
Abductive Logic Programming with CIFF:
Implementation and Applications

U. Endriss1, P. Mancarella2, F. Sadri1, G. Terrreni2, and F. Toni1,2

1 Department of Computing, Imperial College London
Email: {ue,fs,ft}@doc.ic.ac.uk

2 Dipartimento di Informatica, Università di Pisa
Email: {paolo,terreni,toni}@di.unipi.it

Abstract. We describe a system implementing a novel extension of
Fung and Kowalski’s IFF abductive proof procedure which we call CIFF,
and its application to realise intelligent agents that can construct (partial
or complete) plans and react to changes in the environment. CIFF ex-
tends the original IFF procedure in two ways: by dealing with constraint
predicates and by dealing with non-allowed abductive logic programs.

1 Introduction

Abduction has long been recognised as a powerful mechanism for hypothetical
reasoning in the presence of incomplete knowledge [9, 13]. In this paper, we dis-
cuss the implementation and applications of a novel abductive proof procedure,
which we call CIFF. This procedure extends the IFF proof procedure of Fung
and Kowalski [10] and is described in detail in [8].

A number of abductive proof procedures have been proposed in the litera-
ture [12]. Kakas and Mancarella [13] extended the (first ever) abductive proof
procedure of Eshghi and Kowalski [9] for normal logic programming to Abductive
Logic Programming (ALP). This has been augmented to deal with constraint
predicates in [15] and with integrity constraints that behave like condition-action
rules in [22], and has been reformulated to improve its complexity in [21]. All
these procedures are proved correct wrt. the (partial) stable model semantics.
Another “family” of abductive proof procedures extend that of Console et al. [5]
and are proved correct wrt. the completion semantics [4, 20]: these are the IFF
procedure [10], and its extensions to deal with constraint predicates, treated
as abducibles [19], and integrity constraints which behave like condition-action
rules [24]; and the SLDNFA procedure [6], and its extensions to deal with con-
straint predicates [7]. Some of these procedures have been implemented and
experimented with in a number of applications, e.g. [15]. Moreover, recently a
system combining features of ACLP [15] and SLDNFA [6], and using heuristic
search to improve efficiency, has been proposed in the form of the A-system [17].

Our interest in combinations of ALP and constraint reasoning stems from our
work on using computational logic-based techniques in the area of multiagent
systems and global computing (for instance, to implement an agent’s planning

capability) [14, 27]. We have found, however, that our requirements for these
applications go beyond available state-of-the-art ALP proof procedures. This
consideration has led us to devise the CIFF proof procedure [8]. The novelty
of CIFF is twofold: (1) it dynamically deals with non-allowed programs (i.e.
programs with problematic quantification patterns that cannot be handled by
the original IFF procedure), thus having wider applicability; and (2) it extends
IFF by integrating the procedure with a “black box” constraint solver (rather
than treating constraint predicates as abducibles as in [19]). Moreover, CIFF
inherits from the original IFF procedure its forward reasoning as well as its
syntax of integrity constraints (which is more general than that of most other
procedures) and its flexible handling of variables, all of which have been listed as
advantages of IFF over other proof procedures. In the present paper, we describe
the first implementation of CIFF and illustrate one of its potential applications,
namely planning, in some detail. Differently from conventional practice in logic
programming, we consider partial (rather than complete) planning as well as
plan repair (via reactivity) in a dynamic environment. We have used CIFF in the
PROSOCS system [27], a computational logic-based platform for programming
intelligent agents, to build the planning and reactivity components of an agent.

The remainder of this paper is structured as follows. Section 2 provides a
brief introduction to ALP and reviews the definition of the CIFF proof proce-
dure. This theoretical presentation is complemented by Section 3, where we show
how we have implemented the procedure in Prolog. The application of CIFF to
planning is discussed in Section 4. Section 5 concludes.

2 Abductive Logic Programming with CIFF

In this section, we briefly review the framework of Abductive Logic Programming
(ALP) for knowledge representation and reasoning [12], as well as the CIFF proof
procedure for ALP [8]. ALP can be usefully extended with the handling of con-
straint predicates in the same way as Constraint Logic Programming (CLP) [11]
extends logic programming (see e.g. [15, 19]). Throughout this paper, we assume
that our language includes a number of constraint predicates.

2.1 Abductive Logic Programming with Constraints

An abductive logic program is a triple 〈P, I, A〉, where P is a normal logic program
(with constraints), I is a finite set of sentences in the language of P (called
integrity constraints), and A is a set of abducible predicates in the language of
P , not occurring in the head of any clause of P [12]. A query Q is a conjunction
of literals. Any variables occurring in Q are implicitly existentially quantified.
These variables are also called the free variables.

