Halfway between Points and Intervals:
A Temporal Logic Based on Ordered Trees

Ulle Endriss' and Dov Gabbay?

! Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2AZ (UK)
Email: ue@doc.ic.ac.uk
2 Department of Computer Science, King’s College London
Strand, London WC2R, 2LS (UK)
Email: dg@dcs.kcl.ac.uk

Abstract. We present a new modal logic that is suitable to model complex
systems evolving over time in a modular fashion. This logic may be regarded
as the result of extending propositional linear temporal logic by a second di-
mension that allows us to “zoom” into states and thereby to further refine the
specification of events associated with these states. In this sense, our logic may
be described as an extended temporal logic that combines features from point-
based and interval-based temporal logics. From an abstract point of view, our
logic is best described as a modal logic over frames that are ordered trees.

1 Introduction

Temporal logics have been highly successful in several areas of computer science,
in particular the specification and verification of reactive systems [6,13]. For many
applications the simplified view of time as a sequence of points turns out to be an
adequate abstraction of reality. Notably in the area of temporal reasoning in artificial
intelligence, however, authors have argued for systems based on time intervals rather
than points [1]. Also in software engineering the difficulties associated with modelling
the refinement of a system specification using a point-based temporal logic are widely
recognised as an important problem [8]. Clearly, intervals provide us with a richer
temporal representation formalism than simple point-based temporal logics.

On the downside, interval temporal logics are typically undecidable [11,12,16]. In
this paper, we propose a middle way by introducing a temporal logic that is essentially
point-based, but also integrates some of the desirable features of interval temporal
logics, without giving up decidability. This logic may be regarded as the result of
extending propositional linear temporal logic by a second dimension that allows us to
“zoom” into states (which we may interpret as time intervals) and thereby to further
refine the specification of events associated with these intervals (by explicitly speaking
about their subintervals). As we shall see, another characterisation of this logic would
be that of a modal logic of ordered trees. The purpose of this paper is to introduce the
syntax and semantics of this new logic and to demonstrate its potential as a temporal
representation language, mostly by example. For further details and proofs of the
technical results (that we shall mention only in passing here) we refer to [7].

This paper is structured as follows. In Sec. 2, after a brief discussion of the respec-
tive merits and deficiencies of point-based and interval-based approaches to modelling

time, we motivate the idea of adding a zoom to linear temporal logic and give an in-
formal account of the resulting modal logic of ordered trees. This is complemented
by a formal definition of the logic in Sec. 3. A number of issues relevant to using this
logic as a temporal representation formalism are discussed in Sec. 4. We conclude in
Sec. 5 with a brief review of related work.

2 From Points and Intervals to Ordered Trees

In this section we motivate our basic idea of developing a modal logic that is some-
where in between a simple point-based temporal logic on the one hand and a full
interval logic on the other.

2.1 Points and Intervals

Given two distinct time points t; and to, the former may either lie before or after the
latter. Furthermore, if time is assumed to be discrete, the two may also meet, i.e. one
of them may lie immediately before the other.

In contrast, an interval may not only lie before another interval, but the two may
also meet or overlap, or the former may either start, finish, or take place during the
latter. In fact, there are exactly 13 different interval relations (the six aforementioned,
their inverses, and equality). These relations are often referred to as Allen relations,
due to Allen’s influential paper [1]. An example for an interval logic is the modal logic
of time intervals proposed by Halpern and Shoham [11], which is a multi-modal logic
equipped with modal operators for each one of the 13 Allen relations (some of which
are defined operators).

Both point-based and interval-based temporal logics (such as Halpern and
Shoham’s logic) allow us to model situations where one event takes place before (and
possibly immediately before) another event. However, a logic where primitive units
of time are intervals goes beyond simple point-based temporal logics in the following
two crucial ways:

— we may express that two time units overlap; and
— we may express that a time unit can be decomposed into several others.

In addition to that, the full range of interval relations would also allow us to distin-
guish, for instance, between subintervals starting the dominating interval and subin-
tervals that lie strictly during the dominating interval.

