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Abstract. A multiagent system may be regarded as an artificial soci-
ety of autonomous software agents. Welfare economics provides formal
models of how the distribution of resources amongst the members of a
society affects the well-being of that society as a whole. In multiagent
systems research, the concept of social welfare is usually given a utili-
tarian interpretation, i.e. whatever increases the average welfare of the
agents inhabiting a society is taken to be beneficial for society as well.
While this is indeed appropriate for a wide range of applications, we
believe that it is worthwhile to also consider some of the other social
welfare orderings that have been studied in the social sciences. In this
paper, we put forward an engineering approach to welfare economics in
multiagent systems by investigating the following question: Given a par-
ticular social welfare ordering appropriate for some application domain,
how can we design practical criteria that will allow agents to decide lo-
cally whether or not a proposed deal would further social welfare with
respect to that ordering? In particular, we review previous results on
negotiating Pareto optimal allocations of resources as well as allocations
that maximise egalitarian social welfare under this general perspective.
We also provide new results on negotiating Lorenz optimal allocations,
which may be regarded as a compromise between the utilitarian and the
egalitarian approaches. Finally, we briefly discuss elitist agent societies,
where social welfare is tied to the welfare of the most successful agent,
as well as the notion of envy-freeness.

1 Introduction

Multiagent systems have been successfully applied in a variety of different areas,
ranging from electronic commerce [12], over collaborative planning [5], to the
fair sharing of resources provided by an earth observation satellite [8]. We may
think of a multiagent system as a “society” of autonomous software agents.
Given a “solution” to a problem generated by such a society, we may assess the
quality of that solution using tools from formal economical sciences. A typical
example would be the notion of Pareto optimality: A situation (or state of the
system) is called Pareto optimal iff there is no other situation that would make



at least one of the agents in the society happier without making any of the
others worse off. Besides Pareto optimality, many other notions of social welfare
have been put forward in philosophy, sociology, and economics. In the context of
multiagent systems, on the other hand, only Pareto optimality and the utilitarian
programme (where only increases in average utility are considered to be socially
beneficial) have found broad application.

In this paper, we shall argue that also notions such as egalitarian social wel-
fare, Lorenz optimality, or envy-freeness may be usefully exploited when design-
ing multiagent systems. In particular, we are going to discuss scenarios in which
autonomous agents negotiate with each other in order to agree on the redistri-
bution of a number of resources. We put forward an engineering approach to
welfare economics in multiagent systems by showing how we can design criteria
that will allow agents to decide locally whether or not a proposed deal would fur-
ther social welfare according to the metric chosen by the system designer. Here,
we do not use the word engineering in the sense of constructing a physical (or a
software) artefact, but rather to characterise the process of providing practical
guidelines for designing artificial societies that exhibit particular properties we
are interested in. This involves manipulating the decision making capacity of the
agents inhabiting such a society appropriately. While classical welfare economics
is concerned with the characterisation of the property of economic well-being
with respect to the allocation of resources in a society, in this paper, we pro-
mote welfare engineering as the process of “engineering” appropriate behaviour
profiles for individual agents in such a way that particular desirable properties
can be guaranteed to emerge at the level of society.

The remainder of this paper is structured as follows. After motivating the
need for different social welfare orderings in Section 2, we are going to define our
basic negotiation framework in Section 3. In Section 4, we discuss previous results
for two particular instances of this framework, namely for utilitarian systems
(where a society of agents should at least be able to achieve a Pareto optimal
allocation of resources) and for egalitarian systems (where society should aim at
improving the individual welfare of its weakest member). We then move on to
Section 5 and the case of artificial societies where Lorenz optimal allocations of
resources are desirable (a compromise between the utilitarian and the egalitarian
agenda). Before concluding, we briefly discuss elitist agent societies, where social
welfare is tied to the welfare of the happiest agent, and envy-free allocations of
resources in Section 6.

