Adding a Zoom to Linear Temporal Logic*

Ulrich Endriss

Department of Computer Science, King’s College London
Strand, London WC2R 2LS, United Kingdom
Email: endriss@dcs.kcl.ac.uk

1 Introduction

Temporal logic. One of the great success stories of
non-classical logics in mainstream computer science is that
of linear temporal logic and its applications to systems
specification and verification [2]. The simple formalism
of a sequence of states and a valuation function map-
ping atomic propositions to sets of states, combined with
propositional and modal operators to construct complex
formulas, is surprisingly powerful when describing the be-
haviour of a given system over time.

However, this logic does mot support the concept of
modularisation in a natural manner. Each time we want
to add additional detail about a subsystem associated
with one of the states, we have to revise the specification
of the entire system.

Zooming in. We propose to remedy this shortcoming by
adding a zoom to linear temporal logic: If we (recursively)
relate every state with another time line to describe the
behaviour of the subsystem associated with that state we
obtain a tree-like structure. In fact, we obtain an ordered
tree: the relation connecting a state with all the states in
the time line beneath it is a tree (if we also introduce a
root) and the children of each node (the states of a single
time line) are ordered. In this paper, we discuss a modal
logic with frames that are ordered trees. It provides modal
operators working both along the branches of a tree (level-
of-detail dimension) and along the order declared over the
children of a node (temporal dimension).

We define syntax and semantics of this new logic in Sec-
tion 2 and briefly sketch a decidability proof in Section 3.
A full paper is currently in preparation [1].

2 Ordered Tree Logic

We present syntax and semantics of the modal logic of
(discretely) ordered trees.

Syntax. The set of well-formed formulas A of our logic
is formed according to the following BNF production rule
(p stands for propositional letters):

A == p|A| ANA | ©OA | GA | OA |
CA| GA | GA| ©A | ©TA

Additional propositional connectives and box-operators
may be introduced as defined operators in the usual way
(like, for example, By = ~G—p).

Semantics. A discretely ordered tree T is a tree where
the children of each node form a discrete order (that is,
between any two sibling nodes there can only be finitely

*This work has been supported by the EPSRC under grant ref-
erence numbers GR/R45369 and GR/N23028.

many other nodes). A model is a pair M = (7,V), where
T is such an ordered tree and V is a valuation function
mapping propositional letters to sets of nodes of 7. Truth
of a formula ¢ in M at anode t € 7 is defined as follows:

Mt =piff t € V(p) for propositional letters p
Mt |E —p iff not Mt =

M tE oAy iff Mt =@ and Mt =

M.t |E Ogp iff t has a parent ¢’ and M,t' E ¢

M.t |E ©p iff t has a left neighbour ¢ and M, t' | ¢
M, t = Oy iff t has a right neighb. ¢ and M, = ¢
M.t |E ©p iff t has an ancestor ¢ with M, ¢ E ¢
Mt = ©p iff t has a left sibling ¢’ with M,t' = ¢
M.t |E G iff t has a right sibling ¢ with M, ¢’ = ¢
. M.t = ©p iff t has a child ¢ with M,t E ¢

11. M,t = ©T @ iff ¢ has a descendant ¢’ with M, t' = ¢

© PN WD

—
o

A formula ¢ is called satisfiable iff it has a model (i.e. iff
there are M = (7,V) and t € T with M, t = ¢).

3 Bounded Finite Models

Ordered tree logics can be shown to be decidable by es-
tablishing a bounded finite model property (fmp), that
is, by showing that any formula ¢ that is satisfiable in
some model is also satisfiable in a model of limited size
(where the maximal size is a function of the length of
©). Our techniques are similar to those used by Sistla
and Clarke [3] to establish upper complexity bounds for
propositional linear temporal logics.

Theorem 1 (Bounded FMP) The modal logic of dis-
cretely ordered trees has the bounded finite model property.

Theorem 1 is a corollary to Lemmas 2 and 5, proofs for
which we are going to informally sketch below. The follow-
ing observation will play a central role: To check whether
a given formula ¢ is true at some node in a given model we
have to check whether certain subformulas of ¢ are true
at certain (other) nodes in the model; formulas that are
not subformulas of ¢ are not relevant. So instead of mod-
els, we can work with type models, that is ordered trees
where each node is associated with a certain type (a set
of subformulas of the input formula ¢).

Bounded branching. We first work towards control-
ling the horizontal dimension and show how we can reduce
the branching factor of a given model.

Lemma 1 (Sibling pruning) The stretch between two
siblings of the same type can be removed (including one of
the end nodes) without affecting satisfiability, provided we
keep the node of evaluation as well as a witness for each
formula of the form ®y or ®T¢ in the parent.

We can show this by structural induction. For atoms and
propositional connectives, pruning elsewhere in the tree
does not affect satisfiability. Formulas of the form ®¢ or
@t are not affected by definition. Neither are formulas
of the form Oy or Gy as they are either removed from the
tree or refer to nodes unaffected by the pruning operation.
The horizontal modalities provide the interesting cases.
We exemplify the general idea for formulas of the form
Se. Suppose G is true at a node somewhere to the left
of the stretch to be removed (we need to check that at
least one witness survives). If &y is also true at the left
one of the ‘pruning nodes’, then it must equally hold at
the right one (because they have the same type), i.e. ¢
is true somewhere to the right of the stretch (and we are
done). Otherwise, ¢ must already hold somewhere before
the stretch (and we are done as well).