Halpern and Shoham’s logic is strongly undecidable; so we cannot hope for a
general modal interval logic with all these features that is computationally feasible.
However, a restricted interval logic may still be of interest. Rather than using a logic
that supports the full range of the 13 Allen relations, for certain applications it may be
sufficient to consider a logic that allows us to speak at least about (i) past and future
events (in the same way as a point-based logic would) and (ii) events taking place
at subintervals of the reference interval—but a logic that cannot model the notion of
overlapping intervals. We are now going to introduce such a logic as an extension of
propositional linear temporal logic.

ROOT

y 4 .
yz A
Sp el oY @ @1
............. > @ o [] []

e
2
kS
~§ h : :
3 ¥ 14 N N
S e —=> 0 —>0 —>0
= R : : L
= ¥y ooy N NN OO ¥
3 e—>0-—>0-—>0-—>0—>0
= X X By
FovoN A
- e >0>0>0
time " ®op

Fig. 1. Zooming in

2.2 Zooming in on Linear Temporal Logic

Despite their success in the area of systems specification, a drawback of standard
point-based temporal logics is that they do not support the notion of refinement in
a natural manner. There is no simple way to extend a given specification in, say,
propositional linear temporal logic by the specification of a new subsystem. To over-
come this problem, we propose to add a zoom to linear temporal logic by explicitly
relating the state to be refined to another time line which represents the course of
events taking place during that “state” (or rather the time interval associated with
that state), at the next lower level of abstraction. The new states may themselves be
refined, i.e. we may also zoom into the states on the second level of abstraction, and
so forth. This idea is illustrated in Fig. 1.

The picture also shows some of the modal operators we propose to include into our
new temporal language. The horizontal operators are those of linear temporal logic.
For instance, we write ¢¢ to say that ¢ is true at some future state (at the same
level of abstraction), while Oy expresses that ¢ is true at the next state (again at the
same level of abstraction).? There are similar operators available to speak about the
past. As for the vertical operators, we write ®p to say that ¢ is true at some state
belonging to the next lower level of abstraction, and ©T ¢ if ¢ is true at some state
of some lower level of abstraction. To be able to move back up again in the hierarchy

3 Note that we do not consider the until-operator here.

of states, we may use either O (to refer to the next higher level of abstraction) or ¢
(to refer to some higher level).

Linear temporal logics are based on linear orders. What is the structure underlying
our extended temporal logic? If we add a “first level of abstraction” consisting of only
a single state (which may be thought of as representing the specified system as a
whole) to the kind of model we have described before, we end up with a tree-like
structure where the children of each node are ordered. Hence, from an abstract point
of view, our extended temporal logic may be characterised as a modal logic of ordered
trees.

3 Syntax and Semantics of OTL

In this section, we introduce OTL, the modal logic of ordered trees, formally and
(mostly) independently from its potential interpretation as an extended temporal
logic based on decomposable time units. We assume some familiarity with elementary
modal logic (see e.g. Blackburn et al. [3]).

3.1 Syntax

The language of OTL is built around a countable set of propositional letters. The
set of well-formed formulas A of our logic is formed according to the following BNF
production rule (where P stands for any propositional letter):

Au=P|-A|ANA| OA| CA| OA | ©A| GA| ®A| ©A | ©TA

Further propositional connectives (as well as L and T) are defined as syntactical
abbreviations in the usual manner. Also, for each of the diamond-operators in our
language we introduce a corresponding box-operator, e.g. 3 p = = O,

3.2 Ordered Trees

An ordered tree is a tree where the children of each node are ordered. The following
definition of a tree is a slight modification of that given by Goldblatt [10]:*

Definition 1 (Trees). A tree is a pair T = (T, R), where T is a set and R is an
wrreflexive binary relation over T satisfying the following conditions:

1. For every t € T there exists at most one t' € T with (t',t) € R.
2. There exists a unique r € T such that {t € T | (r,t) € R*} =T.

The elements of T are called nodes. The element r from condition (2) is called the
root of T. R is called the child relation and also gives rise to the following: the par-
ent relation R™1, the descendant relation RY, the ancestor relation (R™Y)*, and the
sibling relation R~'o R.