2 The Veil of Ignorance in Multiagent Systems

In the introduction to this paper we have claimed that multiagent systems re-
search could benefit from considering notions of social welfare that go beyond the
utilitarian agenda which aims solely at maximising the sum of the utility levels
enjoyed by the individual agents in a system. The question what social welfare
ordering is appropriate has been the subject of intense debate in philosophy and
the social sciences for a long time. This debate has, in particular, addressed the



respective benefits and drawbacks of utilitarianism on the one hand and egalitar-
ianism on the other [6, 10, 13]. While, under the utilitarian view, social welfare is
identified with average utility (or, equivalently, the sum of all individuals’ utili-
ties), egalitarian social welfare is measured in terms of the individual welfare of
a society’s poorest member. Precise definitions of the respective social welfare
orderings are given in Section 4.

Different notions of social welfare induce different kinds of social principles.
For instance, in an egalitarian system, improving one’s personal welfare at the
expense of a poorer member of society would be considered inappropriate. A
famous argument put forward in defence of egalitarianism is Rawls’ veil of ig-
norance [10]. This argument is based on the following thought experiment. To
decide what form of society could rightfully be called just, a rational person
should ask herself the following question:

Without knowing what your position in society (class, race, sex, . . . ) will
be, what kind of society would you choose to live in?

The idea is to decide on a suitable set of social principles that should apply to
everyone in society by excluding any kind of bias amongst those who choose the
principles. The argument goes that behind this veil of ignorance (of not knowing
your own future role within the society whose principles you are asked to decide
upon), any rational person would choose an egalitarian system, as it insures even
the unluckiest members of society a certain minimal level of welfare.

One may or may not agree with this line of reasoning. What we are inter-
ested in here is the structure of the thought experiment itself. As far as human
society is concerned, this is a highly abstract construction (some would argue,
too abstract to yield any reliable social guidelines). However, for an artificial
society it can be of very practical concern. Before agreeing to be represented by
a software agent in such a society, one would naturally want to know under what
principles this society operates. If the agent’s objective is to negotiate on behalf
of its owner, then the owner has to agree to accept whatever the outcome of a
specific negotiation may be. That is, in the context of multiagent systems, we
may reformulate the central question of the veil of ignorance as follows:

If you were to send a software agent into an artificial society to negotiate
on your behalf, what would you consider acceptable principles for that
society to operate by?

There is no single answer to this question; it depends on the purpose of the
agent society under consideration. For instance, for the application described
in [8], where agents need to agree on the access to an earth observation satellite
which has been funded jointly by the owners of these agents, it is important
that each one of them receives a “fair” share of the common resource. Here, a
society governed by egalitarian principles may be the most appropriate. In an
electronic commerce application running on the Internet where agents have no
commitments to each other, on the other hand, egalitarian principles seem of
little relevance. In such a case, it may be in the interest of the system designer
to ensure at least Pareto optimal outcomes.



3 Resource Allocation by Negotiation

The general framework within which we are going to investigate welfare engi-
neering is that of resource allocation by negotiation, where a number of agents
negotiate the redistribution of a number of discrete (i.e. non-divisible) resources
in order to benefit either themselves or the artificial society they inhabit. A ne-
gotiation scenario consists of a finite set of agents A and a finite set of resources
R. Within such a scenario, a resource allocation A is a partitioning of R amongst
the agents in A. For example, for an allocation A with A(i) = {r3, r7} it would
be the case that agent i owns resources r3 and r7. Given a particular allocation
of resources, agents may agree on a deal to exchange some of the resources they
currently hold. In general, a single deal may involve any number of resources
and any number of agents. It transforms an allocation of resources A into a new
allocation A′, i.e. we can define a deal as a pair δ = (A,A′) of allocations. We
also define the set of agents involved in δ as Aδ = {i ∈ A |A(i) 6= A′(i)}.

