}. If we apply the

briefly comment on mechanism design issues. first transformatiof(Z', O') = ({a, a}, {c}) (from two units
—_ of a produce one unit o), the auctioneer ends up with
3.1 Informal Definition M = {¢,d,d}. Formally, we can express this operation

Theinput to the WDP consists of a complex bid expressionas an equation over multisets:

for each bidder, a multisét;,, of goods the auctioneer holds 1 1 1

to begin with, and a multisef,,, of goods the auctioneer M (g) = Uin(g) + O (9) = T°(9)

expects to end up with. The application of the transformation is possible only because

In standard combinatorial aUCtionS, a solution to the WDP[WO units of goodl are available. This condition maps to:
is a set of atomic bids to accept. In our setting, however,

the order in which the auctioneer “uses” the accepted trans- Uin(g) = T'(9)
Iorgnat_lons_t?attr:ers. hFOL.'nStaEC?H if the autqtlor;ﬁert halgsd Let M™ € NC be the goods held by the auctioneer after
Jgi degln ‘(’\E'a}’ {b(}enf(:)) chérgi\év € ?Eb?cgi}l? '2%% isefe\;vsi : sdpplying themth transformation. We can generalise the two
1 = ) ) 2 = ) ) - i 0 _ 77 )\
ble involves realising that we have to uBed; beforeBids. equations above as follows (18" = i;y,):
Thus, asolutionto the WDP will be asequence of transfor- M™(g) = M™ (g) + O™ (g) — I"(g) 1)
mations A valid solution has to meet two conditions: m— m
. . . o M (g) > T™(g) )
(1) Bidder constraints:The multiset of transformations in ) _
the sequence has tespect the bidsubmitted by the We are now ready to define under what circumstances a se-
bidders. This is a standard requirement. For instanceguence of transformations constitutes a valid solution:
if a bidder submits an XOR-combination of transforma- pefinition 6 (Valid solution) Given a multiset(;,, of avail-
tions, at most one of them may be accepted. able goods and a multisé,,; of required goods, an alloca-
(2) Auctioneer constraints:The sequence of transforma- tion sequence for a given set of XOR-bids over transforma-
tions has to bémplementable(a) check that/;,, isasu-  tionst;;; is said to be a valid solution iff:

perset of the input set of the first transformation; (b) then (1) x ejther contains all or none of the transformations be-

update the set of goods held by the auctioneer after each * |onging to the same atomic bid. That is, the semantics of
transformation and check that it is a superset of the input  the BID-operator is being respected:

set of the next transformation; (c) finally check that the
set of items held by the auctioneer in the end is a superset tijk €X = tijir €2

of U,.:. This requirement is specific to MMUCAs. . . . .
. o . . . (2) X does not contain two transformations belonging to dif-
An optimalsolution is a valid solution that maximises the sum ferent atomic bids by the same bidder. That is, the se-
of prices associated with the atomic bids selected. mantics of the XOR-operator is being respected,:

3.2 Formal Definition timtiw €5 = j =7

For the formal definition of the WDP, we restrict ourselves ) ]
to bids in the XOR-language, which is known to be fully ex- (3) Equations(1) and (2) hold for each transformation

pressive (over finitely-peaked valuations). For each bidder (Z™,0™) in ¥ and each goody € G. This condi-

let Bid;; be thejth atomic bid occurring within the XOR- tion ensures that all transformations have enough input

bid submitted byi. Recall that each atomic bid consists ofa  90ods available.

multiset of transformations and a pricBid;; = (D;;, pij), (4) The set of goods held by the auctioneer after imple-

whereD;; € NN xNY) andp;; € R. For eachBid,;, lett; menting the transformation sequence is a superset of the
be a unique label for thkth transformation irD;; (for some goods the auctioneer is expected to end up with:

arbitrary but fixed ordering oD;;). Let (Z;;x, O;ji) be the M -y
actual transformation labelled by;,. Finally, letT be the set (9) = Uour(9)
ofallZ;;;; thatis,|T| is the overall number of transformations ¢ revenuefor the auctioneer associated with a valid solu-

mentioned anywhere in the bids. tion ¥ is the sum of the prices associated with the selected

