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Abstract
In the context of aggregating intervals reflecting the
views of several agents into a single interval, we in-
vestigate the impact of the form of representation
chosen for the intervals involved. Specifically, we
ask whether there are natural rules we can define
both as rules that aggregate separately the left and
right endpoints of intervals and as rules that aggre-
gate separately the left endpoints and the interval
widths. We show that on discrete scales it is es-
sentially impossible to do so, while on continuous
scales we can characterise the rules meeting these
requirements as those that compute a weighted av-
erage of the endpoints of the individual intervals.

1 Introduction
We often need to perform some form of interval aggregation.
Examples include people agreeing on a time slot for a meet-
ing or pollsters aggregating confidence intervals. For other
applications, the agents reporting the intervals could be au-
tonomous software agents. In this paper, we think of interval
aggregation as a problem of social choice and use methods
developed in social choice theory to identify attractive aggre-
gation rules [Arrow et al., 2002; Brandt et al., 2016].

An issue that has received little to no attention in prior work
is the chosen form of representation for an interval. Which
representation is most appropriate often depends on the appli-
cation. For example, when scheduling a meeting, it is natural
to talk about its starting time (the left endpoint of the inter-
val) and its duration (the width). But when discussing an in-
vestment, we tend to think of upper and lower bounds on the
amount of money to be spent (right and left endpoints).

We call an aggregation rule F faithful to a given form of
representation if we can define F in terms of “local” aggre-
gators that each operate on just one of the components of this
representation. Most rules proposed in the literature and used
in practice are of this kind (see Example 2 in Section 2). The
core question we investigate in this paper is how the choice
of representation impacts the faithful rules we can design.

Example 1. Three agents have to report intervals on the scale
S = {1, 2, 3, 4, 5}, representing afternoon hours, to organise
a meeting. Consider a first profile on the left, where agent 1

reports [1, 2], agent 2 reports [2, 4], and agent 3 reports [2, 3];
while in the second profile, agent 3 switches to [4, 5]:

I1
I2
I3

1 2 3 4 5

I ′1
I ′2
I ′3

1 2 3 4 5

If we think of intervals as being represented by their end-
points, then a very natural choice of aggregation rule is to
return as left endpoint the median of the individual left end-
points, and to do likewise for the right endpoints. This
median-endpoint rule, which by its very definition is faith-
ful to the left/right-endpoint representation, returns [2, 3] for
the first profile and [2, 4] for the second profile.

Now suppose we instead want to think of an interval as be-
ing represented by its left endpoint and its width. Is there a
natural formulation of our rule that is faithful to this new rep-
resentation? The answer is “no”. To see why, observe that we
would have to compute the appropriate width based only on
the individual widths reported, yet for both interval profiles,
the corresponding profile of widths is the same: (1, 2, 1). M

We thus cannot separate the choice of aggregation rule from
the choice of representation: the “framing” of the aggregation
problem matters. Is this specific to the median-endpoint rule?
Or can we find natural rules that are faithful to more than
one representation? This is an important question, because
a positive answer would provide protection against strategic
exploitation of such framing effects.1 As we shall see, the
answer depends heavily on the type of scale used. For exam-
ple, on the continuous scale S = [0, 1], i.e., the scale of real
numbers between 0 and 1, the rule that computes the average
left and right endpoints can alternatively be thought of as the
rule that computes the average left endpoint and the average
width. But this would not be a well-defined rule on a discrete
scale such as S = {1, 2, 3, 4, 5}, as here computing averages
can take us outside of the scale.

The fact that the notion of representation has been ne-
glected in prior work on interval aggregation might, at least
in part, be due to the origins of the field of social choice the-

1This issue is related to the problem of strategic agenda setting,
which has been studied in the context of both parliamentary floor
voting [Rasch, 2000] and judgment aggregation [Dietrich, 2016].



ory in Economics, where such questions are not routinely in-
vestigated. But when considered from the point of view of
Computer Science and AI, giving centre stage to the matter
of how to represent information is very natural. Indeed, the
representation-oriented perspective we advocate here is cru-
cial both for the transparency of aggregation rules for people
and when implementing aggregation rules on a computer.
Related work. There appears to be no prior work on rep-
resentational issues in interval aggregation, although related
questions have been considered in other fields [Cariani et al.,
2008; Marquis and Schwind, 2014]. In much of the litera-
ture, intervals are used to model uncertainty and the objective
of aggregation is to approximate a ground truth. Instead, our
interest is in intervals themselves (e.g., time intervals with a
beginning and a duration) and normative questions that can
be addressed using the axiomatic method [Thomson, 2001].

