
Temporal Logics for
Normative Agent Communication Protocols

Ulle Endriss
Department of Computing, Imperial College London (UK)

ue@doc.ic.ac.uk

ABSTRACT
We sketch how to express typical features of agent commu-
nication protocols in a simple temporal logic and show that
conformance verification at runtime reduces to a generalised
form of model checking.

Categories and Subject Descriptors
F.4.1 [Theory of Computation]: Mathematical Logic—
Temporal logic; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Theory, Verification

Keywords
Model checking, Protocol conformance

1. INTRODUCTION
Communication is a central issue in multiagent systems re-
search. While much work has been devoted to so-called
mentalistic models of communication, where communicative
acts are specified in terms of agents’ beliefs and intentions,
recently a number of authors have argued for a convention-
based approach to agent communication languages [4, 5].
Mental attitudes are useful to explain why agents may be-
have in certain ways, but (being non-verifiable for an out-
side observer) they cannot serve as a basis for specifying
the norms and conventions of interaction required for build-
ing open systems that allow for meaningful communication.
In the convention-based approach, protocols specifying the
rules of interaction play a central role.

A protocol specifies under what circumstances a given di-
alogue (between two or more agents) should be considered
legal (i.e. conformant to the social rules governing the sys-
tem to which the protocol applies). We are going to restrict

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

our attention to protocols that impose constraints on turn-
taking (who is allowed to speak?) and, in particular, the per-
formatives of dialogue moves (rather than their application-
specific content). An example for a dialogue performative
would be accept and a protocol rule might specify that this
performative may only be used in response to an earlier pro-
pose-move. In the context of negotiation, for instance, the
content of such a move would have to include an exact spec-
ification of the actual deal being proposed. The language
used for describing this deal would depend on the concrete
application in question and we cannot expect to be able to
devise a general-purpose language for the specification of
protocol rules relating to such content items.

A variety of mechanisms for the specification of proto-
cols have been put forward in the literature; good examples
are deterministic finite automata. In the present paper we
advocate the use of temporal logic for the specification of
convention-based communication protocols. More specifi-
cally, we are going to use propositional linear temporal logic
(PLTL), which is probably the most intuitive of the standard
temporal logics [3]. Formulas of PLTL are evaluated over the
non-negative integers (as every integer, or time point, will
correspond to a turn in a finite dialogue, we are going to
evaluate formulas over initial segments of the non-negative
integers only). The language of PLTL can express state-
ments such as dϕ (ϕ is true at the next time point), 3ϕ (ϕ
is true at some future time point), and ϕ until ψ (ψ is true
at some future time point and ϕ remains true until then).

2. MODELS AND DIALOGUES
Given a modelM and a formula ϕ, the model checking prob-
lem is the problem of deciding whether ϕ is true at every
point in M. In the sequel, we are going to formulate the
problem of checking conformance of a dialogue to a protocol
as a (variant of the) model checking problem.

We are going to use a special class of PLTL models to
represent dialogues between agents and PLTL formulas to
specify protocols. For every agent A referred to in the proto-
col under consideration, we assume that the set L of propo-
sitional letters includes a special proposition turn(A) and
that there are no other propositions of this form in L. Fur-
thermore, we assume that the set of performatives in our
communication language is a subset of L, and that L in-
cludes the special proposition initial. We say that a model
represents a dialogue iff it meets the following conditions:
(1) initial is true at point 0 and at no other t > 0; (2) ex-
actly one proposition of the form turn() is true at any point
t > 0; (3) exactly one performative is true at any point t > 0.

An actual dialogue determines a partial model: It fixes the
frame as well as the valuation for initial and the proposi-
tions in L corresponding to turn-assignments and performa-
tives, but it does not say anything about any of the other
propositional letters that we may have in our language L
(e.g. to represent dialogue states). We can complete a given
partial model by arbitrarily fixing the valuation for the re-
maining propositional letters. Every possible way of com-
pleting a dialogue model in this manner givens rise to a
different PLTL model, i.e. a dialogue typically corresponds
to a whole classes of models.

This is why we cannot use standard model checking (which
applies to single models) to decide whether a given dialogue
satisfies a formula encoding a protocol. Instead, the reason-
ing problem we are interested in is this:

Given a partial model M (induced by a dialogue)
and a formula ϕ (the specification of a protocol),
is there a full model M′ completing M such that
ϕ is true at every point in M′?

In other words, we have to decide whether the partial de-
scription of a model can be completed in such a way that
model checking would succeed.