Every agent i ∈ A is equipped with a utility function ui : 2R → R to measure
its individual welfare with respect to the set of resources it currently holds. We
abbreviate ui(A) = ui(A(i)) for the utility value assigned by agent i to the set
of resources it holds for allocation A. An agent may or may not find a particular
deal acceptable. Here are some examples for possible acceptability criteria:
– A purely selfish agent may only accept deals δ = (A,A′) that strictly improve

its personal welfare: ui(A) < ui(A′).
– A selfish but cooperative agent may also be content with deals that do leave

its own welfare constant: ui(A) ≤ ui(A′).
– A demanding agent may require an increase of, say, 10 units for each and

every deal it is asked to participate in: ui(A) + 10 ≤ ui(A′).
– A masochist agent may insist on losing utility: ui(A) > ui(A′), etc.

The above are all examples where agents’ decisions are based entirely on their
own utility functions. This need not be the case:
– A disciple of agent guru may only accept deals δ = (A,A′) that increase the

welfare of the latter: uguru(A) < uguru(A′).
– A team worker may require the overall utility of a particular group of agents

to increase: ∑
j∈Team

uj(A) <
∑

j∈Team

uj(A′)

Besides the acceptability criteria adopted by individual agents, the negotiation
protocol in operation may also restrict the range of possible deals δ = (A,A′):
– For instance, a particular protocol may not allow for more than two agents

to be involved in any one deal: |Aδ| ≤ 2.

A social welfare ordering formalises the notion of a society’s “preferences” given
the preferences of its members (the agents) [1, 9]. We are going to see several ex-
amples in the following sections. A particular deal may affect social welfare either
positively or negatively. Our objective is to design criteria for the acceptability
of deals that will guarantee positive or even optimal outcomes of negotiations.



We should stress here that we have made a number of simplifying assumptions
in the definition of our negotiation framework. For instance, we do not take into
account the possible costs incurred by trading agents when they redistribute
bundles of resources (neither when measuring social welfare nor when modelling
the utility functions of individual agents). Furthermore, our framework is static
in the sense that agents’ utility functions do not change over time. In a system
that also allows for the modelling of agents’ beliefs and goals in a dynamic
fashion, this may not always be appropriate. An agent may, for instance, find out
that a particular resource is in fact not required to achieve a particular goal, or it
may simply decide to drop that goal for whatever reason. In a dynamic setting,
such changes should be reflected by a revision of the agent’s utility function.
Still, while assuming constant utility functions for the entire life time of an
agent may be unrealistic, it does indeed seem reasonable that utility functions
do not change for the duration of a particular negotiation process. It is this level
of abstraction that our negotiation framework is intended to model.

The most widely studied mechanisms for the reallocation of resources in
multiagent systems are auctions. We should stress that our scenario of resource
allocation by negotiation is not an auction. Auctions are mechanisms to help
agents agree on a price at which an item (or a set of items) is to be sold [7]. In
our work, on the other hand, we are not concerned with this aspect of negotiation,
but only with the patterns of resource exchanges that agents actually carry out.

4 Results for Utilitarian and Egalitarian Systems

In this section, we summarise and discuss previous results for the cases of agent
societies that are governed by either utilitarian or egalitarian principles [3, 4].

Definition 1 (Utilitarian social welfare). The utilitarian social welfare
swu(A) of an allocation of resources A is defined as follows:

swu(A) =
∑
i∈A

ui(A)

In systems without explicit utility transfers (i.e. in systems where agents cannot
pay each other in order to accept otherwise disadvantageous deals), it is not
always possible to negotiate an allocation of resources that maximises utilitarian
social welfare without individual agents having to accept a loss in utility. A
simple example would be a system with two agents 1 and 2 and a single resource
r with u1({r}) < u2({r}). If agent 1 initially owns the resource, then giving
r to agent 2 would increase utilitarian social welfare, but agent 1 may not be
prepared to do this. This is why, for utilitarian systems, it is more realistic to
aim for allocations that are at least Pareto optimal:

Definition 2 (Pareto optimality). An allocation of resources A is Pareto
optimal iff there is no other allocation A′ such that swu(A) < swu(A′) and
ui(A) ≤ ui(A′) for all i ∈ A.