Farfel and Conitzer [2011] study interval aggregation in
a model very similar to ours. They represent intervals by
their endpoints and champion the aforementioned median-
endpoint rule. Further afield, the literature on opinion pool-
ing deals with individual probability functions over an event
space being aggregated into a collective probability func-
tion [Dietrich and List, 2016]. One axiomatic result is
that an aggregation rule behaving as a weighted average
for every event—what Stone [1961] calls the linear opinion
pool—is the only kind that satisfies the normative principles
of independence and unanimity [Aczél and Wagner, 1980;
McConway, 1981]. Another stream of research concerns
the aggregation of confidence intervals, where a single point
(rather than an interval) is required as the outcome. Yaniv
[1997] introduced the popular unweighted average of mid-
points, a more general version of which is the precision-
weighted average of midpoints. In fuzzy systems, various
arithmetical operations have been proposed for combining
pairs of fuzzy intervals [Dubois and Prade, 1993], while work
in multi-criteria decision analysis has dealt with the aggrega-
tion of interval orders [Pirlot and Vincke, 1997].
Contribution. We introduce a formal model to study the
aggregation of intervals via representation-oriented rules. We
focus on rules that are faithful to two different representa-
tions, namely the one based on left and right endpoints, and
the one based on left endpoints and interval widths. Our main
technical results show that (i) on discrete scales it is essen-
tially impossible to design rules that are faithful to both rep-
resentations (the only exceptions are so-called dictatorships),
while (ii) on continuous scales a rule is faithful to both rep-
resentations if and only if it is a weighted averaging rule.
Paper outline. In Section 2 we introduce our model of in-
terval aggregation and define the central concept of represent-
ation-faithfulness. Then Section 3 is devoted to our impossi-
bility results for discrete scales and Section 4 to our charac-
terisation results for continuous scales. Section 5 concludes.

2 The Model
We are interested in the aggregation of multiple intervals, de-
fined on a common scale, into a single such interval by means
of rules that are faithful to the chosen representation of inter-
vals. Let us define these concepts one by one.

Scales. A scale is simply a nonempty set S ⊆ R of real
numbers with a minimum and a maximum element. Exam-
ples include S = [0, 1] and the modern 7-point Danish grad-
ing scale S = {−3, 0, 2, 4, 7, 10, 12} [UFM, 2007]. Scales
can be finite or infinite. We also refer to finite scales as dis-
crete scales. We call infinite scales S = [a, b] that include all
real numbers from a ∈ R to b ∈ R continuous scales, and
S = [0, 1] the standard continuous scale. For the definitions
that follow, suppose we have fixed a concrete scale S.

Intervals. A (closed) interval is a nonempty subset I ⊆ S
with {z ∈ S | x < z < y} ⊆ I for all x, y ∈ I , as well as
inf(I), sup(I) ∈ I . For example, on the Danish grading scale
both {0, 2, 4} and {4} are intervals (even though the latter is
degenerate), but {4, 10} is not. For a given scale S, let I(S)
denote the set of all intervals definable on S.

For ease of exposition, we often refer to concrete intervals
by their two endpoints in the familiar manner. So the interval
{0, 2, 4} on the Danish grading scale becomes [0, 4].

Representation. There are many different ways in which
one can represent an interval. For example, we can iden-
tify an interval by its endpoints, or by its midpoint and its
width. A component is a function γ : I(S) → D, for some
(component-specific) domain D. Examples include:

• left endpoint ` : I 7→ min(I)
• right endpoint r : I 7→ max(I)
• width w : I 7→ max(I)−min(I)
• midpoint m : I 7→ [min(I) + max(I)] / 2

Given a vector γ = (γ1, . . . , γq) of components of the form
γk : I(S) → Dk and an interval I , we write γ(I) to denote
the vector (γ1(I), . . . , γq(I)) ∈ D1 × · · · ×Dq . A represen-
tation formalism (or simply: a representation) is a vector of
components γ = (γ1, . . . , γq) for which γ(I) = γ(I ′) im-
plies I = I ′ for all I, I ′ ∈ I(S). That is, it must be possible
to uniquely identify an interval from its components.

Rules. Fix a set N = {1, . . . , n} of agents. Each i ∈ N
supplies us with an interval Ii ∈ I(S), giving rise to a profile
I = (I1, . . . , In). We are interested in aggregation rules F :
I(S)n → I(S) to map any such profile to a single interval.