Broadly speaking, given a program 〈P, I, A〉 with constraint predicates and a
query Q, the purpose of abduction is to find a (possibly minimal) set of abducible
atoms (namely atoms whose predicate is abducible) ∆ which, together with P
and the constraint structure over which the constraint predicates are defined [11],

“entail” (an appropriate ground instantiation of) Q, with respect to a suitable
notion of “entailment”, in such a way that the extension of P with this set
“satisfies” I (see [12] for possible notions of integrity constraint satisfaction).
The appropriate notion of “entailment” depends on the semantics associated
with the logic program P (again, there are several possible choices for such a
semantics [12]). In the remainder of this paper we will adopt the completion
semantics [4, 20] for logic programming, and extend it à la CLP to take the
constraint structure into account. We represent entailment under such semantics
as |=<. An abductive answer to a query Q for a program 〈P, I, A〉, containing
constraint predicates defined over a structure <, is a pair 〈∆, σ〉, where ∆ is a
set of ground abducible atoms and σ is a substitution for the free variables in Q
such that P ∪∆σ |=< I ∧Qσ.

2.2 The CIFF Proof Procedure

We now give a brief description of the CIFF procedure [8]. Like Fung and Kowal-
ski [10], we require the theory given as input to be represented in “iff-form” [4,
10], which we can obtain by selectively completing P with respect to all predi-
cates except special predicates (true, false, constraint and abducible predicates).
That is, an alternative representation of an abductive logic program would be a
pair 〈Th, I 〉, where Th is a set of (homogenised) iff-definitions:

p(X1, . . . , Xk)⇔ D1 ∨ · · · ∨Dn

Here, p must not be a special predicate and there can be at most one iff-definition
for every predicate symbol. Each of the disjuncts Di is a conjunction of literals.
The variables X1, . . . , Xk are implicitly universally quantified with the scope be-
ing the entire definition. Any other variable is implicitly existentially quantified,
with the scope being the disjunct in which it occurs.

In this paper, the set of integrity constraints I are implications of the form:

L1 ∧ · · · ∧ Lm ⇒ A1 ∨ · · · ∨An

Each of the Li must be a literal; each of the Ai must be an atom. Any variables
are implicitly universally quantified with the scope being the entire implication.

In CIFF, the search for abductive answers of queries over a proof tree is
initialised with the root of the tree consisting of the integrity constraints in the
program and the literals of the query. The procedure then repeatedly manipu-
lates the current node by applying equivalence-preserving proof rules to it. The
nodes are sets of formulas (the so-called goals) which may be atoms, implica-
tions, or disjunctions of literals. The implications are either integrity constraints,
their residues, or obtained by rewriting negative literals (e.g. not p is rewritten as
p⇒ false.) The proof rules modify nodes by rewriting goals in them, adding new
goals to them, or deleting superfluous goals from them. The set of iff-definitions
is kept in the background and is only used to unfold defined predicates.

Fung and Kowalski [10] require inputs to their proof procedure to meet
a number of allowedness conditions (essentially avoiding certain problematic

patterns of quantification) to be able to guarantee its correct operation. These
conditions are overly restrictive; IFF could produce correct answers also for
some non-allowed inputs. Unfortunately, it is difficult to formulate appropriate
allowedness conditions that guarantee a correct execution of the proof proce-
dure without imposing too many unnecessary restrictions. Our proposal, put
forward in [8], is to tackle the issue of allowedness dynamically, i.e. at runtime,
rather than adopting a static and overly strict set of conditions. To this end,
CIFF includes a dynamic allowedness rule amongst its proof rules, which gets
triggered once the procedure encounters, in the current node, formulas it cannot
manipulate correctly due to a problematic quantification pattern. When this
happens, the node is labelled as undefined and will not be selected again. In
addition to the dynamic allowedness rule, the main proof rules of CIFF are:

– Unfolding: Replace any atomic goal p(~t), for which there is a definition
p(~X) ⇔ D1 ∨ · · · ∨ Dn in Th, by (D1 ∨ · · · ∨ Dn)[~X/~t]. There is a simi-
lar rule for defined predicates inside implications.

– Splitting: Rewrite any node with a disjunctive goal as a disjunction of nodes.
– Propagation: Given goals of the form p(~t) ∧ A ⇒ B and p(~s), add the goal

(~t = ~s) ∧A⇒ B.
– Case analysis for constraints: Replace any goal of the form Con ∧ A ⇒ B,

where Con is a constraint not containing any universally quantified variables,
by [Con∧(A⇒ B)]∨Con. There is a similar case analysis rule for equalities.

– Constraint solving: Replace any node containing an unsatisfiable set of con-
straints (as atoms) by false.

In addition, there are logical simplification rules, rules for rewriting equalities
and making substitutions, and rules that reflect the interplay between constraint
predicates and the usual equality predicate. For full details we refer to [8].

In a proof tree for a query, a node containing false is called a failure node.
If all leaf nodes are failure nodes, then the search is said to fail. A node to
which no more proof rules can be applied is called a final node. A final node that
is not a failure node and which has not been labelled as undefined is called a
success node. If a success node exists, then the search is said to succeed. CIFF
has been proved sound in [8]: it is possible to extract an abductive answer from
any success node (soundness of success); and if the search fails then there exists
no such answer (soundness of failure).

