
Competent Agents and Customising Protocols

Ulle Endriss1, Wenjin Lu2, Nicolas Maudet3, and Kostas Stathis2

1 Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2AZ (UK)

Email: ue@doc.ic.ac.uk
2 Department of Computing, School of Informatics, City University

Northampton Square, London EC1V OHB (UK)
Email: {lu,stathis}@soi.city.ac.uk

3 LAMSADE, Université Paris-Dauphine
75775 Paris Cedex 16 (France)

Email: maudet@lamsade.dauphine.fr

Abstract. In open agent societies, communication protocols and strate-
gies cannot be assumed to always match perfectly, because they are typ-
ically specified by different designers. These potential discrepancies raise
a number of interesting issues, most notably the problem of checking that
the behaviour of an agent is (or will be) conformant to the rules described
by a protocol. In this paper, we argue that the ability to merely conform
to a protocol is not sufficient for an agent to be a competent user of
that protocol. We approach the intuitive idea of protocol competence by
introducing a notion that considers, broadly speaking, an agent’s ability
to reach a particular state of the interaction and we provide preliminary
results that allow us to automatically check competence in the context
of a specific class of logic-based agents. Finally, we illustrate how these
results can facilitate the customisation of protocols used by agents that
are not fully competent.

1 Introduction

Communication is one of the key feature of societies of artificial agents [11], and
standards are required to regulate the distributed decision-making involved in
interactions such as, for instance, negotiation or persuasion. A protocol specifies
the “rules of encounter” governing a dialogue between two or more communi-
cating agents [7]. It specifies which agent is allowed to say what in any given
situation. It will usually allow for several alternative utterances in every situa-
tion and the agent in question has to choose one according to its strategy. The
protocol is public, while each agent’s strategy is private. In open societies, proto-
cols and strategies cannot be assumed to match perfectly. Protocols are typically
specified by the designer of the application, whereas strategies are implemented
by the designer of the agent. The potential discrepancies caused by these differ-
ent points of view raise a number of interesting issues, most notably the problem
of checking that the behaviour of an agent is (or will be) conformant to the rules
described by a protocol [2]. In this paper, we argue that the ability to merely

conform to a protocol, however, is not sufficient for an agent to be a competent
user of that protocol.

Intuitively, we understand competence with respect to a protocol as the ca-
pacity of the agent “to deal adequately” with a protocol. Surely this may involve
different notions. To start with, it is clear that the agent must have the ability
to understand the meaning of the messages —to put it another way, the agent
must share the ontology used in the interaction. This means that the agent must
interpret the meaning of communicative acts (the performatives and their con-
tent) properly. Another requirement is that the agent should be able to give
meaningful answers within the time window specified by the protocol. Note that
the problem is not whether the agent can actually give a response (a point that
we shall discuss later on), but whether the answer (if given) is fully satisfactory
to the agent. On top of that, the agent should be available until the protocol
terminates and not leave the interaction before. In this paper, we will take for
granted that agents (i) share the same ontology, (ii) have sufficient reasoning
capabilities to deal with the different types of message exchanged, (iii) are avail-
able until the end of interaction. We are now in a position to give a first hint of
the notion we will investigate in this paper: competence amounts to evaluating
whether the agent can explore (i.e. reach the different states) of a given protocol.

The remainder of this paper is structured as follows: the next section de-
scribes the logic-based representation for protocols that we shall use throughout
this paper. Section 3 discusses what we regard as a first requirement for an agent
to be considered competent, namely that this agent should be able to give at least
one legal response to any message expected as part of the protocol (exhaustive
conformance). However, as we shall see, this is not a fully satisfactory notion of
competence. In Section 4 we go one step further and introduce the competence
of an agent as, generally speaking, its ability to reach a particular state of the
interaction. We provide preliminary results that allow us to automatically check
competence in the context of our logic-based agents. Section 5 introduces a no-
tion of practical importance: the customisation of protocols in order to adapt
them to agents that are not fully competent. We illustrate this idea by means of
a protocol inspired by electronic transactions. Section 6 concludes.