Faithfulness. We call a rule F : I(S)n → I(S) faith-
ful to a representation γ = (γ1, . . . , γq) with components
γk : I(S) → Dk for k ∈ {1, . . . , q}, if there exist functions
fk : Dn

k → Dk, one for each k ∈ {1, . . . , q}, such that for
any profile I = (I1, . . . , In) we can compute F (I) by first
computing one profile (γk(I1), . . . , γk(In)) for each compo-
nent γk and then aggregating each of these profiles:

( f1(γ1(I1), . . . , γ1(In)), . . . , fq(γq(I1), . . . , γq(In)) )

To be precise, this procedure will return the representa-
tion γ(F (I)) rather than F (I) itself. By definition, for
any (γ1, . . . , γq)-faithful rule F , the corresponding vector
(f1, . . . , fk) is uniquely determined by F . By a slight abuse
of notation, we write F = (γ1, . . . , γq) ◦ (f1, . . . , fq).
Example 2. The median-endpoint rule of Example 1, also
advocated by Farfel and Conitzer [2011], can be written as
F = (`, r) ◦ (med,med), where med returns the (lower)
median of any given vector of numbers. The rule F =



(`, r) ◦ (min,max) amounts to computing the convex hull of
the union of the input intervals; in risk analysis this is known
as an enveloping method [Ferson and Kreinovich, 2001].
The unweighted average-midpoint rule of Yaniv [1997] is
F = (m,w) ◦ (avg,null), where avg returns the arithmetic
mean and null is a constant function that always returns 0. M

Component-unanimity. We call a rule F = (γ1, . . . , γq) ◦
(f1, . . . , fq) component-unanimous if each component-
aggregator fk is unanimous, i.e., if fk(x, . . . , x) = x for ev-
ery x ∈ Dk. Component-unanimity is a natural requirement,
but it is violated, e.g., by the unweighted average-midpoint
rule. Note that component-unanimity implies unanimity of F
in the sense of enforcing F (I, . . . , I) = I for every interval I .

Basic results. We often refer to a rule that is both faith-
ful to γ and component-unanimous simply as a γ-rule. We
conclude this section by establishing some basic results for
γ-rules. We use γ ⊕ γ′ to denote the concatenation of two
vectors γ and γ′; and we write γ w γ′ if {γ1, . . . , γq} ⊇
{γ′1, . . . , γ′q′} for γ = (γ1, . . . , γq) and γ′ = (γ′1, . . . , γ

′
q′).

Lemmas 1 and 2 follow immediately from our definitions:

Lemma 1. Let γ and γ′ be vectors of components. Then F
is both a γ- and a γ′-rule if and only if it is a γ ⊕ γ′-rule.

Lemma 2. Let γ and γ′ be vectors of components such that
γ w γ′. Then every γ-rule F is also a γ′-rule.

These lemmas imply that the task of designing a rule that is
both an (`, r)- and an (`, w)-rule is equivalent to designing an
(`, r, w)-rule. The next lemma will simplify this task.

Lemma 3. For the component-aggregators f` and fr of any
given (`, r, w)-rule, it must be the case that f` = fr.

Proof. When all agents submit a degenerate interval with
width 0, f` and fr receive the same profile of points as input
and must both return the same single point as output (as by
component-unanimity of the (`, r, w)-rule, the collective in-
terval also must have width 0). But assuming that agents sub-
mit degenerate intervals does not restrict the range of point
profiles we might encounter, so the claim follows.

When min(S) = 0, for every point x ∈ S the interval [0, x]
has width x, which means that fw must be defined on all
points in S (and possibly more). So we can speak of fw�S ,
the restriction of the function fw to the domain S.

Lemma 4. For the component-aggregators f`, fr, and fw
of any given (`, r, w)-rule that is defined on a scale S with
min(S) = 0, it must be the case that f` = fr = fw�S .

Proof. We must account for the possibility that every agent
submits an interval that starts at 0. Observe that for any such
interval, its right endpoint is represented by the same number
as its width. So, as in the proof of Lemma 3, we must have
fr = fw�S (and f` = fr follows from that lemma).

The next lemma can be used, under certain conditions, to ob-
tain bounds on the range of a component-aggregator.

Lemma 5. For any given (`, r)-rule F with f` = fr that is
defined on a scale S and any point profile x ∈ Sn, it is the
case that min(x) 6 f(x) 6 max(x) for f := f` = fr.

Proof. Note that [min(x), xi] and [xi,max(x)] are well-
formed intervals for all i ∈ N . Due to unanimity, we obtain:

F ([min(x), x1], . . . , [min(x), xn]) = [min(x), fr(x)]

F ([x1,max(x)], . . . , [xn,max(x)]) = [f`(x),max(x)]

As the intervals on the right need to be well-formed as well,
we obtain min(x) 6 fr(x) and f`(x) 6 max(x). Together
with f = f` = fr this establishes the claim.