4 Here and in the sequel we refer to a number of relational algebra operations: the inverse
of a relation R is denoted by R™'; the composition of two relations Ry and Rs is written
as R1 o Ro; R™ denotes the reflexive transitive closure and R™T the non-reflexive transitive
closure of R, respectively.

So by referring, for instance, to a node t; as the parent of to, we mean that (¢1,t2) € R.
Node t3 is then called a child of ;. Similarly, if (t1,¢2) € RT then ¢; is called an
ancestor of to, and t5 is called a descendant of ¢;. Two nodes that share the same
parent are called siblings. Starting at any node, if we first move up one level using
the parent relation and then one level down via the child relation, we will end up at
a sibling of the first node; that is, if we have (¢1,t2) € R~'o R then t; is a sibling of
to and vice versa. The nodes in a tree may be considered as being “generated” by the
root node via the transitive closure of the child relation R. This excludes certain kinds
of structures, such as trees (in a wider sense of the word) where the child relation
could, for instance, be dense. In other words, we only consider trees of order-type N.

We are now ready to define ordered trees as trees with an additional (linear)
order over the children of each node. Observe that the sibling relation R~'o R is an
equivalence relation over the set of nodes excluding the root. For a given node ¢ the
“quasi-equivalence class” [t|g-1,p = {t' € T | (t,t') € R~'o R} is the set of siblings
of t (including ¢ itself); only if ¢ is the root of the tree then [t]z-1,x is the empty set.

Definition 2 (Ordered trees). An ordered tree is a triple T = (T, R, S) where
(T, R) is a tree, S C R™1oR, and ([t|g-10r,S) is a strict linear order for everyt € T.
If (t1,t2) € S then t1 is called a left sibling of ta, and to is called a right sibling of t;.
If furthermore (t1,t2) & S oS then ty is called the left neighbour of ta, and to is called
the right neighbour of t1.

According to this definition the horizontal relation declared over the children of a given
node could be any strict linear order. In particular, it is not required to be discrete.
This means, for example, that it is possible that a node has righthand siblings but no
righthand neighbour, namely when that node is dense, i.e. when there are infinitely
many nodes between itself and any of its righthand siblings. That is, OTL will turn
out to be an extension of linear temporal logic over general flows of time.

3.3 Semantics

We can now move on to the definition of models and the notion of truth of a formula
in a model. OTL is a standard modal logic and frames in this modal logic are ordered
trees.

Definition 3 (Models). An ordered tree model is a pair M = (T,V), where T s
an ordered tree and V is a valuation, that is, a mapping from propositional letters to
subsets of the set of nodes in T .

Definition 4 (Truth). We inductively define the notion of truth of a formula in a
model M = (T,V) with T = (T, R, S) at a nodet € T as follows:

M,t = P iff t € V(P) for propositional letters P;

M.t ’: -~ iff M.t l# ®5

Mt E oAy iff Mt E ¢ and M, t = 1;

Mt | = Op iff t is not the root of T and M,t' |= ¢ for the parent t' of t;
Mt = Op iff t has got an ancestor t' with M,t' = p;

M,t = O iff t has got a left neighbour t' with M,t' = ¢;

Mt = ©p iff t has got a left sibling t' with M, t' = @;

RS G oo~

8. M.t = Oy iff t has got a right neighbour t' with M,t' = p;
9. M,t E Gy iff t has got a right sibling t' with M, t' |= @;
10. M,t =y iff t has got a child t' with M, t' |= ¢;
11. Mt =% iff t has got a descendant t' with M, |= .

It follows, for instance, that a formula of the form [y is true at a node ¢ in a given
model M iff ¢ is true at every righthand sibling of ¢. The notion of satisfiability and
validity are defined as usual [3]. Furthermore, a formula ¢ is called globally true in a
given model M iff ¢ is true at every node in M. A formula ¢ is called valid in an
ordered tree T iff ¢ is true at every node in every model based on 7.

In [7] a complete axiomatisation of a large sublogic of the logic presented here
(namely the fragment of OTL excluding the descendant operator &) is given. We
hope to address the issue of extending this axiomatisation to the full logic in our
future work.