The auctioneer has to decide which transformations to acs;omic bids: = A Y1 We are now readv to
cept and in which order to implement them. Thusaflaca-  jefine the WZD:éZ}gr|XOFQ'-b7iﬁkS:€ g y

tion sequencé (which will not necessarily be a valid solu- o . ) )
tion) is a total ordering of a subset df We writet,;,, ¢ X to  Definition 7 (WDP) Given a set of XOR-bids and multisets
say that the:th transformation in thgth atomic bid of bidder ~ Uin @ndio,. of initial and final goods, respectively, the win-
i has been selected. Furthermore, (B, 0™) be themth ner d_etermlnatlon prqblem is the problem of f]nd|ng a valid
transformation in the sequenie That is, we have two ways SolutionX that maximises revenue for the auctioneer.



3.3 Integer Programming Formulation

We now show how to map the WDP defined above into inte-
ger programming (IP). Our aim is to find a solution sequence
composed of transformations that leads from the initial goods
to the final goods. Note that the length of the solution se-
guence can be at most equal to the overall number of of-
fered transformations. Therefore, the issue is to decide for
each transformation whether it is selected for the solution se-
guence, and if so, to choose its position in the solution se-

(Vg € G,Vm) (8)

That is, we treat eaciM™(g) as an integer decision
variable. We can now formulate the constraint enforc-
ing that enough goods must be available at siepo
perform the next transformation (cf. equation (2)):

M™Hg) 2 3wl Tignlg) (Y9 € G, ¥m) (9)

ijk

quence. Thus, we define a set of binary decision variableg7)

zih. € {0,1}, wherez?, takes on value 1 if the transfor-
mationt;;;, is selected at the:th position of the solution se-
guence, and 0 otherwise. Here and in what followslways
ranges from 1 to the overall number of transformatigifis

1 ranges over all bidderg; ranges for each bidderfrom 1
to the number of atomic bids submitted kByand k£ ranges
for each atomic bidj of bidder: from 1 to the number of
transformation in that atomic bid.

And finally, after having performed all the selected
transformations, the set of goods held by the auctioneer
must be a superset of the final godds,; (cf. condi-

tion (4) of Definition 6):

MTg) > Upui(9) (Vg € G)

This works correctly, becaus#t!”!(g) = M™(g) for
the highesin with 2™ = 1 (cf. equations (6) and (8)).

(10)

We also introduce several sets of auxiliary binary decisiorNow solving the WDP for MMUCAs with XOR-bids

variables:x™ takes on value 1 iff any transition at all is se-

lected at thenth position of the solution sequencs;;, takes

on value 1 iff transitior¢;;;, is present anywhere in the se-
guence; and;; takes on value 1 iff any of the transformations

in the jth atomic bid of biddei are selected.

In what follows, we define the set of constraints that th

solution sequence must fulfil:

e

amounts to solving the following integer program:

max Y ;- p;; Subject to constraints (1)~(7)
ij
Finally, a valid solution according to Definition 7 is obtained

from the solution of the IP by making transitioyy, themth
element of the solution sequeneeff 27, = 1.

.

(1) Since each atomic bid is a bundle of transformations, we opserve that our proposed implementation can easily be

want to ensure that if a transformation in an atomic bidymended so as to directly encode the constraints imposed by
is selected for the solution, so are the rest of the transpngage constructs other than the XOR-operator. This would

formations in that bid (cf. condition (1) of Definition 6):

remove the need for translating into the XOR-language first
and thereby greatly improve efficiency.