2 Protocols for logic-based agents

In this paper, we shall only consider protocols that can be represented by means
of a deterministic finite automaton (DFA). This is a widely used class of agent
interaction protocols (see [6] and others), but we should also point out that
certain types of interaction require more expressive formalisms (for instance,
where concurrent communication is required). We recall here that a DFA consists
of (i) a set of states (including an initial state, and a set of final states), (ii) a set
of events, and (iii) a transition function δ which maps pairs of states and events
to states. Given a DFA with transition function δ, a dialogue move P is a legal
continuation wrt. a state S iff there exists a state S′ such that S′ = δ(S, P). We
shall refer to legal inputs (respectively outputs) for an agent X as those legal

0HOINJMKL 1HOINJMKL
2@GAFBECDHOINJMKL

3@GAFBECDHOINJMKL
+3 A: request //

B: accept 33hhhhhhhhhhh

B: refuse ++VVVVVVVVVVV

Fig. 1. A simple negotiation protocol

continuations where X is the receiver (respectively the utterer) of the dialogue
move. Figure 1 is an (admittedly very simple) interaction protocol for negotiation
which specifies that, following a request made by agent A, agent B should in turn
either accept or refuse this request.

This protocol, as shown below, can be translated into two sets of if-then rules
corresponding to the two subprotocols used by agents A and B, respectively.

PA :

{
START(T) ⇒ request(T+1)
accept(T) ⇒ STOP(T+1)
refuse(T) ⇒ STOP(T+1)

PB :
{

request(T) ⇒ accept(T+1) ∨ refuse(T+1)

For each of the above implications, variables are understood to be implicitly
universally quantified. In case we also have variables that only appear on the
righthand side of an implication, these variables would be existentially quantified.
This logic-based representation of protocols has been introduced in [2].

Shallow protocols. We call protocols that permit such a straightforward trans-
lation into if-then rules, with only a single performative on the lefthand side,
shallow. Shallow protocols correspond to automata where it is possible to de-
termine the next state of the dialogue on the sole basis of the previous event.
Of course, this is not always the case since it may be necessary to refer to the
current state of the dialogue to determine the new state. In principle however,
any automata-based protocol can be transformed into a protocol that is shallow
in this sense (by simply renaming any duplicate transitions).

To ensure that protocols defined in such a way are well-formed, we stipulate
a list of constraints that rules should meet, in particular that any dialogue move
occurring on the righthand side of the first subprotocol (except STOP) also
occurs on the lefthand side of the second one, and vice versa (matching). We
refer to [2] for further details. The meaning of each rule which appears in a
protocol is then intuitively clear: it specifies for any expected dialogue move the
set of correct responses the agent may utter in reply. The set of performatives
appearing on the lefthand side of the constraints defining an agent’s subprotocol
are called the expected inputs for that agent.

Agents’ strategies. Following [8], the communication strategy S of an agent
(which forms part of its so-called knowledge base K) is represented as a set

of integrity constraints of the following form:

P (T) ∧ C ⇒ P ′(T+1)

On receiving dialogue move P at time T , an agent implementing this rule would
utter P ′ at time T+1, provided condition C is entailed by its (private) knowledge
base. Variables are understood to be implicitly quantified in the same way as for
our protocol-rules.

3 Competence as exhaustive conformance

In this section, we study the notion of (exhaustive) conformance, which could be
regarded as a first requirement for an agent to be considered competent. Intu-
itively, an agent is conformant to a given communication protocol P whenever
its utterances are legal according to that protocol. Following [2], we distinguish
two levels of conformance:

– An agent is weakly conformant to a protocol P iff it never utters an illegal
dialogue move (with respect to P).

– An agent is exhaustively conformant to a protocol P iff it does utter a legal
dialogue move whenever required to do so by P.