3 Implementation of the Proof Procedure

We have implemented the CIFF procedure in Sicstus Prolog [28].3 Most of the
code could very easily be ported to any other Prolog system conforming to
standard Edinburgh syntax. A minor exception is the module concerned with
constraint solving as it relies on Sicstus’ built-in constraint logic programming
solver over finite domains (CLPFD) [3]. However, the modularity of our imple-
mentation would make it relatively easy to integrate a different constraint solver
3 The system is available at http://www.doc.ic.ac.uk/∼ue/ciff/

lamp(X) iff [[X=a]].

battery(X,Y) iff [[X=b, Y=c]].

faulty(X) iff [[lamp(X), broken(X)], [power_failure(X), not(backup(X))]].

backup(X) iff [[battery(X,Y), not(empty(Y))]].

Table 1. The abductive logic program for the faulty-lamp example of [10]

into the system instead. The only changes required would be an appropriate
re-implementation of a handful of simple predicates providing a wrapper around
the constraint solver chosen for the current implementation.

This section discusses various aspects of our implementation of the CIFF
procedure and explains how to use the system in practice.

3.1 Representation of Abductive Logic Programs

The CIFF procedure is defined over (selectively) completed logic programs, i.e.
sets of definitions in iff-form rather than rules (in if-form) and facts. As these
definitions can become rather long and difficult to read, our implementation
includes a simple module that translates logic programs into completed logic
programs which are then used as input to the CIFF procedure. Being able to
complete logic programs on the fly also allows us to spread the definition of a
particular predicate over different knowledge bases.

The syntax chosen to represent facts and rules of a logic program is that of
Prolog, except that negative literals are represented as Prolog terms of the form
not(A). In addition, we also allow for (arithmetic) constraints as subgoals in the
condition of a rule. For the current implementation, admissible constraints are
terms such as T1 #< T2 + 5. The available constraint predicates are #=, #\=, #<,
#=<, #>, and #>=, each of which takes two arguments that may be any arithmetic
expressions over variables and integers (using operators such as addition, sub-
traction, and multiplication, or any other arithmetic operation that the CLPFD
module of Sicstus Prolog can handle [3]). Note that for equalities over terms
that are not arithmetic terms, the usual equality predicate = should be used
(e.g. X = bob). Iff-definitions are terms of the form A iff B, where A is an atom
and B is a list of lists of literals (representing a disjunction of conjunctions).
Integrity constraints are expressions of the form A implies B, where A is a list
of literals (representing a conjunction) and B is a list of atoms (representing a
disjunction). Table 1 shows an example using our syntax.

3.2 Running the Program

The main predicate of our implementation is called ciff/4:

ciff(+Defs, +ICs, +Query, -Answer).

The first argument is a list of iff-definitions, the second is a list of integrity
constraints, and the third is the list of literals in the query. The Answer consists
of three parts: a list of abducible atoms, a list of restrictions on the answer

substitution, and a list of constraints (the latter two can be used to construct
an answer substitution according to the semantics of ALP).

Alternatively, the first two arguments of ciff/4 may be replaced with the
name of a file containing an abductive logic program. An example for such a file
is given in Table 1. This is the faulty-lamp example discussed, amongst others,
by Fung and Kowalski [10]. The syntax is almost self-explanatory (recall that a
list of lists represents a disjunction of conjunctions). This program happens to
consist only of iff-definitions (there are no integrity constraints). Assuming that
the program is stored in a file called lamp.alp, we may run the following query:

?- ciff(’lamp.alp’, [faulty(X)], Answer).

Answer = [broken(a)]:[X/a]:[] ? ;

Answer = [empty(c),power_failure(b)]:[X/b]:[] ? ;

Answer = [power_failure(X)]:[not(X/b)]:[] ? ; No

Here the user has enforced backtracking, so all three answer are being reported
by the system. Note that the third (empty) list in each of the answers would be
used to store the associated constraints (of which there are none in this example).
For details on how to interpret the above answers, we refer to [10].

3.3 Implementation of the Proof Rules

We are now going to turn our attention to the actual implementation of the proof
procedure and explain some of the design decisions taken during its development.
Our implementation of CIFF has been inspired by work in the Automated Rea-
soning community on so-called lean theorem provers [1]. Our proof procedure
manipulates a list of formulas rather than submitting these formulas themselves
to the Prolog interpreter. One advantage of this approach is, for instance, that
we can report variable substitutions at the meta-level rather than having Prolog
making the actual instantiations (which would be problematic as CIFF computes
only restrictions on the answer substitution, rather than an actual substitution).