(2) We enforce that the atomic bids submitted by each bid3.4 Computational Complexity

der are exclusive (XOR). This amounts to satisfying the

following constraints (cf. condition (2) of Definition 6):

J

The (decision problem underlying the) WDP for standard
combinatorial auctions is known to be NP-complete, with re-
spect to the number of goodRothkopfet al, 1999. NP-
hardness can, for instance, be shown by reduction from the
well-known ST PACKING problem. As our mixed auction

(3) We enforce that a transformation can be selected at mogtodel generalises standard combinatorial auctions, winner

for a single position in the solution sequence:

vigr =Yl (Vijk) (5)

determination remains NP-hard also here. NP-membership
(and thereby NP-completeness) of the problem of checking
whether there exists a solution exceeding a given revenue (for
finite bids) follows from the fact that a candidate solution pro-

(4) We also impose that at most one transformation is sevided by an oracle can always be verified in polynomial time.

lected at each position of the sequence:

™ = Zx:?k (Ym)

ijk

(6)

That is, despite of the generalisations we have introduced, the
computational complexity of the WDP does not increase, at
least not with respect to the polynomial hierarchy.

(5) Furthermore, there should be no gaps in the sequence:3-5 Mechanism Design

™ > ™ (Vm) @)

(6) Next, we capture condition (3) of Definition 6. Firstly,

An important issue in auction design concerns tlggime-
theoretical properties. We note here that the central result
in mechanism desigron the incentive-compatibility of the

the multiset of goods held by the auctioneer after perVickrey-Clarke-Groves (VCG) mechanism, carries over from
forming m steps of the transformation sequence can betandard combinatorial auctions to MMUCAs. Recall that the

computed recursively, by equation (1), as follows:

M™(g) = Uin(g) + Y > @i, - (Ouil9) — Tiji(9))

=1 ijk

VCG mechanism allocates goods in the most efficient man-
ner and then determines the price to be paid by each bidder
by subtracting from their offer the difference of the overall
value of the winning bids and the overall value that would



have been attainable without that bidder taking part. That iskF-uture work should also address the expressive power of dif-
this “discount” reflects the contribution to the overall produc-ferent fragments of the bidding language and compare the
tion of value of the bidder in question. The VCG mechanismsuccinctness of different fragments for certain classes of val-
is strategy-proof: submitting their true valuation is a (weakly)uations: which languages can express what valuations, and
dominant strategy for each bidder. As an inspection of stanwhich languages can do so using less space than others? For
dard proofs of this result revealas-Colellet al, 1999, the case of direct single-unit combinatorial auctions, several
this does not depend on the internal structure of the agreesuch results are given by Nisd@00d, and some of these
ments that agents make. Hence, it also applies to MMUCAsresults may be relatively easy to transfer to our model.
Another interesting question to consider in future work
4 Conclusions and Related Work Woulq be what exactly the auctioneer shoatthouncevhen
opening an MMUCA. In the case of direct auctions this is
Our model of mixed multi-unit combinatorial auctions sub- the set of goods to be sold. If bidding for transformations is
sumes a range of combinatorial auction models discussed possible, however, it may be difficult to foresee what types of
the literature (see e.§Sandholmet al,, 2003), in particular  goods will be relevant to a solution, as this depends on the
single-unit and multi-unit versions of the standard direct andransformation capabilities of the bidders in the market. We
reverse auctions (simply do not use eitlieor ©). Trans-  also envision as a possible development the application of our
formability relationships between goods (at the side of themodel to supply chain formation. Finally, our work also poses
auctioneer) as proposed by Giovannuecal. [2009 can be  a computational challenge since the number of variables of
modelled by allowing the auctioneer to submit bids representeur IP grows quadratically with the number of transforma-
ing those transformations to itself. tions mentioned in the bids. Thus, we plan to investigate the
We should stress that there are important differences besse of special-purpose or local algorithms.
tween our mixed auctions and models known dmible
auction[Wurmanet al, 1999 or combinatorial exchanges This work has been partially supported by the Spanish Min-
[Sandholmet al, 2004. The most important difference is istry of Education and Science (grants 2006-5-01-099, TIN-
that these models do not have the concept ségquencef  2006-15662-C02-01, and TIP-2003-08763-C02-01).
exchanges, which is required if the intention is to model some
sort of production process. In the formulation of the WDP for References

combinatorial exchanges given by Sandhetral. [2003, for [Babaioff and Walsh, 2045M. Babaioff and W.E. Walsh.
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