3.4 Decidability

We note here that it has been shown in [7] that OTL is a decidable logic. The proof
amounts, essentially, to a reduction to Rabin’s Theorem on the decidability of S2S,
the monadic second-order theory of two successor functions [17]. This reduction builds
on the well-known construction used to prove the decidability of propositional linear
temporal logic over the rationals [9,17]. An important intermediate lemma establishes
that every formula with any ordered tree model at all will also have a model based
on an ordered tree with (at most) a countable number of nodes. This allows us to
lift the decidability result obtained using reduction (which applies only to OTL over
countable trees) to the general case. Using similar arguments, we can show that OTL
restricted to certain classes of ordered trees (such as those where sequences of siblings
are required to be discrete orders) is also decidable [7].

If we compare our logic with the undecidable interval logic of Halpern and
Shoham [11], we observe two important differences that may account for the different
computational behaviour of the two logics. Firstly, OTL cannot model the concept of
overlapping time intervals. Secondly, if we consider the set of intervals represented by
some ordered tree model, that set does not (necessarily) contain all the intervals we
could construct from the endpoints of the intervals already in the set. For instance,
just because a model does feature two neighbouring intervals does not mean that that
model will also include the interval we would obtain by conjoining those two intervals
(namely if the two nodes in question have further siblings in the tree). This is differ-
ent for Halpern and Shoham’s logic, which—intuitively—makes the latter the more
complex system.

Such intuitive explanations aside, a possible objection to a decidability proof by
reduction to a very powerful system like S2S would be that it provides only little
insight as to why the logic in question is decidable. We are currently investigating
options for proving decidability of OTL directly, namely by using techniques inspired
by the work of Sistla and Clarke [19] on upper complexity bounds for linear temporal
logics. Such a proof may not only help to understand OTL better, but it may also
provide a good starting point for analysing the computational complexity of our logic.

GLOBAL PAsT GLOBAL FUTURE

AN SN AN I
AN NN
AN AN A

Fig. 2. Scope of the global past and future modalities

4 OTL as a Temporal Representation Language

Our inspiration for devising a modal logic of ordered trees was to extend propositional
linear temporal logic in a way that allows us to describe systems evolving over time in
a modular fashion. Under this view of OTL, nodes in a tree represent time intervals. In
this section, we discuss some of the issues relevant to interpreting OTL as a temporal
logic.

If ¢ is an ancestor of ¢ then we can think of the interval corresponding to t5 as
taking place during that corresponding to ¢1. If ¢; is a lefthand sibling of ¢5 then the
interval corresponding to t; takes place before that corresponding to ¢s. If ¢; and ¢ are
neighbours then the corresponding intervals meet, that is, t; takes place immediately
before t5. As we shall see next, we can apply the notion of one event taking place
before another also to nodes that are not siblings.

4.1 Global Past and Future Modalities

We can combine basic OTL modalities in such a way as to catch not only the siblings
to, say, the right of a given node ¢, but all the nodes that lie somewhere to the right
of t anywhere in the tree. In the context of our temporal interpretation of OTL, such
an operator may be described as a “global future” modality. We think of the nodes
representing time points in the future of ¢ as those nodes we can reach by first going
up an unspecified number of levels in the tree (or staying at t), then making at least
one step to the right (that is, moving to a righthand sibling), and finally moving down
any number of levels (or possibly staying where we are). Analogously, we can define
a global past modality to refer to nodes anywhere to the left of the current node.

Let ®*p = ¢ V ®p and ©*¢ = ¢ V &Tp for all formulas ¢. We are now in a
position to give syntactical definitions of an existential global past operators € and
a corresponding global future operator & as follows:

Sp = SFOVTY Py = SFEFY

Box-operators dual to these may be defined in the usual manner. Fig. 2 provides a
graphical depiction of the scope of our global past and future operators. Take, for

instance, the tree on the righthand side. The formula ®¢ is supposed to hold at one
of the nodes in the tree. To get to the witness formula ¢ shown in the picture, we
first have to move up two levels in the tree, then move two steps to the right, and
finally move down again by one level. The nodes in the scope of & are shown as little
empty circles (o), while the rest of the nodes are represented as filled circles (o). The
lefthand side of the picture shows a similar example for the case of the existential
global past modality.