That is, an agent is exhaustively conformant to the protocol P iff (i) it is weakly
conformant to P and (ii) it will utter at least some dialogue move whenever it
is its turn (the legality of which will be ensured by the first condition). This
ability to give a response to any expected input may be considered as a first
requirement for an agent’s competence to use a given protocol. Note that [2]
also introduces a third level (robust conformance), which requires agents not
only to be exhaustively conformant, but also to react appropriately to illegal
moves uttered by other agents. In this paper, however, we are only concerned
with weak and exhaustive conformance.

In general, checking a priori (that is, at design time) whether an agent will
always behave in conformance to a given set of protocols is difficult, if not impos-
sible. Still, as shown in [2], it is possible to guarantee at least weak conformance
to a shallow protocol for the type of agent described in the previous section. To
this end, we define the response space S∗ of an agent with the communication
strategy S based on the language L as follows:

{P (T)⇒
∨
{P ′(T+1) | [P (T) ∧ C ⇒ P ′(T+1)] ∈ S} |P ∈ L} with

∨
{} = ⊥

This is the set of protocol constraints we obtain by first dropping all conditions
referring to the private knowledge of the agent in question and then conjoining
implications with identical antecedents by collecting the corresponding conse-
quents into a single disjunction. This abstraction from an agent’s communicative
behaviour is related to the idea of an agent automaton proposed by Singh [9]. It
allows us to state a simple sufficiency criterion for weak conformance:

An agent is weakly conformant to a protocol P whenever that protocol is
a logical consequence of the agent’s response space.

This result shows that, in the case of weak conformance, it is possible to check
conformance a priori by inspecting only a relatively small part of an agent’s
specification (namely, what we could call its “communication module”). In par-
ticular, we are not required to make any judgements based on the content of its
(probably dynamically changing) knowledge base in general.

In the case of exhaustive conformance, the situation is rather different. To
understand why, let us first take a closer look at what exhaustive conformance
involves, beyond the requirements shared with the notion of weak conformance.
As pointed out earlier, we can separate the property of exhaustive conformance
into two parts: (i) weak conformance and (ii) the property of uttering any move
at all. The latter property, which we shall simply refer to as exhaustiveness (of
an agent) may be considered independently from a particular protocol. Sadri et
al. [8], for instance, define the notion of exhaustiveness with respect to a given
communication language (as being able to utter a response for any incoming
move belonging to that language). Even for our agents, whose communicative
behaviour is determined by constraints of the form P (T) ∧ C ⇒ P ′(T+1), it
is not generally possible to guarantee exhaustiveness (be it with respect to a
given protocol, language, or in general). We cannot generally ensure that one
of these rules will indeed “fire” for an incoming move P (T), because none of
the additional conditions C may be entailed by the current state of the agent’s
knowledge base.

One way of ensuring exhaustive conformance would be to rely on logical
truths that are independent from the (possibly dynamic) knowledge base of the
agent. For a strategy S, let CONDS(P) denote the disjunction of all the private
conditions that appear in S in a constraint together with the trigger P (T):

CONDS(P) =
∨
{C | [P (T) ∧ C ⇒ P ′(T+1)] ∈ S} with

∨
{ } = ⊥

Now, if CONDS(P) is a logical theorem for every performative P appearing on
the lefthand side of the relevant subprotocol of a protocol P, then any agent
implementing the strategy S is guaranteed to utter some move for any input
expected in P. Hence, we obtain a useful sufficient criterion for exhaustive con-
formance (again, with respect to our shallow protocols):

An agent with strategy S is exhaustively conformant to a protocol P
whenever it is weakly conformant to P and CONDS(P) is a theorem for
every expected input P (for that agent, with respect to P).