In [3], agents that are selfish but cooperative have been identified as appropri-
ate for utilitarian systems without explicit utility transfers. Such agents will be
prepared to accept a deal whenever it is cooperatively rational:

Definition 3 (Cooperatively rational deals). A deal δ = (A,A′) is called
cooperatively rational iff ui(A) ≤ ui(A′) for all i ∈ A and there exists an agent
j ∈ A such that uj(A) < uj(A′).

The second part of this definition ensures that at least one agent (say, the one
proposing the deal) will have a strictly positive payoff for every cooperatively ra-
tional deal. This condition is required to ensure the termination of a negotiation
process. The following result is proved in [3]:

Theorem 1 (Pareto optimal outcomes). Any sequence of cooperatively ra-
tional deals will eventually result in a Pareto optimal allocation of resources.

The importance of this result lies in the fact that any sequence of deals will
lead to a Pareto optimal allocation as long as agents only agree to deals that
are cooperatively rational. This means that agents can arrange cooperatively
rational deals locally, as they come up; they do not need to plan ahead for
society to be able to eventually reach an optimal situation.

On the downside, deals involving any number of resources as well as agents
may be necessary to reach an optimal allocation provided agents will only agree
to deals that are cooperatively rational [3]. Realising such a negotiation protocol
seems highly challenging and complex. However, in some cases we can get more
favourable results, where a simpler class of deals is sufficient to guarantee an
optimal outcome. This is, in particular, the case for so-called 0-1 scenarios where
every agent assigns a utility value of either 1 or 0 to each single resource (thereby
specifying whether it does or does not need that resource) and where the utility
value assigned to a set of resources is simply the sum of the single utilities
(i.e. utility functions are additive). In this case, so-called one-resource-at-a-time
deals (i.e. deals only involving a single resource and two agents) are sufficient to
guarantee optimal outcomes in utilitarian systems [3]:

Theorem 2 (Maximising utilitarian welfare in 0-1 scenarios). In 0-1
scenarios, any sequence of cooperatively rational one-resource-at-a-time deals will
eventually result in an allocation of resources with maximal utilitarian welfare.

As an aside, we remark here that in cases where we are interested in maximis-
ing social welfare in a utilitarian agent society with general utility functions,
a framework that includes a monetary component that allows (selfish) agents
to compensate their trading partners for otherwise disadvantageous deals would
be more appropriate. A discussion of such a negotiation framework with money
(i.e. with explicit utility transfers), as well as proofs for sufficiency and necessity
results similar to those reported here, may be found in [3].3

3 See also the work by Sandholm on the closely related subject of sufficient and nec-
essary contract types for optimal allocations of tasks [11].



Table 1. Utility functions for Bob and Mary

ubob({ }) = 0 umary({ }) = 0
ubob({glass}) = 3 umary({glass}) = 5
ubob({wine}) = 12 umary({wine}) = 7

ubob({glass,wine}) = 15 umary({glass,wine}) = 17

We now turn our attention to egalitarian agent societies [4]. The first goal of
an egalitarian society should be to increase the welfare of its weakest member [9,
10, 13]. In other words, we can measure the social welfare of such a society by
measuring the welfare of the agent that is currently worst off:

Definition 4 (Egalitarian social welfare). The egalitarian social welfare
swe(A) of an allocation of resources A is defined as follows:

swe(A) = min{ui(A) | i ∈ A}

When searching the economics literature for a class of deals that would benefit
society in an egalitarian system we soon encounter Pigou-Dalton transfers [9]. In
the context of our framework, a Pigou-Dalton transfer (between agents i and j)
can be defined as follows:

Definition 5 (Pigou-Dalton transfers). A deal δ = (A,A′) is called a Pigou-
Dalton transfer iff it satisfies the following criteria:
– Only two agents i and j are involved in the deal: Aδ = {i, j}.
– The deal is mean-preserving: ui(A) + uj(A) = ui(A′) + uj(A′).
– The deal reduces inequality: |ui(A′)− uj(A′)| < |ui(A)− uj(A)|.