The proof rules are repeatedly applied to the current node. Whenever a
disjunction is encountered, it is split into a set of successor nodes (one for each
disjunct). The procedure then picks one of these successor nodes to continue
the proof search and backtracking over this choicepoint results in all possible
successor nodes being explored. In theory, the choice of which successor node to
explore next is taken nondeterministically; in practice we simply move through
nodes from left to right. The procedure terminates when no more proof rules
apply (to the current node) and finishes by extracting an answer from this node.
Enforced backtracking will result in the next branch (if any) of the proof tree
being explored, i.e. in any remaining abductive answers being enumerated. The
Prolog predicate implementing the proof rules has the following form:

sat(+Node, +EV, +CL, +LM, +Defs, +FreeVars, -Answer).

Node is a list of goals, representing a conjunction. EV is used to keep track of
existentially quantified variables in the node. This set is relevant to assess the
applicability of some of the proof rules. CL (for constraint list) is used to store the

constraints that have been accumulated so far. The next argument, LM (for loop
management), is a list of expressions of the form A:B recording pairs of formulas
that have already been used with particular proof rules, thereby allowing us to
avoid loops that would result if these rules were applied over and over to the
same arguments (this is necessary, for instance, for the propagation rule). This
information can also be exploited to improve efficiency by identifying redundant
proof steps. Defs is the list of iff-definitions in the theory. FreeVars is used to
store the list of free variables. Finally, running sat/7 will result in the variable
Answer to be instantiated with a representation of the abductive answer found
by the procedure.

Each proof rule corresponds to a Prolog clause in the implementation of
sat/7. For example, the unfolding rule for atoms is implemented as follows:

sat(Node, EV, CL, LM, Defs, FreeVars, Answer) :-

member(A, Node), is_atom(A), get_def(A, Defs, Ds),

delete(Node, A, Node1), NewNode = [Ds|Node1], !,

sat(NewNode, EV, CL, LM, Defs, FreeVars, Answer).

The auxiliary predicate is atom/1 will succeed whenever the argument rep-
resents an atomic goal. Furthermore, get def(A,Defs,Ds), with the first two
arguments being instantiated at the time of calling the predicate, will instanti-
ate Ds with the list of lists representing the disjunction that defines the atom A
according to the iff-definitions in Defs whenever there is such a definition (i.e.
the predicate will fail for abducibles). Once get def(A,Defs,Ds) succeeds we
definitely know that the unfolding rule is applicable: there exists an atomic con-
junct A in the current Node and it is not abducible. The cut in the penultimate
line is required, because we do not want to allow any backtracking over the order
in which rules are being applied. After we are certain that this rule should be
applied we manipulate the current Node and generate its successor NewNode. We
first delete the atom A and then replace it with the disjunction Ds. The predicate
sat/7 then recursively calls itself with the new node.

3.4 Testing

The Prolog clauses in the implementation of sat/7 may be reordered almost
arbitrarily (the only requirement is that the clause used to implement answer
extraction is listed last). Each order of clauses corresponds to a different proof
strategy, as it implicitly assigns different priorities to the different proof rules.
This feature of our implementation allows for an experimental study of which
strategies yield the fastest derivations. We hope to be able to exploit this feature
of the implementation in our future work to study possible optimisation tech-
niques. The order in which proof rules are applied in the current implementation
follows some simple heuristics. For instance, logical simplification rules as well
as rules to rewrite equality atoms are always applied first. Splitting, on the other
hand, is one of the last rules to be applied.

The implementation of the CIFF proof procedure has been tested successfully
on a number of examples. Most of these examples are taken from applications

holds(F, T2) ← happens(A, T1), initiates(A, T1, F), not clipped(T1, F, T2), T1 <T2

holds(F, T) ← initially(F), not clipped(0, F, T), 0 < T
holds(¬F, T2)← happens(A, T1), terminates(A, T1, F), not declipped(T1, F, T2), T1 <T2

holds(¬F, T) ← initially(¬F), not declipped(0, F, T), 0 < T

clipped(T1, F, T2) ← happens(A, T), terminates(A, T, F), T1≤T <T2

declipped(T1, F, T2)← happens(A, T), initiates(A, T, F), T1≤T <T2

happens(A, T)← assume happens(A, T)

Table 2. Domain-independent rules in Pplan

holds(F, T), holds(¬F, T) ⇒ false
assume happens(A, T), precondition(A, P) ⇒ holds(P, T)
assume happens(A, T2), not executed(A, T2), time now(T1) ⇒ T1 <T2

Table 3. Domain-independent integrity constraints in Iplan (for complete planning)

of CIFF within the SOCS project, which investigates the application of compu-
tational logic-based techniques to multiagent systems (e.g. the implementation
of an agent’s planning and a reactivity capabilities). While these are encourag-
ing results, it should also be noted that this is only a first prototype and more
research into proof strategies for CIFF as well as a fine-tuning of the implemen-
tation are required to achieve satisfactory runtimes for larger examples.