Of course, generally speaking, checking this condition is an undecidable problem
because verifying theoremhood in first-order logic is. In practice, however, we
would not expect this to be an issue given the simplicity of typical cases. As
an example, consider a protocol consisting of only the following rule stipulating
that any request by another agent X should be either accepted or refused:

request(X,T)⇒ accept(T+1) ∨ refuse(T+1)

An agent may implement the following simple strategy:

request(X,T) ∧ friend(X) ⇒ accept(T+1)
request(X,T) ∧ ¬friend(X)⇒ refuse(T+1)

The disjunction ¬friend(X) ∨ friend(X), with X being implicitly universally
quantified, is a theorem. Hence, our agent would be exhaustively conformant
(note that the agent is certainly going to be weakly conformant, because the
protocol is a consequence of its response space —in fact, the two are even iden-
tical here). A similar idea is also present in [8], although not in the context of
issues pertaining to protocol conformance.

Fulfilling the above criterion is not an unreasonable requirement for a well-
designed communication strategy S that is intended to be used for interactions
governed by a given protocol P. This is why, in the remainder of this paper, we
are sometimes going to assume that our agents are known to be exhaustively
conformant (despite the fact that, in a more general setting, such an assumption
would not be justified).

We continue our discussion of exhaustiveness by observing that, in cases
where we can identify a static part of an agent’s knowledge base (beyond the
set of constraints making up its communication strategy), we can give an even
more general sufficiency criterion that guarantees exhaustive conformance:

An agent with strategy S is exhaustively conformant to a protocol P
whenever it is weakly conformant to P and CONDS(P) is a logical con-
sequence of the agent’s knowledge base for every expected input P .

To illustrate the idea, we slightly change our example from before an replace the
agent’s second communication rule with the following constraint:

request(X,T) ∧ enemy(X)⇒ refuse(T+1)

That is, our agent will refuse any request by X if it considers X to be an enemy.
Now our first criterion does not apply anymore; we cannot ensure exhaustive
conformance. However, if the agent’s knowledge base includes a formula such as
¬enemy(X)⇒ friend(X), expressing that anyone who is not an enemy should be
considered a friend, then we can show that friend(X)∨enemy(X) is a logical con-
sequence of that knowledge base and, thereby, that our agent will be exhaustively
conformant to the protocol. Note that this agent may generate two responses for
a single input, namely in cases where both friend(X) and enemy(X) are true.
To avoid such situations (i.e. to ensure deterministic behaviour), we could add
the formula ¬(friend(X) ∧ enemy(X)) to the knowledge base, resulting in the
popular “you are either with us or against us” policy.

We can also use our criteria to pinpoint critical situations where a given
(non-exhaustive) agent would not be able to respond appropriately. To illus-
trate this, suppose we remove the implication ¬enemy(X) ⇒ friend(X) from
our agent’s knowledge base. When trying to establish exhaustive conformance,
we would have to prove that friend(X) ∨ enemy(X) is —still— a consequence

of the knowledge base, i.e. ¬(friend(X) ∧ enemy(X)) |= friend(X) ∨ enemy(X).
Such a proof would be bound to fail and we could use it to construct an ex-
plicit counterexample. For instance, if we were to use analytic tableaux, we
would attempt a refutation for a tableau initially labelled with the two for-
mulas (∀X)¬(friend(X) ∧ enemy(X)) and ¬(∀X)(friend(X) ∨ enemy(X)), i.e.
the (only) premise and the negated conclusion. We would soon end up with a
saturated open branch containing the literals ¬friend(a) and ¬enemy(a), where
a is the Skolem constant introduced when analysing the negated conclusion.4

For details we refer to the literature on analytic tableaux [1, 3].
This branch gives rise to the first-order model M = (D, I) with D = {a}

and both a 6∈ I(friend) and a 6∈ I(enemy). This shows that our agent will fail to
be exhaustively conformant as soon as it receives a request from an agent a that
is neither (known to be) a friend nor an enemy. Of course, if we have additional
information about the application domain, which allows us, for instance, to infer
that such a situation would be impossible, then we may still be able to show
exhaustive conformance. However, such methods would go beyond the purely
logic-based techniques we are interested in for the purpose of the present paper.