The second condition could be relaxed to ui(A) + uj(A) ≤ ui(A′) + uj(A′),
to also allow for inequality-reducing deals that increase overall utility. Pigou-
Dalton transfers capture certain egalitarian principles; but are they sufficient as
acceptability criteria to guarantee optimal outcomes of negotiations for society?

Consider a scenario with two agents, Bob and Mary, and two resources, a
bottle of wine and an empty glass. The utility functions for the two agents are
given in Table 1. Bob attributes a high utility value to the wine and a low value
to the glass. Furthermore, the value of both resources together is simply the sum
of the individual utilities for Bob (no synergy effects). Mary ascribes a medium
value to either resource and a very high value to the full set. Now suppose
the initial allocation of resources is A with A(bob) = {glass} and A(mary) =
{wine}. The “inequality index” for this allocation is |ubob(A) − umary(A)| = 4.
We can easily check that inequality is in fact minimal for allocation A. However,
allocation A′ with A′(bob) = {wine} and A′(mary) = {glass} would result in
higher egalitarian social welfare (namely 5 instead of 3). Hence, Pigou-Dalton
transfers alone are not sufficient to guarantee optimal outcomes of negotiations
in egalitarian agent societies. We need a more general acceptability criterion. To
this end, we have put forward the class of equitable deals in [4]:

Definition 6 (Equitable deals). A deal δ = (A,A′) is called equitable iff we
have min{ui(A) | i ∈ Aδ} < min{ui(A′) | i ∈ Aδ}.



As shown in [4], this is a sufficient acceptability criterion for deals to guarantee
optimal negotiation results in egalitarian systems:

Theorem 3 (Maximising egalitarian welfare). Any sequence of equitable
deals will eventually result in an allocation with maximal egalitarian welfare.

Again, the connections between the local acceptability criterion and the global
welfare ordering are not that surprising. The importance of the theorem lies in
the fact that it allows agents to converge towards a global optimum by agree-
ing on exchanges of resources locally, without having to consider the welfare
of agents not involved into a particular deal. In the literature on multiagent
systems, the autonomy of an agent (one of the central features distinguishing
multiagent systems from other distributed systems) is sometimes equated with
pure selfishness. Under such an interpretation of the agent paradigm, our notion
of equitability would, of course, make little sense. We believe, however, that it
is useful to distinguish different degrees of autonomy. An agent may well be au-
tonomous in its decision in general, but still be required to follow certain rules
imposed by society (and agreed to by the agent on entering that society).

From a purely practical point of view, our results for egalitarian agent soci-
eties may be of a lesser interest than those for utilitarian systems, because in
the former case it has not been possible to define a deal acceptability criterion
that only depends on a single agent. Of course, this coincides with our intuitions
about egalitarian societies: maximising social welfare is only possible by means
of cooperation and the sharing of information on agents’ preferences.

5 Negotiating Lorenz Optimal Allocations of Resources

We are now going to introduce a welfare ordering that combines utilitarian and
egalitarian notions of social welfare. The basic idea is to endorse deals that result
in an improvement with respect to the utilitarian welfare function without caus-
ing a loss in egalitarian welfare, and vice versa. An appropriate welfare ordering
for this kind of agent society is given by the notion of Lorenz domination [9].

For a society with n agents, let {u1, . . . , un} be the set of utility func-
tions for that society. Then every allocation A determines a utility vector
〈u1(A), . . . , un(A)〉 of length n. If we rearrange the elements of that vector in
increasing order we obtain the ordered utility vector for allocation A, which we
are going to denote by ~u(A). The number ~ui(A) is the ith element in that or-
dered utility vector (for 1 ≤ i ≤ n). That is, ~u1(A) for instance, is the utility
value assigned to allocation A by the currently weakest agent.

Definition 7 (Lorenz domination). Let A and A′ be allocations of resources
for a society with n agents. Then A is Lorenz dominated by A′ iff we have

k∑
i=1

~ui(A) ≤
k∑
i=1

~ui(A′)

for all k with 1 ≤ k ≤ n and that inequality is strict in at least one case.