4 An Application to Abductive Planning

In this section, as an example application of the CIFF system, we consider how
it can be used for planning. For this purpose we propose an abductive version
of the event calculus. The event calculus is a formalism for reasoning about
events (or actions) and change formulated by Kowalski and Sergot [18]. Since
its publication a number of abductive variants of it have been proposed in the
planning and abduction literature [23, 25, 26]. Our formulation is a novel variant,
in part inspired by the E-language [16], to allow situated, resource-bounded
agents to generate partial plans in a dynamic environment, possibly inhabited
by other agents. Partial planning is useful for two reasons. Firstly, it allows the
agents to interleave planning, sensing and acting. Secondly, it prevents agents
from spending time and effort constructing complete plans that may become
unnecessary or unfeasible when they get round to executing them.

4.1 An Abductive Formulation of the Event Calculus

We model a planning problem within the framework of the event calculus
(EC) in terms of a (non-allowed) abductive logic program with constraints
KBplan = 〈Pplan, Iplan, Aplan〉. In a nutshell, the EC allows us to write meta-
logic programs which “talk” about object-level concepts of fluents, actions, and
time points. The main meta-predicates of the formalism are: holds(F, T) (fluent

F holds at time T), clipped(T1, F, T2) (fluent F is clipped —from holding to not
holding— between times T1 and T2), declipped(T1, F, T2) (fluent F is declipped
—from not holding to holding— between times T1 and T2), initially(F) (fluent
F holds from the initial time, say time 0), happens(A, T) (action A occurs at
time T), initiates(A, T, F) (fluent F starts to hold after action A at time T) and
terminates(A, T, F) (fluent F ceases to hold after action A at time T). Roughly
speaking, in a planning setting the last two predicates represent the cause-and-
effects links between actions and fluents in the modelled world. We will also use
a meta-predicate precondition(A,F) (the fluent F is one of the preconditions for
the executability of action A). In our KBplan, we allow fluents to be positive
(F) or negative (¬F). Our formulation of the EC also contains the predicates
observed/2, executed/2, time now/2, assume holds/2, and assume happens/2,
which will be described shortly.

We now define KBplan. To this end we first show the KBplan that would
be used for complete planning (but by situated agents, interacting with their
environment) and then show how it can be modified to allow for partial plan-
ning. Pplan consists of three parts: domain-independent rules, domain-dependent
rules, and a narrative part. Iplan consists of domain-independent integrity con-
straints and possibly domain-dependent integrity constraints. The basic rules
and integrity constraints for the domain-independent part, adapted from the
original EC, are shown in Tables 2 and 3. The only abducible predicate here is
assume happens. The reason why we do not use the happens predicate as an ab-
ducible and instead define it in terms of assume happens will become clear when
we describe the (domain-independent) bridging rules given in Table 4. The first
of the integrity constraints given in Table 3 states that a fluent and its negation
cannot hold at the same time, while the second one expresses that when assum-
ing (planning) that some action will happen, we need to enforce that each of its
preconditions hold. The third constraint ensures that the actions in the resulting
plan that have not been executed yet are scheduled for the future.

The domain-dependent rules define the predicates initiates, terminates, and
precondition (as well as any other predicates required by the modelling of the
concrete domain). An example is given in Table 6 (see also Section 4.3). The
first two rules state that catching a train or driving to a destination X initiates
being at X. The two initially-facts state that initially A has petrol but does not
have any anti-freeze. The last integrity constraint has the flavour of a reactive
rule and it states that if you are planning to drive somewhere and you have
observed shortly before that it is snowing then you must make sure that you
have anti-freeze. The other rules and constraints are self-explanatory.

The narrative part of Pplan defines the predicates initially, observed and
executed. For instance, initially(at(bob, (1, 1))) expresses that agent bob is initially
at location (1, 1); executed(go(bob, (1, 1), (2, 2), 3), 5) says that bob went from
location (1, 1) to location (2, 2) at time 3, and this has been observed at time 5
by the agent who contains it in its Pplan; and observed(at(jane, (2, 2)), 5) states
that jane is observed to be at location (2, 2) at time 5. The narrative part is not
only domain-dependent, but it also refers to a particular “running scenario”, in

holds(F, T2) ← observed(F, T1), not clipped(T1, F, T2), T1≤T2

holds(¬F, T2) ← observed(¬F, T1), not declipped(T1, F, T2), T1≤T2

clipped(T1, F, T2) ← observed(¬F, T), T1≤T <T2

declipped(T1, F, T2) ← observed(F, T), T1≤T <T2

happens(A, T) ← observed(A, T)
happens(A, T) ← executed(A, T)

Table 4. Domain-independent bridging rules in Pplan

holds(F, T), assume holds(¬F, T) ⇒ false
assume holds(F, T), holds(¬F, T) ⇒ false
assume happens(A, T), precondition(A, P) ⇒ assume holds(P, T)

Table 5. Domain-independent integrity constraints in Iplan (for partial planning)

some concrete circumstances. Typically, executed facts within the narrative part
of KBplan of an agent refer to actions executed by the agent, whereas observed
facts refer to properties of the environment, via facts of the form observed(L, T)
(the fluent literal L has been observed to hold at time T) as well as actions
executed by other agents, via facts of the form observed(A, T) (the action A has
been observed to have happened at time T). The parameters of A can contain
the identification of the agent who has executed the action. To accommodate
observations, we add the bridging rules shown in Table 4 to Pplan. Note that the
narrative part of Pplan changes over the life time of the agent (whereas the other
parts of the knowledge base remain fixed).