Exhaustive conformance can only be considered a first requirement for com-
petent agents. To illustrate this point, let us consider again the protocol of Fig-
ure 1, and assume that agent B takes part in the interaction using the following
response space:

S∗ = {request(T)⇒ refuse(T+1)}

Even if this agent was indeed exhaustively conformant (as discussed before), it
would intuitively not be competent as it could never reach state 2 (and con-
sequently the interaction could never terminate with an accepted request). In
the following section, we try to overcome this limitation by introducing a new
definition of competence.

4 Competence as reachability

In this section, we define competence as the ability of a (group of) agent(s) to
reach the different stages of an interaction. In particular, from a practical point
of view, we shall be especially interested in the termination of interactions.

To begin with, it is worth noting that by the condition of matching on the
well-formedness of protocols, any legal (and “complete”) dialogue will either end
with a STOP move or be infinite. If a dialogue ends illegally (i.e. with a final
move different from STOP) it must be the case that one of the agents is not
exhaustively conformant to the protocol in operation. If both agents are known
to be at least weakly conformant to the protocol (but not necessarily exhaustively
conformant), then we can distinguish three situation: (i) the dialogue ends legally
with a STOP move, (ii) the dialogue terminates illegally with a move different

4 Again, due to the undecidability of first-order logic, this technique may not always
be applicable, but we believe that in many practical cases it will.

from STOP, and (iii) the dialogue goes on forever.5 Ideally, we would like to
avoid both (ii) and (iii). In practice, we want our agents to have at least the
potential to achieve (i). While two exhaustively conformant agents will never
generate a dialogue that terminates illegally, they may or may not have the
competence to generate a dialogue that does terminate at all.

For a pair of agents, having the competence to produce a legally ending
dialogue amounts to these agents being able to generate a dialogue following on
from a START move that includes (and thereby ends with) a STOP move. More
generally, for any two dialogue moves P and P ′, we may ask whether a given
pair of agents possesses the competence to generate a dialogue including P ′ once
P has been uttered. Here, P ′ may be the STOP move or any other move leading
to an “interesting” state in the dialogue.

For some protocol P, two agents have the joint competence to reach P ′

from P iff they have the ability to generate a sequence of dialogue moves
that are legal with respect to P and that include P ′ once P has been
uttered.

In particular, two agents have the joint competence to generate a legally termi-
nating dialogue iff the have the joint competence to reach STOP from START.

We will now investigate how this notion of competence can be automatically
checked in the context of our logic-based agents. To this end, we will make use of
the notion of response space already introduced in Section 3; or more precisely
of a propositional representation of these response spaces obtained by removing
the reference to time as well as to any other variables (this, of course, assumes
that the content of the dialogue moves is not directly relevant to our purpose).

We call the set of formulas we obtain by removing all references to variables
from an agent’s response space the flattened response space of that agent. A
flattened dialogue constraint such as request⇒ accept ∨refuse may be interpreted
as requiring any legal dialogue that includes a request move to also include either
an accept or a refuse move (of course, in addition to that, the intended meaning
is that one of these moves immediately follows the request move, although this
is not made explicit in this simplified representation). We note here that this
kind of flattening operation would not be meaningful for protocols (and hence
response spaces) that are not shallow, i.e. for protocols where we may have
more than one trigger on the lefthand side of a protocol constraint (referring to
different times in the dialogue history).

We can use the notion of a flattened response space to formulate a sufficient
criterion for joint competence:

Two agents with flattened response spaces S∗A and S∗B that are exhaus-
tively conformant to protocol P have the competence to reach P ′ from P
iff S∗A ∪ S∗B ∪ {P} |= P ′

5 Note that we do not classify infinite dialogues as illegal. In fact, a (badly designed)
protocol may even preclude agents from ending a dialogue after having have made
a certain unfavourable choice (i.e. after having uttered some dialogue move leading
to a conversational state from where there are no paths leading to a final state).