Finally, we establish a simple monotonicity property. For two
vectors x,y ∈ Sn, we say that x dominates y and write x >
y if it is the case that xi > yi for all i ∈ N .
Lemma 6. For any given (`, r)-rule F with f` = fr defined
on a scale S and any point profiles x,y ∈ Sn with x > y, it
is the case that f(x) > f(y) for the function f := f` = fr.

Proof. If x > y, then [yi, xi] is a well-formed interval for
every i ∈ N , so we can apply F to ([y1, x1], . . . , [yn, xn]).
As the outcome [f`(y), fr(x)] must be a well-formed interval
as well, we obtain f(x) = fr(x) > f`(y) = f(y).

3 Impossibility Results: Discrete Scales
We saw in Example 1 that the median-endpoint rule, which
is an (`, r)-rule, cannot be cast as an (`, w)-rule—at least not
for the specific five-point scale used in that example. In this
section we prove a powerful impossibility theorem for arbi-
trary discrete scales that generalises this observation: there in
fact exists no reasonable interval aggregation rule that is both
an (`, r)-rule and an (`, w)-rule. The only exceptions are dic-
tatorial (thus not “reasonable”) rules, which simply return the
interval reported by some fixed agent i? (the dictator).
Two agents. We first prove our impossibility result for the
special case of n = 2 and then use an inductive argument to
generalise to arbitrary (but finite) numbers of agents.
Lemma 7. For n = 2 and any given discrete scale S, every
(`, r, w)-rule is a dictatorship.

Proof. Take a discrete scale S, let m = |S|, let N = {1, 2},
and let F be a rule of the required kind. We write f for both
f` and fr (which by Lemma 3 coincide).

We will make repeated use of the fact that, due to F being
(`, w)-faithful, for any two profiles I and I ′ with w(Ii) =
w(I ′i) for all i ∈ N we must have w(F (I)) = w(F (I ′)).

Let us first establish a useful fact. For any x, y ∈ S with
x 6 y, due to unanimity, F ([x, x], [x, y]) = [x, f(x, y)] and
F ([y, y], [x, y]) = [f(y, x), y]. In both cases, the first agent
submits an interval of width 0 and the second agent one of
width y−x. So the widths of the two outcomes must coincide:

f(x, y)− x = y − f(y, x) (1)

Now, for any pair (x, y), let us call i ∈ N a local dictator for
(x, y) if it is the case that f(z1, z2) = zi whenever {z1, z2} ⊆
{x, y}. Local dictatorships are transitive: for x 6 y 6 z, if
agent i is a local dictator for both (x, y) and (y, z), then she
also is a local dictator for (x, z). To see this, suppose i = 1
(the case of i = 2 is analogous) and consider the profiles
([x, x], [y, z]) and ([y, y], [y, z]), which have the same width
profile (0, z − y). The outcomes for these two profiles are



[x, f(x, z)] and [y, y]. As the latter has width 0, we must have
f(x, z) = x. Similarly, by considering profiles ([y, z], [x, x])
and ([y, z], [y, y]), we obtain f(z, x) = z. So agent 1 really
is the local dictator for (x, z) as well.

We now show that every pair (x, y) has a local dictator. We
do so by induction on the number k of points in [x, y].2

Base case (k = 1): When k = 1, i.e., when x = y, then by
unanimity every agent is a local dictator for (x, y).
Induction step: Suppose there exists a local dictator for every
pair (x, y) with |[x, y]| 6 k, for some fixed k ∈ {1, . . . ,m−
1}. We need to show that the same is true for k+ 1. W.l.o.g.,
suppose f(x, y) 6 f(y, x). So, by Lemma 5, x 6 f(x, y) 6
f(y, x) 6 y. We distinguish three cases:
• f(x, y) = f(y, x). Then equation (1) implies f(x, y) =
f(y, x) = y−x

2 . This is only possible if z := y−x
2 ∈ S.