Planning is done by reasoning with Pplan and Iplan to generate appropriate
instances of the abducible predicate assume happens, the successful execution
of whose actions would establish the planning goal. Note that we need such a
predicate (and happens cannot be used directly), because abducible predicates
cannot be defined in the theory.

Now we show how KBplan can be modified to facilitate partial planning.
A partial plan contains subgoals as well as actions. Such subgoals are modelled
using an additional abducible predicate assume holds. Table 5 lists the additional
integrity constraints in KBplan pertaining, specifically, to partial planning. The
purpose of the first two of the additional integrity constraints is to make sure
that no fluent is assumed to hold at a time when the contrary of the fluent holds.
The final constraint replaces the second constraint in Table 3.

This formulation allows the agent to plan for its goals by generating actions
and subgoals that correspond to the preconditions of the actions, all of which are
consistent with one another and with the observations that have been made. (An
alternative formulation for partial planning can add the integrity constraints of
Table 5 without modifying those in Table 3, but instead adding the following rule
to Pplan: holds(F, T) ← assume holds(F, T). This would allow a more “liberal”
way of partial planning, but for computational reasons we have chosen the first
approach in the implementation.)

To summarise, our abductive formulation of the EC for partial planning
consists of KBplan = 〈Pplan, Iplan, Aplan〉, where

– Pplan consists of the rules in tables 2 and 4 and any domain-dependent rules,
– Iplan consists of the integrity constraints in Table 5 and the first and last

constraints in Table 3 and any domain-dependent integrity constraints, and
– Aplan consists of the predicates assume happens and assume holds.

Intuitively, our proposal adds to more conventional abductive EC theories for
planning the possibility to interact with the environment, by observing that
properties hold and that other agents have executed actions. These additions
pave the way to the situatedness of the agent in the environment, when plan-
ning is performed within a “sense-plan-act” cycle. Indeed, observed(L, T) and
observed(A, T) facts (where A is an action executed by some other agent) are
added to the narrative part of KBplan as the result of a sensing operation of the
agent, whereas executed(A, T) facts (where A is an action executed by the agent)
are added as the result of the execution of a planned action in the environment.
Each step in the cycle takes place at some concrete time, used to time-stamp
the facts recorded in the narrative part of KBplan.

4.2 Goals and Partial Plans in CIFF

Here we describe in more detail how goals and partial plans of an agent are
specified within the framework of the EC. A goal is a conjunction of the form
holds(L, T) ∧ TC, where TC is a set of constraints on T , referred to as the
temporal constraints of the goal. A (partial) plan for a given goal consists of

– a (possibly empty) set of atoms of the form assume happens(A, T) ∧ TC,
where TC is a set of constraints on T , referred to as the Actions in the plan;

– a (possibly empty) set of atoms of the form assume holds(L, T)∧TC, where
TC is a set of constraints on T , referred to as the SubGoals in the plan.

A partial plan for a set of goals is a set of partial plans, one for each individual
goal. Goals, actions, subgoals and temporal constraints will be typically non-
ground, and the variables occurring in them are implicitly existentially quantified
over the set of (partial) plans and goals.

Given a set of goals, GS, where each goal is of the form holds(L, T) ∧ TC,
a (possibly empty) set of subgoals SubGoals, a (possibly empty) set of actions
Actions (representing already existing partial plans that we are trying to ex-
pand), and a (possibly empty) set of temporal constraints, to compute a partial
plan for GS at a time τ , CIFF uses the program 〈Th, I 〉, where Th is a set of
iff-definitions formed by the selective completion of Pplan, given Aplan, and I is
the set of all integrity constraints in Iplan.

To choose a query for CIFF, we first have to select the goals to be planned for
in the next round of planning. Let gs(Goals, Time) be a goal selection function
that takes as input a set of goals Goals of the form holds(L, T)∧TC and a time
of evaluation Time, and returns as output a subset of Goals. We do not give a
definition for such a selection function here. A number of different definitions

initiates(catch train to(X), T, at(X))
initiates(drive to(X), T, at(X))
initiates(fill up(X), T, have(X)) ← X = petrol
initiates(fill up(X), T, have(X)) ← X = anti freeze

initially(¬have(anti freeze))
initially(have(petrol))

precondition(drive to(X), have(petrol))

assume happens(catch train to(X), T), holds(train strike, T) ⇒ false
assume happens(drive to(X), T1), observed(snowing, T2), T1−5≤T2≤T1 ⇒

assume holds(have(anti freeze, T1))

Table 6. Domain-dependent rules in KBplan for the airport example

are possible, for example gs can select those goals that are deemed “urgent”
according to some measure of urgency (e.g. how close their times are to Time).
Let GS′ = GS ∪ {holds(L, T) ∧ TC | assume holds(L, T) ∧ TC ∈ SubGoals}.
Let gs(GS′, τ) = SelectedGoals. CIFF is then invoked with a query including:

(1) all selected goals: the conjunction of all atoms holds(L, T) ∧ TC, for all the
goals in SelectedGoals;

(2) all non-selected (sub)goals: the conjunction of all assume holds(L′, T ′)∧TC
such that holds(L′, T ′) ∧ TC is in GS or assume holds(L′, T ′) ∧ TC is in
SubGoals, and holds(L′, T ′) ∧ TC is not in SelectedGoals;

(3) time now(τ);
(4) the conjunction of all atoms assume happens(A′, T ′) ∧ TC in Actions.