0HOINJMKL 1HOINJMKL

2HOINJMKL

3@GAFBECDHOINJMKL

4@GAFBECDHOINJMKL
+3 A: request //

B: accept

33hhhhhhhhhhh

B: refuse

++VVVVVVVVVVV

B: challenge

CC

A: justify

��

Fig. 2. A negotiation protocol with a justify/challenge loop

To see that the above is only a suitable competence criterion for agents that are
exhaustively conformant, it is important to recall that P ⇒ ⊥ will form part
of an agent’s (flattened) response space for every expected input P for which
there is no rule at all in the agent’s communication strategy. This means, for
instance, that STOP would be derivable from the union of the two response
spaces together with {START} even though, clearly, such a pair of agents would
not be guaranteed to reach a final state.

To illustrate this notion of competence, we introduce an improvement of our
negotiation protocol, depicted in Figure 2, which includes a justify/challenge loop
inspired by argumentation-based protocols [5]. For instance, given the following
flattened response spaces

S∗A :


START ⇒ request
challenge⇒ justify
accept ⇒ STOP
refuse ⇒ STOP

S∗B :
{

request⇒ accept ∨ refuse
justify ⇒ accept ∨ refuse

it is easy to see that, for P = START and P ′ = STOP, we indeed have

S∗A ∪ S∗B ∪ {P} |= P ′

Intuitively, this means that termination will be reached by the agents equipped
with these response spaces. In general, of course, this will not be the case. Con-
sider for instance the following response spaces.

S∗A :


START ⇒ request
challenge⇒ justify
accept ⇒ STOP
refuse ⇒ STOP

S∗B :
{

request⇒ accept ∨ refuse ∨ challenge
justify ⇒ accept ∨ refuse ∨ challenge

In this case, clearly, the agents can generate a legal infinite dialogue by alter-
nating between uttering challenges and justifications.

To analyse this situation, let us consider the set of all minimal models of
S∗A ∪ S∗B ∪ {START}. We identify a model with the set of propositional letters

that are being interpreted as true in that model and call a model minimal iff
there is no other model for which this characteristic set is a strict subset of the
characteristic set of the former. In the case of S∗A ∪ S∗B ∪ {START}, we obtain
the following three minimal models:

{ {START, request, accept,STOP},
{START, request, refuse,STOP},
{START, request, challenge, justify} }

We observe that we can distinguish two kinds of models: (i) minimal models
including STOP, (ii) minimal models not including STOP. These correspond to
the different sort of dialogues that can be generated from these response spaces:
the two first models (including STOP) correspond to terminating dialogues,
whereas the last model represents the infinite loop. In this case, we can only
state that termination is possible, since there exists at least one minimal model
including both START and STOP. However, as long as there is a minimal model
not including STOP, termination cannot be guaranteed.

But it is also noteworthy in this example that, even when the agents have
entered the loop, they still have the possibility to reach termination (B can
choose to utter refuse or accept after a justify). This is not necessarily the case
in general, and we can then distinguish good and bad loops. A good loop is a
loop that need not be infinite, i.e. at least one path to a final state is still open.
A bad loop is a loop where agents have no other choice than to repeat the same
sequence of utterances (that would be the case in our example if B could neither
utter accept nor refuse in reply to justify). We now give a criterion that allows
us to assess whether a given loop is good:

Consider the model of a loop. If for every P in that model, S∗A∪S∗B∪{P}
still has got at least one minimal model including STOP, then this is a
good loop, otherwise this is a bad loop.

One may be inclined to believe that bad loops only result from badly designed
protocols. However, because the designer of a protocol does not know in advance
the competence of the agents that will take part in the interaction, it may be
the case that a protocol turns out to be problematic because it is used by agents
that are not fully competent. In this case, it can be useful for the designer of
the application to customise his protocol, in order to avoid these undesirable
situations.