By the induction hypothesis, the claim holds for (x, z)
and (z, y). By considering the profiles ([x, z], [z, y])
and ([z, y], [x, z]), which both have the same profile of
widths and thus must result in outcomes of the same
width, the local dictators for both pairs must coincide.
By the transitivity of local dictatorships, this common
dictator must be the local dictator for (x, y) as well.
• x 6 f(x, y) < f(y, x) 6 y and at least one of the weak

inequalities is an equality. Then equation (1) implies that
both are equalities, so agent 1 is a local dictator.
• x < f(x, y) < f(y, x) < y. We will see that this is

in fact impossible. Let z := f(x, y) and z′ := f(y, x).
By the induction hypothesis, there are local dictators for
all ordered pairs in {x, z, z′, y}—except possibly (x, y).
By the transitivity of local dictatorships, there must be
a single local dictator i ruling all five of them. Sup-
pose i = 1 (the case of i = 2 is analogous). Then
F ([x, x], [x, y]) = [x, z] and F ([z, z], [x, y]) = [z, z].
As both profiles have the same width profile, we must
have x = z, contradicting our assumption that x < z.

As our case distinction is exhaustive, the inductive proof is
complete: there must be a local dictator for every pair (x, y).
Given that n = 2, for any three pairs (x, y), (y, z), (x, z) at
least two must have the same local dictator. If this holds for
(x, y) and (y, z), then all three pairs must have the same dic-
tator due to transitivity; if it holds for (x, z) and (x, y) (anal-
ogously for (y, z)), then we can show that all three pairs must
have the same dictator with a proof like the one employed
to establish transitivity, by instead considering the profiles
([x, z], [x, x]) and ([x, z], [y, y]). To summarise, there must
be a single (global) dictator for all possible intervals.

Inductive lemma. The next lemma shows that, if we can
design a rule of the required kind for n + 1 agents, then also
for n agents.3 We note that we prove this lemma for scales S
with min(S) = 0 only (but we are going to be able to lift this
restriction later on in our proof of Theorem 9).

2Note how here we make use of the assumption that S is discrete,
meaning that there are only finitely many points between x and y.

3The proof of Lemma 8 has a similar structure to that of
Lemma 6.8 in the PhD thesis of Tang [2010] used for a computer-
supported inductive proof of the Gibbard-Satterthwaite Theorem.

Lemma 8. For any given n > 2 and any given scale S with
min(S) = 0, if there exists a nondictatorial (`, r, w)-rule for
n+ 1 agents, then also for n agents.

Proof. Let n > 2 and let S be a scale with min(S) = 0. Sup-
pose F is a nondictatorial (`, r, w)-rule for n + 1 agents for
this scale. By Lemma 4, we know that f` = fr = fw�S holds
for the component-aggregators of F . Let us use the letter f
to refer to this function. For each i ∈ {1, . . . , n}, we define
a function f ′i : S

n → S with f ′i(x) = f(x, xi). That is, we
append a copy of xi at the end of the input profile and then
query f on that extended point profile. Observe that each f ′i is
unanimous, because f is. By aggregating left and right end-
points using f ′i we obtain an interval aggregation rule F ′i . By
construction, every such F ′i is an (`, r, w)-rule for n agents.
We are done if we can show that at least one of the F ′i (or
equivalently: at least one f ′i ) is nondictatorial.

We first show that, in case a given f ′i happens to be dic-
tatorial, its dictator must be i, i.e., the agent whose ballot
gets duplicated before querying f . Let i? ∈ {1, . . . , n} be
the dictator of f ′i , meaning that f(x) = xi? for every point
profile x ∈ Sn+1 with xi = xn+1. For the sake of contra-
diction, suppose i? 6= i. As f is nondictatorial, there exists
an x ∈ Sn+1 with f(x) 6= xi? (and thus xi 6= xn+1). Sup-
pose f(x) > xi? (the proof for the case of f(x) < xi? is
entirely analogous). Now consider what happens when we
let the agent amongst i and n + 1 who reported the lower
number instead copy the ballot of the other agent. This new
profile is x′ ∈ Sn+1 with x′i = x′n+1 = max{xi, xn+1} and
x′j = xj for all other agents j (including i?). So x′ > x,
and thus, by Lemma 6, we must have f(x′) > f(x). Putting
everything together, we get f(x′) > f(x) > xi? = x′i? . But
f(x′) > x′i? , together with the fact that x′ is a profile with
x′i = x′n+1, contradicts our assumption that i? is the dictator
of f ′i . So we really must have i? = i as claimed.