The above problem is known as the generalised model
checking problem and has been studied by Bruns and Gode-
froid [1]. In fact, the problem addressed by these authors is
slightly more general than ours, as they do not work with
a fixed frame and distinguish cases where all complete in-
stances of the partial model validate the formula from those
where there exists at least one such instance. Generalised
model checking may be regarded as a combination of satis-
fiability checking and model checking in the usual sense. If
there are no additional propositions in L, then generalised
model checking reduces to standard model checking. If we
can characterise the class of all models representing a given
dialogue by means of a formula ψ, then ϕ and ψ can be used
to construct a formula that is satisfiable (has got a model)
iff that dialogue conforms to the protocol given by ϕ.

3. EXAMPLES
A wide range of communication protocols studied in the
multiagent systems literature have been modelled using de-
terministic finite automata. This class of protocols can be
represented using a fragment of PLTL where the only tem-
poral operator required is the next-operator d. If our lan-
guage L includes a propositional letter of the form state(i)
for every state i, then we can describe the state transition
function of an automaton by means of formulas such as this:

state(5) ∧ dpropose → dstate(3)

This formula expresses that uttering a propose-move in
state 5 takes us to state 3. Next we have to specify the
range of legal follow-ups for every dialogue state. For exam-
ple, from state 3 we may only allow for two kinds of moves:

state(3)→ ¬ d¬(accept ∨ reject)

Observe that we use the weak variant of the next-operator
¬ d¬ (rather than just d). Otherwise the above formula
would not be satisfied in a model representing an unfin-
ished (but otherwise legal) dialogue. In case we want model
checking to succeed only for complete dialogues, we can add
the formula state(i) → d> to the specification for every

non-final state i. We can formulate similar rules, using the
propositional letters of the form turn(), to regulate a pro-
tocol’s turn-taking policy.

For many purposes, purely automata-based protocols are
not sufficient. For instance, they do not support the spec-
ification of general future obligations (or commitments) on
the communicative behaviour of an agent. This is an impor-
tant feature of many protocols proposed in the literature. In
the context of an auction protocol, for example, we may say
that, by opening an auction, an auctioneer acquires the obli-
gation to close that auction again at some later stage. Sup-
pose these actions can be performed by making a dialogue
move with the performatives open-auction and end-auction,
respectively. Again, we do not want model checking to fail
just because a dialogue has not yet been completed; that is,
a specification such as open-auction → 3end-auction would
be too simplistic. Instead, we may use the following formula:

open-auction → pending ∧ (pending unless end-auction)

Here ϕ unless ψ a shorthand for (ϕ until ψ) ∨ 2ϕ. The
new proposition pending is used to mark time points at
which there are still obligations to be met. A model rep-
resenting a dialogue where open-auction has been uttered,
but end-auction has not, will satisfy this rule. However,
pending will be true at its very last time point. If we want
to check whether a dialogue does not only not violate any
rules but also fulfils all obligations, then we can run gen-
eralised model checking with a specification including the
additional formula pending→ d>.

4. CONCLUSION
We have argued that temporal logic can be used to specify
convention-based agent communication protocols in a simple
and elegant manner. In particular, we have indicated how
to use PLTL to specify both very simple automata-based
protocols and protocols involving dialogue obligations. Of
course, using this logic to express the kinds of properties we
have considered in our examples is not new, but the applica-
tion of this technique to the specification of conversational
conventions is both novel and, we believe, very promising.
We have also identified generalised model checking as a tool
for checking protocol conformance at runtime.

A full version of this paper is due to appear in the proceedings
of the AAMAS Workshop on Agent Communication [2].

5. REFERENCES
[1] G. Bruns and P. Godefroid. Generalized model

checking: Reasoning about partial state spaces. In 11th
Intl. Conf. on Concurrency Theory. Springer, 2000.

[2] U. Endriss. Temporal logics for representing agent
communication protocols. In AAMAS Workshop on
Agent Communication, 2005. To appear.

[3] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal
Logic: Mathematical Foundations and Computational
Aspects, volume 1. Oxford University Press, 1994.

[4] J. Pitt and A. Mamdani. A protocol-based semantics
for an agent communication language. In 16th Intl.
Joint Conf. on Artif. Intell. Morgan Kaufmann, 1999.

[5] M. P. Singh. Agent communication languages:
Rethinking the principles. IEEE Computer,
31(12):40–47, 1998.