Table 2. A situation that is not Lorenz optimal

Agent 1 Agent 2 Agent 3

A(1) = { } A(2) = { } A(3) = {r1, r2}
u1({ }) = 0 u2({ }) = 0 u3({ }) = 0

u1({r1}) = 6 u2({r1}) = 1 u3({r1}) = 1
u1({r2}) = 1 u2({r2}) = 6 u3({r2}) = 1

u1({r1, r2}) = 7 u2({r1, r2}) = 7 u3({r1, r2}) = 10

For any k with 1 ≤ k ≤ n, the sum referred to in the above definition is the sum
of the utility values assigned to the respective allocation of resources by the k
weakest agents. For k = 1, this sum is equivalent to the egalitarian social welfare
for that allocation. For k = n, it is equivalent to the utilitarian social welfare.

An allocation of resources is called Lorenz optimal iff it is not Lorenz dom-
inated by any other allocation. When moving from one allocation of resources
to another such that the latter Lorenz dominates the former we also speak of a
Lorenz improvement.

We are now going to try to establish connections between the global welfare
measure induced by the notion of Lorenz domination on the one hand, and var-
ious local criteria on the acceptability of a proposed deal that individual agents
may choose to apply on the other. For instance, it is an immediate consequence
of Definitions 3 and 7 that, whenever δ = (A,A′) is a cooperatively rational deal,
then A must be Lorenz dominated by A′. As may easily be verified, any deal
that amounts to a Pigou-Dalton transfer will also result in a Lorenz improve-
ment. On the other hand, it is not difficult to construct examples that show that
this is not the case for the class of equitable deals anymore (that is, while some
equitable deals will indeed result in a Lorenz improvement, others will not).

Our next goal is to find a class of deals that captures the notion of Lorenz
improvements in as so far as, for any two allocations A and A′ such that A is
Lorenz dominated by A′, there exists a sequence of deals (or possibly even a single
deal) belonging to that class leading from A to A′. Given that both cooperatively
rational deals and Pigou-Dalton transfers always result in a Lorenz improvement,
the union of these two classes of deals may seem like a promising candidate. In
fact, according to a result reported by Moulin [9, Lemma 2.3], it is the case
that any Lorenz improvement can be implemented by means of a sequence of
Pareto improvements and Pigou-Dalton transfers.4 It is important to stress that
this seemingly general result does not apply to our negotiation framework. To
see this, consider the example shown in Table 2. The ordered utility vector for
allocation A, which assigns both resources to agent 3, is ~u(A) = 〈0, 0, 10〉, i.e.
utilitarian social welfare is currently 10. Allocation A is Pareto optimal, because
any other allocation would be strictly worse for agent 3. Hence, there can be no
cooperatively rational deal that would be applicable in this situation. We also
observe that any deal involving only two agents would at best result in a new
allocation with a utilitarian social welfare of 7 (this would be a deal consisting

4 Note that every Pareto improvement corresponds to a cooperatively rational deal [3].



either of passing both resources on to one of the other agents, or of passing the
“preferred” resource to either agent 1 or agent 2, respectively). Hence, no deal
involving only two agents (and in particular no Pigou-Dalton transfer) could
possibly result in a Lorenz improvement. However, there is an allocation that
Lorenz dominates A, namely the allocation assigning to each one of the first two
agents their respectively preferred resource. This allocationA′ withA′(1) = {r1},
A′(2) = {r2} and A′(3) = { } has got the ordered utility vector 〈0, 6, 6〉. The
reason why Moulin’s result is not applicable to our domain is that we cannot use
Pigou-Dalton transfers to implement arbitrary utility transfers here. Any such
transfer has to correspond to a move in our (discrete) negotiation space.