4.3 Example

To illustrate the application of CIFF to planning consider the following scenario.
Agent A has the goal of being at the airport before time 10. It knows of two
ways of getting there, by train and by car. It has already learned that there is a
train strike. So it plans to drive there. Then it makes two observations, one that
it is low on petrol, and, the other, that it is snowing. So it plans to get petrol to
accommodate the first observation, and knowing that it is short on anti-freeze
it reacts to the information about the snow by adding a goal of topping up its
anti-freeze (thus repairing its plan to fit in with its changed environment). So
through the cycle of observations and (partial) planning it finally constructs a
complete plan consisting of the three actions of filling up petrol, topping up anti-
freeze, and driving to the airport at appropriate times. The domain-dependent
and narrative parts of agent A’s KBplan are shown in Table 6.

Suppose we are now at time 4 and we have the goal of being at the airport
before time 10. The goal given to CIFF would be the following:

holds(at(airport), T), T < 10, time now(4)

CIFF will return the following partial plan (with 4 < T ′ < 10):

assume holds(have(petrol), T ′), assume happens(drive to(airport), T ′)

At this stage, now at time 5, suppose we make the two observations
observed(¬have(petrol), 5) and observed(snowing , 5). These are recorded in
agent A’s Pplan. For the next round of planning, at time 6, say, CIFF can be
called with the following set of goals:

holds(have(petrol), T ′), assume happens(drive to(airport), T ′),
4 < T ′, T ′ < 10, time now(6)

CIFF will then augment the existing partial plan by adding to it the following
new subgoals and actions (with the additional constraints 6 < T ′′ and T ′′ < T ′):

assume holds(have(anti freeze), T ′), assume happens(fill up(petrol), T ′′)

At time 7, say, if there are no further observations, CIFF will complete the plan
by adding the action fill up(anti freeze) with appropriate time constraints.

4.4 Implementation of the Planner

Given the computational model for planning put forward above and our imple-
mentation of the CIFF proof procedure described in Section 3, the implemen-
tation of a simple abductive planner has been straightforward. In essence, it
consists of only a single Prolog clause:

plan(Narration, Assumptions, Goals, TCs, Answer) :-

kbplan(PlanDefs, ICs),

close_pred(executed/2, Narration, ExecActions),

close_pred(observed/2, Narration, Observations),

close_pred(time_now/1, Narration, TimeNow),

Defs = [ExecActions,Observations,TimeNow|PlanDefs],

append(Goals, TCs, Goals1), append(Goals1, Assumptions, Query),

ciff(Defs, ICs, Query, Plan:Substitution:NewTCs),

delete_list(Plan, Assumptions, NewPlan),

Answer = NewPlan:Substitution:NewTCs.

Narration is a list of (ground) terms of the form executed(Action,T),
observed(Fluent,T), and observed(Action,T), representing the narrative
part of KBplan, as well as a single term of the form time now(N) to commu-
nicate the current time (N is an integer). Assumptions is a list of terms of
the form assume holds(Goal,T) and assume happens(Action,T) encoding the
goals and actions in the current partial plan. Goals, the goals to plan for, is a
list of terms of the form holds(Goal,T) and TCs is a list of temporal constraints
over variables occurring in the goals and actions given in the input. The variable
Answer will be instantiated with a representation of the chosen plan if there
exists one; otherwise the call to plan/5 will fail.

In the first subgoal of the implementation of plan/5, the kbplan/2 predicate
is used to retrieve the iff-definitions (PlanDefs) and the integrity constraints
(ICs) in the non-narrative parts of KBplan (we assume these have been asserted
earlier). The predicate close pred/3 is used to generated iff-definitions for the

predicates occurring in the Narration and these are appended to the list of
definitions to obtain Defs. Then the CIFF proof procedure is called with Defs
as the background theory, ICs as the integrity constraints, and the list of all other
relevant terms as the query. The first component of the answer consists of a list
of abducible predicates encoding the plan (using assume holds/2 for subgoals
and assume happens/2 for actions). To simplify the output, the assumptions
(goals and actions) already present in the input are then deleted from this list.
Furthermore, the answer may also include a list of restrictions on the answer
substitution (Substitution) and an updated list of constraints (NewTCs).