Recall that we need to show that at least one f ′i is nondic-
tatorial. So, for the sake of contradiction, suppose that for
every i ∈ {1, . . . , n} the component-aggregator f ′i is dictato-
rial. (As shown just now, for each such function f ′i the dicta-
tor of must then be i.) This means that agent n+1 can ensure
that a given point is selected whenever at least one other agent
proposes that point (she can ensure this by copying that other
agent’s ballot). We are going to show that this implies that
agent n+ 1 in fact is a dictator for f (which will provide the
required contradiction). So consider an arbitrary point profile
x ∈ Sn+1. We need to show that f(x) = xn+1.
• First, suppose x1 6 xn+1. We use the values within x to

construct an interval profile and apply F to that profile:
F ([xn+1−x1, xn+1], [0, x2], . . . , [0, xn+1]) = [0, xn+1]

To see that [0, xn+1] is indeed the only possible out-
come, observe that agents 2 and n + 1 agree on the left
endpoint being 0, while agents 1 and n + 1 agree on
the right endpoint being xn+1.4 The width profile corre-
sponding to this interval profile is (x1, x2, . . . , xn+1) =
x, while the width of the outcome is xn+1. So it must
be the case that fw(x) = xn+1 and thus f(x) = xn+1.

4Observe how here, and in the corresponding step of the next
case in our case distinction, we rely on the assumption that n > 2.



• Second, suppose x1 > xn+1. We again construct a pro-
file of intervals and apply F to that profile:

F ([x1−xn+1, x1], [0, x2], . . . , [0, xn+1]) = [0, xn+1]

To see that this is correct, observe that agents 2 and n+1
agree on the left endpoint being 0, while agents 1 and
n + 1 agree on the width being xn+1. The profile of
right endpoints corresponding to this interval profile is
x, so we obtain fr(x) = xn+1 and thus f(x) = xx+1.

Thus, in both cases agent n+ 1 can dictate the outcome of f
for the arbitrarily chosen point profile x. As this contradicts
our assumption of f being nondictatorial, we are done.

General impossibility. We are now ready to prove our
main result for this section. In a nutshell, we are going to
use the inductive lemma we just proved to “spread” the im-
possibility for n = 2 to scenarios with arbitrary numbers of
agents. This will establish the result for discrete scales that
start at 0. To conclude the proof, we then exploit the fact that
every discrete scale S is the image of some discrete scale S′
with min(S′) = 0 under some affine transformation.
Theorem 9. For any given discrete scale S, every interval
aggregation rule that is both an (`, r)-rule and an (`, w)-rule
must be a dictatorship.

Proof. We first prove the claim under the additional assump-
tion that min(S) = 0. For n = 1, it follows directly from
component-unanimity. The case of n = 2 is covered by
Lemma 7. For any finite n > 2 the claim now follows by
induction, with n = 2 serving as the base case and the con-
trapositive reading of Lemma 8 as the inductive step.

Now suppose min(S) 6= 0. Let b := min(S) and con-
struct a second scale S′ = {x − b | x ∈ S }. Observe that
min(S′) = 0 by construction, so the theorem holds for S′.

Now, for the sake of contradiction, suppose there exists a
nondictatorial rule F for S that is both an (`, r)-rule and an
(`, w)-rule. Let the corresponding component-aggregators be
f`, fr, and fw. We define a rule F ′ for S′ in terms of its
component-aggregators f ′`, f

′
r, and f ′w as follows:

f ′`(x1, . . . , xn) = f`(x1 + b, . . . , xn + b)− b
f ′r(x1, . . . , xn) = fr(x1 + b, . . . , xn + b)− b
f ′w(x1, . . . , xn) = fw(x1, . . . , xn)

By construction, F ′ is an (`, r)-rule, an (`, w)-rule, and non-
dictatorial. But we know that no such rule can exist for S′; so
this is a contradiction and we are done.

Discussion. This impossibility persists even for the sim-
plest of discrete scales, such as S = {0, 1}. Interestingly
though, if we add a mild restriction on profiles, then the im-
possibility can be circumvented for certain kinds of scales:
Example 3. Let S = {0, 1, 5} and suppose agents cannot
submit degenerate intervals. What is special about S is that
every interval is uniquely identified by its width: only [0, 1]
has width 1; only [1, 5] has width 4; only [0, 5] has width 5.
Then, starting with the (`, r)-median rule, we can define an
equivalent (`, w)-rule by using the profile of widths to recover
the full profile of intervals, computing the outcome interval
under the (`, r)-median rule, and reading off its width. M

What about other representations? One immediate corol-
lary of Theorem 9 is that, by Lemma 2 and given that
(`, r,m,w) w (`, r, w), there also exists no nondicatorial rule
that is both an (`, r)-rule and an (m,w)-rule.

4 Characterisation Results: Continuous Scales
The proof of our impossibility theorem applies to discrete
scales only. But maybe the result itself still extends to other
natural scales, such as S = [0, 1]? The brief answer is “no”.
In this section, we are going to show that there are reasonable
rules for continuous scales that are faithful to both the (`, r)-
and the (`, w)-representation, and fully characterise them.