4.2 Omntological Considerations

Suppose @ is a formula that is true at some node t. If we think of the children of ¢ as
a more fine-grained representation of the time interval associated with ¢, then should
this not imply that ¢ must also hold at any of the children of t? If ¢ stands for “Mary
travelled all the way from London to Vienna” then it may very well be true at some
node ¢, but false at one of ¢’s children (that is, during a time period within the one
corresponding to t). In fact, we might even want to enforce - for all descendants of
t as Mary cannot complete her entire journey both over the duration of ¢ and also in
a shorter period within ¢. If, on the other hand, ¢ stands for a proposition like “Mary
has long blonde hair” then we do want ¢ to hold at descendants of ¢ as well. In the
literature on foundations of planning, propositions of the latter kind have been called
properties or facts, while propositions like “Mary travelled all the way from London
to Vienna” are known as events [2,14,18].

Such ontological distinctions often form an integral part of the definition of a
planning formalism. In Allen’s work [2], for example, the definition of the predicates
HOLDS and OCCUR, which are used to distinguish between different types of proposi-
tions, is central to the entire system. HOLDS is applied only to properties and OCCUR
is reserved for the use with occurrences (an ontological category that includes events).
This approach has been criticised by Shoham [18], who argues that, in the first in-
stance, one should rather not make any specific commitments to ontology, but then
allow for the definition of a fine ontological structure on top of the basic formalism.
In the sequel, we demonstrate how this may be done in the case of OTL.

A property like “Mary has long blonde hair” is homogeneous: a homogeneous
proposition ¢ is true iff it is true at every time interval within the reference interval.
Following Shoham [18] we define homogeneous propositions as propositions that are
both downward-hereditary and upward-hereditary. A proposition is called downward-
hereditary if whenever it holds at some node it also holds at all descendants of that
node. Analogously, a proposition is called upward-hereditary if whenever it holds at
all descendants of a given node it also holds at that node itself (assuming that node
has any descendants at all).

DOWN-HERED(p) = ¢ — Oty
UP-HERED(p) = ©T — (Dtyp — ¢)
HOM(p) = DOWN-HERED(p) A UP-HERED(p)

That is, ¢ is a homogeneous proposition (with respect to a given model) iff HOM(¢)
is globally true in that model.

An event such as “Mary travelled all the way from London to Vienna” should not
hold over two time intervals one of which properly contains the other. Shoham [18]

calls propositions of this type gestalt.® In the context of OTL we can interpret this
condition as follows. A proposition ¢ is gestalt iff whenever ¢ is true at a node t then
it must be false at all ancestors and descendants of t:

GESTALT(p) = ¢ — (O—p A OT—p)

Another ontological concept that can be expressed is locality. A proposition ¢ is called
local iff ¢ is true during a particular interval whenever it is true at the beginning of
that interval [11]. In our system, the beginning of an interval may be identified with
the leftmost child of a node. Observe that a node is a leftmost child iff it satisfies the
formula B1 L. For better readability, we abbreviate LEFTMOST = Bl 1. The following
definition takes into account that a node does not necessarily have to have a leftmost
child:
LOCAL(p) = (QLEFTMOST A ¢) < <(LEFTMOST A)

What we have seen here are just examples. Hopefully, they give some impression of
the variety of options available to us when using OTL as a temporal representation
formalism.

5 Conclusion

We have proposed a new modal logic that, in our view, provides an interesting al-
ternative to some of the well-studied interval temporal logics. Primitive time units of
this logic are somewhere between points and intervals: they may be decomposed (like
intervals, unlike points), but they cannot overlap (like points, unlike intervals). The
ability to decompose basic time units allows for the modelling of systems in a modular
fashion, in a way that is not possible for a logic with a strictly point-based semantics.
On the other hand, by restricting the expressive power (in particular, by excluding
the notion of overlapping time periods), we have been able to retain decidability of
our logic, a crucial feature not shared by many other interval temporal logics. We
conclude by reviewing some related systems.