5 Customising protocols

There are two ways of adapting protocols to the needs of individual agents that
are not fully competent to use them in the first place. The first approach is to
require an enhancement of the strategies of the agents, the second to customise
the protocol itself (these two techniques are called expansion and filtering in the
context of game-based interaction studied in [10]). We will now show by means

0HOINJMKL 1HOINJMKL

2HOINJMKL

3HOINJMKL4HOINJMKL 5HOINJMKL

6@GAFBECDHOINJMKL

7@GAFBECDHOINJMKL

8@GAFBECDHOINJMKL

9@GAFBECDHOINJMKL
+3

A: not−understood

((hh
B: inform

vv
A: not−understood

B: certify

66

A: reject

44

A: reject

jj

A: request // B: accept

33fffffffffffffffff
B: refuse

++XXXXXXXXXXXXXXXXX

A: retract //

B: challenge

CC

A: justify

��

A: authenticate

OO

A: justify

pp

A: justify

..

Fig. 3. A protocol for electronic transactions

of an example how the preliminary results put forward in the previous section
can be used to customise protocols.

For this purpose, we will introduce a further improvement of our negotiation
protocol, inspired by electronic transactions (see Figure 3). The interaction starts
with a consumer (A) request ing a good. The seller (B) can then accept or refuse
(leading to terminal states 8 or 9), or alternatively challenge the consumer (for
instance, the seller may challenge that the consumer has the permission to pur-
chase this good). The consumer is in a situation where he can retract his request,
provide some justif ication, or himself interrogate the seller as to whether he is
indeed in a position to challenge him in the first place. This is done by requiring
an auhenticat ion of the seller. This latter move leads to a sort of subprotocol
starting from state 3. The protocol then assumes that the buyer could use two
methods of authentication: (i) a simple method involving a text ticket simply
provided by an inform message; or (ii) a complex method using a encryption
key included in a certif icate. In both cases, the consumer should explicitly indi-
cate if he cannot evaluate the response provided by the seller (not-understood,
in which case the interaction goes back to the previous state in order to possibly
use a different method of authentication). In case of a negative evaluation of
the authentication provided, the buyer will reject and terminate the interaction
(state 6). In case of a positive evaluation, the buyer should then give justification
to the challenge uttered earlier. Note that this protocol is shallow.

Let us now assume that the consumer has no way to evaluate an encrypted
certificate provided by the seller (i.e. the rule for the trigger certify in his response
space does not include reject), as well as no argumentative capabilities to justify
his claims. As far as the seller is concerned, we will assume on the other hand
that only the encrypted authentication can be provided (i.e. the seller’s response
space does not include inform). In other words, after a challenge, A can only
either ask B to authenticate, or retract. It is easy to observe that, if A decides
to ask for an authentication, the interaction will end up in a bad loop between
states 3 and 5 (that is, the consumer explaining he does not understand the
provided certificate, but the seller lacking alternative methods to authenticate
himself).

Our proposal in such a situation is to customise the protocol to prevent the
participants from entering this loop by cutting this part of the protocol. This can
be done systematically by (i) identifying the bad loops resulting from the agents’
response spaces, as discussed in the previous section, and then (ii) removing all
occurrences in the protocol of those moves of the bad loops that do not allow
to reach termination. In our example, the minimal model corresponding to the
bad loop would be

{START, request, challenge, authenticate, certify,not-understood}

which would lead to the subsequent deletion (for the period of this interaction)
of authenticate, certify, not-understood from the protocol —indeed, none of these
moves P is such that S∗A∪S∗B∪{P} has got at least one minimal model including
STOP. The resulting protocol could then be used safely by the agents (even if any
challenge by the seller would immediately lead to the retraction of the request
by the buyer).

In practice, we envisage this technique of customising protocols for interac-
tions in open agent societies to be used as follows. Suppose two agents are about
to enter an interaction governed by a particular protocol P. Before starting the
dialogue, they may send their respective response spaces to the authority reg-
ulating this interaction. Using the agents’ response spaces, the authority can
determine whether the agents would be competent users of P. In case they are
not, the authority can customise P, using the methodology described earlier,
and propose to the agents to use that customised protocol instead of the original
one.