While this negative result emphasises, again, the high complexity of our
negotiation framework, we can get better results for scenarios with restricted
utility functions. Recall our definition of 0-1 scenarios where utility functions can
only be used to indicate whether an agent does or does not need a particular
resource: In such a scenario, ui({r}) is required to be either 0 or 1 for every
agent i ∈ A and every (single) resource r ∈ R. Furthermore, utility functions
are required to be additive, i.e. we have ui(R) =

∑
r∈R ui({r}) for every set of

resources R ⊆ R. As we shall see next, for 0-1 scenarios, the aforementioned
result of Moulin does apply. In fact, we can even sharpen it a little by showing
that only Pigou-Dalton transfers and cooperatively rational deals involving just
a single resource and two agents are required to guarantee negotiation outcomes
that are Lorenz optimal. We first give a formal definition of this class of deals:

Definition 8 (Simple Pareto-Pigou-Dalton deals). A deal δ = (A,A′) is
called a simple Pareto-Pigou-Dalton deal iff it only involves a single resource and
it is either cooperatively rational or a Pigou-Dalton transfer.

We are now going to show that this class of deals is sufficient to guarantee Lorenz
optimal outcomes of negotiations in 0-1 scenarios:

Theorem 4 (Lorenz optimal outcomes in 0-1 scenarios). In 0-1 scenar-
ios, any sequence of simple Pareto-Pigou-Dalton deals will eventually result in a
Lorenz optimal allocation of resources.

Proof. As pointed out earlier, any deal that is either cooperatively rational or
a Pigou-Dalton transfer will result in a Lorenz improvement (not only in the
case of 0-1 scenarios). Hence, given that there is only a finite number of differ-
ent allocations, after a finite number of deals the system will have reached an
allocation A where no more simple Pareto-Pigou-Dalton deals are possible (that
is, negotiation must terminate).

Now, for the sake of contradiction, let us assume this terminal allocation A
is not optimal, i.e. there exists another allocation A′ that Lorenz dominates A.
Amongst other things, this implies swu(A) ≤ swu(A′), i.e. we can distinguish
two cases: either (i) there has been a strict increase in utilitarian welfare, or (ii)
it has remained constant. In 0-1 scenarios, the former is only possible if there
are (at least) one resource r ∈ R and two agents i, j ∈ A such that ui({r}) = 0
and uj({r}) = 1 as well as r ∈ A(i) and r ∈ A′(j), i.e. r has been moved from



agent i (who does not need it) to agent j (who does need it). But then the deal
of moving only r from i to j would be cooperatively rational and hence also a
simple Pareto-Pigou-Dalton deal. This contradicts our assumption of A being a
terminal allocation.

Now let us assume that utilitarian social welfare remained constant, i.e.
swu(A) = swu(A′). Let k be the smallest index such that ~uk(A) < ~uk(A′).
(This is the first k for which the inequality in Definition 7 is strict.) Observe
that we cannot have k = |A|, as this would contradict swu(A) = swu(A′). We
shall call the agents contributing the first k entries in the ordered utility vector
~u(A) the poor agents and the remaining ones the rich agents. Then, in a 0-1
scenario, there must be a resource r ∈ R that is owned by a rich agent i in
allocation A and by a poor agent j in allocation A′ and that is needed by both
these agents, i.e. ui({r}) = 1 and uj({r}) = 1. But then moving this resource
from i to j would constitute a Pigou-Dalton transfer (and hence also a simple
Pareto-Pigou-Dalton deal) in allocation A, which again contradicts our earlier
assumption of A being terminal. 2

In summary, we have shown that (i) any allocation of resources from which no
simple Pareto-Pigou-Dalton deals are possible must be a Lorenz optimal allo-
cation and (ii) that such an allocation will always be reached by implementing
a finite number of simple Pareto-Pigou-Dalton deals. As with our earlier suffi-
ciency results, agents do not need to worry about which deals to implement, as
long as they are simple Pareto-Pigou-Dalton deals. The convergence to a global
optimum is guaranteed by the theorem.