Moszkowski’s ITL [16], in particular if extended with a projection operator, is an
interval logic suitable to reason about the decomposition of time units into smaller
parts. However, unlike our logic, ITL does not provide means of referring to intervals
outside the reference interval, i.e. it is not possible to reason about either future or
past events. Another logic that allows for the decomposition of time periods is the
layered temporal logic of time granularities proposed by Montanari [15]. This logic
is particularly suited for domains where reasoning about fized time units and their
relation to each other is required (e.g. days, hours, and minutes).

The logic that seems to come closest to our logic (that we are aware of) is probably
the logic of finite trees of Blackburn, Meyer-Viol and de Rijke [5]. Important differ-
ences include that the horizontal dimension in our logic need not be discrete and that
branches may be of infinite length. In fact, such restrictions to the class of admissible
frames can be expressed within OTL. For instance, the formula A — &*(AA@T=A)

5 Related to this, Shoham also defines the class of solid propositions, which are propositions
that cannot be true at overlapping intervals. This would provide an alternative way to
characterise events, but overlapping intervals cannot be represented in OTL.

will be valid in a tree whenever that tree is a tree of finite depth [4, 7]. The formula es-
sentially expresses that for every node satisfying A there must be a “final” descendant
along any branch that also satisfies A. Discreteness is characterised by the formula
B(BA — A) — (6BA — BA), that is, by the usual axiom schema for discrete flows
of time [10]. Apart from such technical differences, we consider our interpretation of
this kind of logic as a temporal logic (with time running orthogonally to the tree
structure) an important conceptual contribution.

Acknowledgements. The work reported here has been partially supported by UK
EPSRC grants GR/R45369/01 and GR/N23028/01.

References

1.

2.

3.

o

10.
. J. Y. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal

12.

13.
14.
15.
16.
17.
18.

19.

J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the
ACM, 26(11):832-843, 1983.

J. F. Allen. Towards a General Theory of Action and Time. Artificial Intelligence,
23:123-154, 1984.

P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,
2001.

P. Blackburn and W. Meyer-Viol. Linguistics, Logic and Finite Trees. Logic Journal of
the IGPL, 2:3-29, 1994.

P. Blackburn, W. Meyer-Viol, and M. de Rijke. A Proof System for Finite Trees. In
H. Kleine Biining, editor, Computer Science Logic, volume 1092 of LNCS, pages 86-105.
Springer-Verlag, 1996.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

U. Endriss. Modal Logics of Ordered Trees. PhD thesis, King’s College London, Depart-
ment of Computer Science, January 2003.

J. L. Fiadeiro and T. Maibaum. Sometimes “tomorrow” is “sometime”: Action Refine-
ment in a Temporal Logic of Objects. In D. Gabbay and H. J. Ohlbach, editors, Temporal
Logic, volume 827 of LNAI, pages 48—66. Springer-Verlag, 1994.

D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foundations
and Computational Aspects, volume 1. Oxford University Press, 1994.

R. Goldblatt. Logics of Time and Computation. CSLI, 2nd edition, 1992.

of the ACM, 38(4):935-962, 1991.

K. Lodaya. Sharpening the Undecidability of Interval Temporal Logic. In J. He and
M. Sato, editors, Proceedings of the 6th Asian Computing Science Conference (ASIAN-
2000), volume 1961 of LNCS, pages 290-298. Springer-Verlag, 2000.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992.

D. V. McDermott. A Temporal Logic for Reasoning about Processes and Plans. Cognitive
Science, 6:101-155, 1982.

A. Montanari. Metric and Layered Temporal Logic for Time Granularity. PhD thesis,
Institute for Logic, Language and Computation, University of Amsterdam, 1996.

B. Moszkowski. A Temporal Logic for Multilevel Reasoning about Hardware. IEEE
Computer, 18(2):10-19, 1985.

M. O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees.
Transactions of the AMS, 141:1-35, 1969.

Y. Shoham. Temporal Logics in Al: Semantical and Ontological Considerations. Artifi-
cial Intelligence, 33:89-104, 1987.

A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear Temporal Logics.
Journal of the ACM, 32(3):733-749, 1985.