Continuity. Consider a continuous scale S and a represen-
tation γ = (γ1, . . . , γq) with components γk : I(S) → R.
We say that a γ-rule F is continuous if all its component-
aggregators fk : Rn → R are continuous in the standard
mathematical sense. We are going to restrict attention to such
continuous rules. This is a mild and reasonable requirement
(indeed, all rules discussed in this paper are continuous).

Cauchy’s functional equation. In the proof of our charac-
terisation theorem we are going to encounter Cauchy’s func-
tional equation [Cauchy, 1821]:

f(x) + f(y) = f(x+ y) (2)

Cauchy asked: For a given set S ⊆ R, which functions f :
S → R satisfy equation (2) for all x, y ∈ S with (x+y) ∈ S?
Clearly, every function f for which there exists an a ∈ R such
that f(x) = a · x for all x ∈ S does. But are these the only
solutions? It turns out that, yes, for certain choices of S these
indeed are the only solutions. Examples include S = N or
S = Q (while for S = R this is only the case under certain
additional assumptions on f ).5 We now prove a minor variant
of these classical results for functions f that are continuous
(rather than arbitrary) and that map into S (rather than R).

Lemma 10. Let S be the standard continuous scale. Then
a continuous function f : S → S satisfies f(x) + f(y) =
f(x+y) for all x, y ∈ S with (x+y) ∈ S if and only if there
exists an a ∈ [0, 1] such that f(x) = a · x for all x ∈ S.

Proof. Let a := f(1). Note that a ∈ [0, 1], given that f maps
into S. From f(0)+f(1) = f(0+1) it follows that f(0) = 0.
Now take an arbitrary rational number q = α/β ∈ S\{0}with
α, β ∈ N. From repeated application of Cauchy’s equation—
first to α- and then to β-many “copies” of f(1/β)—we get
f(α/β) = α · f(1/β) and f(1) = β · f(1/β). Thus, f(α/β) =
α · f(1)/β and f(q) = a · q. As q was chosen arbitrarily, this
proves the claim for every x ∈ S ∩Q.

For x ∈ S \ Q, consider any sequence (xn) of rational
numbers in S ∩ Q with limit x. By continuity of f , f(x) =
limn→∞ f(xn) = limn→∞ a·xn = a·x, so we are done.

Weighted averages. We call an (`, r)-rule F , defined by its
component-aggregators f` and fr, an (`, r)-weighted averag-
ing rule if there exist constants a1, . . . , an ∈ [0, 1] with a1 +
· · ·+an = 1 such that f`(x) = fr(x) = a1 ·x1+· · ·+an ·xn
for every point profile x ∈ Sn.

5Consult Small [2007] for a modern exposition of these results.



Observe that every (`, r)-weighted averaging rule is also
an (`, w)-rule. Indeed, the width of the collective interval un-
der F can be obtained by the exact same weighted averaging
operation. Remarkably, (`, r)-weighted averaging rules are
also the only continuous rules that are faithful to both repre-
sentations, i.e., that are (`, r, w)-rules. We first prove this for
the special case of the standard continuous scale S = [0, 1].6

Lemma 11. For the standard continuous scale S, every con-
tinuous (`, r, w)-rule is an (`, r)-weighted averaging rule.

Proof. Let S = [0, 1] and let F : I(S)n → I(S) be any
continuous (`, r, w)-rule with component-aggregators f`, fr,
and fw. What is special about this scale is that the domain
of fw is exactly S, so fw = fw�S . By Lemma 4, we thus
get f` = fr = fw; we use f to refer to any of these three
functions. Note that f is a function of type f : Sn → S.

If x is the left endpoint of an interval and y its width, then
x+y is its right endpoint. This relationship must be respected
for the n intervals fed to F and the single interval it returns.
So suppose F is applied to a profile of intervals with left end-
points (x1, . . . , xn), widths (y1, . . . , yn), and right endpoints
(x1 + y1, . . . , xn + yn). Then applying f to each of these
three profiles must return values that also respect the proper
relationship between left endpoint, width, and right endpoint:
f(x1, ... , xn)+f(y1, ... , yn)= f(x1+y1, ... , xn+yn) (3)

This generalisation of Cauchy’s functional equation must be
satisfied for all (x1, . . . , xn), (y1, . . . , yn) ∈ Sn for which it
is the case that (x1 + y1, . . . , xn + yn) ∈ Sn.