6 Further Examples: Elitism and Envy-freeness

In this section, we are going to briefly discuss two further notions of social
welfare: elitism and envy-freeness. The former may be motivated by the fact
that, for certain applications, a distributed multiagent system may merely serve
as a means for helping a single agent in that system to achieve its goal. However,
it may not always be known in advance which agent is most likely to achieve
its goal and should therefore be supported by its peers. The welfare of such a
society would be evaluated on the basis of the happiest agent (as opposed to the
unhappiest agent, as in the case of egalitarian welfare):

Definition 9 (Elitist social welfare). The elitist social welfare swel(A) of an
allocation of resources A is defined as follows:

swel(A) = max{ui(A) | i ∈ A}

In an elitist agent society, agents would cooperate in order to support their cham-
pion (the currently happiest agent). While such an approach to social welfare
may seem somewhat unethical as far as human society is concerned, we believe
that it could indeed be very appropriate for certain societies of artificial agents.
A typical scenario could be where a system designer launches different agents
with the same goal, with the aim that at least one agent achieves that goal—no



matter what happens to the others. As with the egalitarian agent societies, this
does not contradict the idea of agents being autonomous entities. Agents may
be physically distributed and make their own autonomous decisions on a variety
of issues whilst also adhering to certain social principles, in this case elitist ones.

From a technical point of view, designing a criterion that will allow agents
inhabiting an elitist agent society to decide locally whether or not to accept
a particular deal is very similar to the egalitarian case [4]. In analogy to the
case of equitable deals defined earlier, a suitable deal would have to increase the
maximal individual welfare amongst the agents involved in any one deal.

Our final example for an interesting approach to measuring social welfare in
an agent society is the issue of envy-freeness [2]. For a particular allocation of
resources, an agent may be “envious” of another agent if it would prefer that
agent’s set of resources over its own. Ideally, an allocation should be envy-free:

Definition 10 (Envy-freeness). An allocation of resources A is called envy-
free iff we have ui(A(i)) ≥ ui(A(j)) for all agents i, j ∈ A.

We should stress that envy-freeness is defined on the sole basis of an agent’s
private preferences; that is, there is no need to take other agents’ utility functions
into account. On the other hand, whether an agent is envious or not does not
only depend on the resources it holds, but also on the resources it could hold and
whether any of the other agents currently hold a preferred bundle. As we shall
see, this somewhat paradoxical situation makes envy-freeness far less amenable
to our methodology than any of the other notions of social welfare we have
discussed in this paper.

Envy-freeness is desirable (though not always achievable) in societies of self-
interested agents in cases where agents have to collaborate with each other over
a longer period of time. In such a case, should an agent believe that it has
been ripped off, it would have an incentive to leave the coalition which may
be disadvantageous for other agents or the society as a whole. In other words,
envy-freeness plays an important role with respect to the stability of a group.
Unfortunately, envy-free allocations do not always exist. A simple example would
be a system with two agents and just a single resource, which is valued by both
of them. Then, whichever agent holds that single resource, will be envied by
the other agent. To be able to measure different degrees of enviness, we could,
for example, count the number of agents that are envious for a given allocation.
However, it is not possible to define a local acceptability criterion in terms of the
utility functions of the agents involved in a deal (and only those) that indicates
whether the deal in question would reduce envy according to such a metric.

7 Conclusion

We have argued that a wide spectrum of social welfare orderings (rather than
just those induced by the well known utilitarian social welfare function and the
concept of Pareto optimality) can be of interest to agent-based applications.
In an artificial society where agents negotiate over the allocation of resources,



different social principles induce different local criteria on the acceptability of a
proposed deal. Both in previous work [3, 4] and in the present paper, we have
exemplified the idea of welfare engineering by designing such local criteria for
different social welfare orderings, which in turn are motivated by different types
of applications. In particular, we have shown that, for the relatively simple
0-1 scenarios, Lorenz optimal allocations can be achieved using one-to-one
negotiation by implementing deals that are either inequality-reducing or that
increase the welfare of both agents involved. We have also discussed the case of
elitist agent societies and we have pointed out some of the difficulties associated
with designing agents that would be able to negotiate allocations of resources
where the degree of envy between the agents in a society is minimal.
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