5 Conclusion

We have presented a Prolog implementation of the CIFF procedure that extends
the general purpose abductive proof procedure IFF by dealing with non-allowed
programs and by handling constraints. The implementation allows the use of
any abductive logic program and presents answers in the form of abducibles with
instantiations and restrictions of variables. We have also discussed an application
to planning where, by varying the input theory, we can construct complete or
partial plans in the presence or absence of narrative information.

The CIFF system has been used extensively in the PROSOCS framework [27]
to implement a planning component as well as for reactivity and temporal rea-
soning. Reactivity allows condition-action rule behaviour used in PROSOCS,
for example, for plan repair, for strategies for negotiation and communication
with other agents, and generally for reacting to changes in the environment. The
temporal reasoning capability is based on an extensive abductive logic program
based on the event calculus that deals with the revision of the agent’s knowl-
edge as a result of assimilating new information from its environment, including
other agents [2]. We have been able to use and test the CIFF system on a num-
ber of examples for all three applications without any modifications. While so
far, we have concentrated on providing an implementation of CIFF that cor-
rectly implements the semantics, that is easy to understand, and that supports
future extensions, in our future work we hope to also study possible optimisation
techniques for CIFF.

Acknowledgements. This work was supported by the European Commission FET
Global Computing Initiative, within the SOCS project (IST-2001-32530). We
thank all SOCS partners for useful feedback and in particular Marco Gavanelli
and Michela Milano for suggestions on implementing the constraint solver.

References

1. B. Beckert and J. Posegga. leanTAP: Lean, Tableau-based deduction. J. Auto-
mated Reasoning, 15(3):339–358, 1995.

2. A. Bracciali and A. C. Kakas. Frame consistency: Computing with causal expla-
nations. In Proc. NMR-2004, 2004. To appear.

3. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In Proc. PLILP-97, 1997.

4. K. L. Clark. Negation as failure. In Logic and Data Bases. Plenum Press, 1978.
5. L. Console, D. T. Dupré, and P. Torasso. On the relationship between abduction

and deduction. J. Log. Computat., 1(5):661–690, 1991.
6. M. Denecker and D. De Schreye. SLDNFA: An abductive procedure for abductive

logic programs. J. Log. Prog., 34(1):111–167, 1998.
7. M. Denecker and B. Van Nuffelen. Experiments for integration CLP and abduction.

In Proc. Workshop on Constraints, 1999.
8. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof

procedure: Definition and soundness results. Technical Report 2004/2, Department
of Computing, Imperial College London, 2004.

9. K. Eshghi and R. A. Kowalski. Abduction compared with negation by failure. In
G. Levi and M. Martelli, editors, Proc. ICLP-1989. MIT Press, 1989.

10. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. J. Log. Prog., 33(2):151–165, 1997.

11. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. Log. Prog.,
19-20:503–582, 1994.

12. A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic pro-
gramming. In Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 5, pages 235–324. Oxford University Press, 1998.

13. A. C. Kakas and P. Mancarella. Abductive logic programming. In Proc. Workshop
Logic Programming and Non-Monotonic Logic, 1990.

14. A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of
agency. In Proc. ECAI-2004, 2004. To appear.

15. A. C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive constraint logic
programming. J. Log. Prog., 44:129–177, 2000.

16. A. C. Kakas and R. Miller. A simple declarative language for describing narratives
with actions. J. Log. Prog., 31(1–3):157–200, 1997.

17. A. C. Kakas, B. Van Nuffelen, and M. Denecker. A-system: Problem solving
through abduction. In Proc. IJCAI-2001. Morgan Kaufmann, 2001.

18. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67–95, 1986.

19. R. A. Kowalski, F. Toni, and G. Wetzel. Executing suspended logic programs.
Fundamenta Informaticae, 34:203–224, 1998.

20. K. Kunen. Negation in logic programming. J. Log. Prog., 4:289–308, 1987.
21. F. Lin and J.-H. You. Abduction in logic programming: A new definition and an

abductive procedure based on rewriting. Artif. Intell., 140(1/2):175–205, 2002.
22. P. Mancarella and G. Terreni. An abductive proof procedure handling active rules.

In Proc. AI*IA-2003. Springer-Verlag, 2003.
23. L. Missiaen, M. Bruynooghe, and M. Denecker. CHICA, an abductive planning

system based on event calculus. J. Log. Computat., 5(5):579–602, 1995.
24. F. Sadri and F. Toni. Abduction with negation as failure for active and reactive

rules. In Proc. AI*IA-1999. Springer-Verlag, 2000.
25. M. P. Shanahan. Prediction is deduction but explanation is abduction. In Proc.

IJCAI-1989. Morgan Kaufmann, 1989.
26. M. P. Shanahan. Solving the Frame Problem. MIT Press, 1997.
27. K. Stathis, A. C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.

PROSOCS: A platform for programming software agents in computational logic.
In Proc. AT2AI-2004, 2004.

28. Swedish Institute of Computer Science. Sicstus Prolog User Manual, 2003.