We can use the Sibling Pruning Lemma to prove the
following result:

Lemma 2 (Bounded branching) A formula ¢ of len-
gth n is satisfiable iff it is satisfiable in a (periodic) type
model with a mazimal branching factor of (n+1) - 2™.

Observe that for any set of children there are at most
n nodes the Sibling Pruning Lemma has to respect (the
node of evaluation and up to n—1 witnesses), but it can be
freely applied in between those n nodes. There are up to
n subformulas of ¢ and, hence, up to 2" consistent types,
so we can reduce the n—1 finite stretches in between to at
most 2™ —2 nodes each.

The left- and rightmost stretch, however, may be infi-
nite. This is where periodicity comes into play. We con-
sider the rightmost stretch: In case it is finite, we can
reduce it to 2" —1 nodes. Otherwise, there is a point from
which onward all types that do come up come up infinitely
often. Each one of them must have another type that oc-
curs infinitely often as its right-hand neighbour. Hence,
we can apply the Sibling Pruning Lemma in such a way
that we obtain a periodic stretch of types (by always prun-
ing between a node and the next occurrence of a node of
the same type together with its ‘designated neighbour’).
The rightmost stretch as a whole (including the period)
can then be pruned down to 2" —1 nodes.

Altogether, we get a maximum of n+ (n—1) - (2"—2) +
2-(2"—1) < (n+1)-2" nodes.

Bounded depth. Now we turn to the vertical dimen-
sion and show how to reduce the length of branches in a
given tree, again, without affecting satisfiability.

Lemma 3 (Branch pruning) If a node t1 and its de-
scendant to have the same type, we can replace the subtree
beneath t1 with the tree beneath to without affecting satisfi-
ability, provided we do not remove the node of evaluation.

We omit the proof, which is similar to that of the Sibling
Pruning Lemma.

To allow for the finite representation of recursive trees
we introduce the notion of a link: a tree with a link from
a node t; to another node ¢, represents the tree we get
by (recursively) replaceing ¢; with to (together with the
subtrees beneath them).

Lemma 4 (Link introduction) If two nodes t1 and to
have the same type, we can introduce a link from ty to to
without affecting satisfiability, provided we keep the node
of evaluation and a witness for each formula of the form
ST in ty.

Again, we omit the proof and only point out that the ideas
are essentially the same as before.

Lemma 5 (Bounded depth) A formula ¢ of length n
is satisfiable iff it is satisfiable in a type model (with links)
with a mazimal branch length of 271,

Let us first observe that we can use the Branch Pruning
Lemma to ensure that every type has a first occurrence
at a node of depth < 2" (there are up to 2™ types and
we can shorten any branch that has more than one node
of the same type). We pick a minimal ‘upper part’ of the
tree that features each type at least once.

Then we turn all branches into finite branches by ap-
plying the Link Introduction Lemma in such a way that
links point from a node in the ‘lower part’ to one in the
‘upper part’. We can always find a node far enough down
the tree so that the lemma becomes applicable (i.e. that
we keep all the required witnesses).

Finally, we use again the Branch Pruning Lemma, this
time to reduce the ‘lower part’ to a maximal height of 2.
Observe that, as we restrict pruning to the ‘lower part’
alone, no ‘link-heads’ will be cut off.

Decidability. Decidability is a direct consequence of
the bounded fmp: a naive decision procedure could simply
enumerate all potential models up to the known maximal
size and check each one of them. Hence, we obtain the
following main result:

Theorem 2 (Decidability) The satisfiability problem
for the modal logic of discretely ordered trees is decidable.

4 Conclusion

We conclude with a brief outlook on possible directions
for future research in this area.

Complexity analysis. A bounded fmp provides a first
step towards a complexity analysis of the logic under in-
vestigation. However, given that our bounds are exponen-
tial in both dimensions of a tree, at this stage, we can only
establish a NEXPTIME upper bound and it is not clear
if (and how) this could be improved upon.

Extensions. A number of interesting extensions to our
logic, both to the language and to the underlying seman-
tics, are possible. One such extension would be to investi-
gate the addition of the temporal operators since and until
(certainly to the horizontal dimension, but possibly also
along branches). On the semantical level, an interesting
extension would be to drop the condition of discreteness
for the order declared over sibling nodes and to consider
dense orders or general linear orders.

References

[1] U. Endriss. A Modal Logic of Ordered Trees. Manu-
script, 2002.

[2] A. Pnueli. The Temporal Logic of Programs. In Pro-
ceedings of the 18th Annual Symposium on Founda-
tions of Computer Science, pages 46-57. IEEE, 1977.

[3] A. P. Sistla and E. M. Clarke. The Complexity of

Propositional Linear Temporal Logics. Journal of the
ACM, 32(3):733-749, 1985.