6 Conclusion

In this paper, we have argued that the ability to merely conform to a protocol
(in the sense of not uttering any illegal dialogue moves) is not sufficient for an
agent to be a competent user of that protocol. As a first approach to protocol
competence we have further examined the concept of exhaustive conformance
introduced in [2] and defined criteria that allow us to check whether a given agent
can be expected to behave exhaustively conformant to a given protocol. While
exhaustive conformance does guarantee that an agent will be able to utter at

least some legal performative at any point in a dialogue, it does, for instance, still
not ensure that such a dialogue will eventually terminate. Therefore, as a further
step towards characterising agents that are truly competent users of a protocol,
we have introduced a notion that considers, broadly speaking, an agent’s ability
to reach a particular state of the interaction, and we have provided preliminary
results that allow us to automatically check competence in the context of the
specific class of logic-based agents considered here. We have then shown how
these results can facilitate the customisation of protocols used by agents that
are not fully competent.

Whereas the notion of competence as reachability discussed in this paper
makes reference to the group of agents involved in the interaction, it may be
useful for a single agent to (even roughly) evaluate whether it is competent to
use a given protocol, regardless of whom it may happen to interact with. For
this purpose, we may evaluate what would happen if our agent was to interact
with a perfect agent (that is, an agent that could provide any expected inputs,
as defined by the protocol).

The notion of response space can also be used to provide a rough approxi-
mation of the individual competence of the agent: intuitively, given a protocol
P, we would expect a competent agent to have a response space that (almost)
“covers” P, namely it should have the potential to utter as many dialogue moves
as the protocol allows.

In our future work, we plan to investigate whether the techniques used in
this paper could help to develop a methodology for assisting in the design of fair
protocols, in the sense that such a protocol should “treat all participants equally,
or, if not, make explicit any asymmetries in their treatment” [4]. For instance,
agents may assign different values to different final states of a protocol. In case
a pair of agents would not have the competence to reach any of the final states
rated positively by one of the agents after a particular dialogue move has been
uttered, this would amount to an unfair advantage for the other agent.

Acknowledgements. We would like to thank the ESAW referees for their helpful
comments. This research has been funded by the European Union as part of the
SOCS project (IST-2001-32530) and has been carried out while the third author
was employed at City University, London.

References

1. M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors. Handbook of
Tableau Methods. Kluwer Academic Publishers, 1999.

2. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol Conformance for Logic-
based Agents. In Proceedings of the 18th International Joint Conference on Arti-
ficial Intelligence (IJCAI-2003). Morgan Kaufmann, 2003.

3. M. Fitting. First-order Logic and Automated Theorem Proving. Springer-Verlag,
2nd edition, 1996.

4. P. McBurney and S. Parsons. Desiderata for Inter-agent Protocols. In Proceed-
ings of the First International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-2002), Bologna, Italy, 2002.

5. S. Parsons, C. Sierra, and N. Jennings. Agents that Reason and Negotiate by
Arguing. Journal of Logic and Computation, 8(3):261–292, 1998.

6. J. Pitt and A. Mamdani. A Protocol-based Semantics for an Agent Communication
Language. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI-1999). Morgan Kaufmann, 1999.

7. J. S. Rosenschein and G. Zlotkin. Rules of Encounter. MIT Press, 1994.
8. F. Sadri, F. Toni, and P. Torroni. Dialogues for Negotiation: Agent Varieties and

Dialogue Sequences. In Proceedings of the 8th International Workshop on Agent
Theories, Architectures and Languages (ATAL-2001). Springer-Verlag, 2001.

9. M. P. Singh. A Customizable Coordination Service for Autonomous Agents. In
Proceedings of the 4th International Workshop on Agent Theories, Architectures
and Languages (ATAL-1997), 1997.

10. K. Stathis. A Game-based Architecture for Developing Interactive Components
in Computational Logic. Journal of Functional and Logic Programming, 2000(5),
2000.

11. M. Wooldridge. An Introduction to Multiagent Systems. MIT Press, 2002.