Let us write (0−i, xi) for the vector of length n consisting
solely of 0’s, except that its ith element is equal to xi. Now
consider a scenario in which everyone except for agent i sub-
mits the degenerate interval [0, 0]. Then equation (3) reduces
to the following family of equations (one for each i ∈ N ):

f(0−i, xi) + f(0−i, yi) = f(0−i, xi + yi) (4)
Each equation in (4) is an instance of Cauchy’s functional
equation in its standard form, applied to a function f(0−i, )
taking a single variable as input. Each such function is a map-
ping from S to S. So Lemma 10 applies and allows us to infer
that, for each i ∈ N , there exists an ai ∈ [0, 1] such that the
following is true for all z ∈ S:

f(0−i, z) = ai · z (5)
Now consider an arbitrary (z1, . . . , zn) ∈ Sn. If we rewrite
each zi as a sum of the form 0 + · · ·+ 0 + zi + 0 + · · ·+ 0,
with zi in the ith position, and if we then apply f , we obtain:
f(z1, ... , zn) = f((z1+0+· · ·+0), . . . , (0+· · ·+0+zn))

Repeatedly applying equation (3), and then (5), yields:
f(z1, ... , zn) = f(0−1, z1) + · · ·+ f(0−n, zn)

= a1 · z1 + · · ·+ an · zn
As f is unanimous (given that F is component-unanimous),
and as we need to account for cases where z1 = · · · = zn, we
must have a1 + · · · + an = 1. So F , defined in terms of f ,
really must be an (`, r)-weighted averaging rule.

6Owing to the fact that points in [0, 1] can be interpreted as prob-
abilities, Lemma 11 is reminiscent of results on probabilistic opinion
pooling with general agendas by Dietrich and List [2017].

Generalising from the standard continuous scale [0, 1] to ar-
bitrary continuous scales S is possible by exploiting the fact
that any such S can be obtained as the image of [0, 1] under
some affine transformation. We formulate this fact as a char-
acterisation result for the family of weighted averaging rules:

Theorem 12. For any continuous scale S, a continuous inter-
val aggregation rule is both an (`, r)-rule and an (`, w)-rule
if and only if it is an (`, r)-weighted averaging rule.

Proof. As previously noted, every (`, r)-weighted averaging
rule is is both an (`, r)-rule and an (`, w)-rule. For the other
direction, consider an arbitrary continuous scale S. W.l.o.g.,
assume |S| > 1. Let a := max(S) − min(S) > 0 and
b := min(S). Then we can generate S as follows:

S = { a · x+ b | x ∈ [0, 1] }

For the sake of contradiction, suppose there exists a contin-
uous (`, r, w)-rule F on S (with component-aggregators f`,
fr, and fw) that is not a weighted averaging rule. Construct
an (`, r, w)-rule F ′ on [0, 1] in terms of f ′`, f

′
r, and f ′w:

f ′`(x1, . . . , xn) = 1
a · [ f`(a · x1 + b, . . . , a · xn + b)− b ]

f ′r(x1, . . . , xn) = 1
a · [ fr(a · x1 + b, . . . , a · xn + b)− b ]

f ′w(x1, . . . , xn) = 1
a · fw(a · x1, . . . , a · xn)

By construction, F ′ is a continuous (`, r, w)-rule, yet it is not
a weighted averaging rule (as otherwise F would be as well).
But this contradicts Lemma 11, so we are done.

Note that the only (`, r)-weighted averaging rule that is
anonymous (i.e., treats all agents symmetrically) has ai = 1/n
for all i ∈ N . So if we require anonymity, this is the unique
continuous rule that is both an (`, r)-rule and an (`, w)-rule.

5 Conclusion
We introduced the notion of representation-faithfulness into
the study of interval aggregation and found that the choice
of representation heavily influences the aggregation rules we
can design: for discrete scales it is impossible to define a non-
dictatorial rule that is simultaneously faithful to two natural
representations, while for continuous scales only weighted
averaging rules meet this requirement. The extent to which
the latter should be interpreted as a positive result is open to
debate. On the one hand, taking (weighted) averages is often
used in practice and has been argued for in cognitive psychol-
ogy [Yaniv, 1997] and risk analysis [Ferson and Kreinovich,
2001]. On the other hand, it is well-understood in social
choice theory that averages tend to be less well-behaved than
medians [Black, 1948; Moulin, 1980], and this also applies to
interval aggregation [Farfel and Conitzer, 2011].

Our work paves the way to the investigation of several
questions for future research. A natural first direction would
be the study of other representations (e.g., involving compo-
nents such as volume, counting the number of points in a finite
interval, which subtley differs from an interval’s width). An-
other direction of interest concerns restricted domains (cf. the
constraints on the input in Example 3).
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