Wellington 1.0 User Manual

Ulrich Endriss

Department of Computer Science, King’s College London,
Strand, London WC2R 2LS, United Kingdom

Email: endriss@dcs.kcl.ac.uk

Abstract

We present an overview of the basic functionality of WELLINGTON 1.0, the
first public release of the description logics based knowledge representation
and reasoning system developed by the Group of Logic and Computation at
King’s College London. This paper also provides information on how to obtain
the software and includes a very brief introduction to the field of description
logics itself.

1 Introduction

WELLINGTON is a description logics based knowledge representation system that
is currently being developed by the Group of Logic and Computation at King’s
College London. Version 1.0, introduced in [3], essentially implements an ABox
reasoner for the standard description logic ALC. The software is available from the
WELLINGTON web site:

http://www.dcs.kcl.ac.uk/research/groups/logic/wellington/

At the time of writing, this site provides access to WELLINGTON 1.0 and gives
a short overview of description logics related research in our group.

WELLINGTON 1.0 is freely available over the Internet. It has been implemented
in Java and can be run either as an applet through a web browser or as a Java
application. Section 2 tells you how. In Section 3 we review the basic notions of
description logics as far as they are relevant for the functionality currently available
in WELLINGTON. This includes a definition of the description logic ALC. How
formulas in this language are represented in WELLINGTON is explained in Section 4.
Section 5 presents the graphical user interface of the software and briefly describes
every function that may be executed by the user. This includes in particular the
description logical reasoning services provided by WELLINGTON. We conclude with
some remarks regarding the implementation of the current system.

Technical Report TR-01-01, Department of Computer Science, King’s College London, March 2001.

2 Wellington 1.0 User Manual

2 Getting and Running Wellington

The program may be run as an applet directly from our web site (provided your
browser can handle Java 1.2 applets). However, in order to be able to use the
system’s full functionality (in particular loading and writing files) the Java archive
wellington. jar should be downloaded and WELLINGTON should be run as an
application. Like this:

java -classpath wellington.jar
uk.ac.kcl.dcs.wellington.gui.MainApplication

If you are familiar with Java, you may prefer to add wellington.jar to your
system’s classpath in the first place.

The next session covers some theoretical background on description logics. Sec-
tions 4 and 5 describe the syntax of formulas WELLINGTON can process and explain
the various functions accessible through the graphical user interface.

3 Description Logics

Description logics are formal knowledge representation languages with a relatively
simple syntax and well-defined semantics. According to the description logic
paradigm, knowledge is divided into a terminological part (TBox), where concepts
like “movies that are comedies and have no actors who are famous” and relations
holding between such concepts are defined, and an assertional part (ABox), where
individuals are related to each other and asserted as being instances of certain con-
cepts.

The central notion of description logics is that of a concept. Concepts are sets
of objects (often called individuals). Some of the concept-building operators, like
for example conjunction, directly correspond to standard set operators (like inter-
section). On top of that, ALC offers two kinds of quantification operations. In
description logics, quantification is restricted to objects that are related to some
reference object via a given binary relation. These relations are called roles. For
example, the concept Vr.C' denotes the set of objects a for which every object b,
that is related to a via the role r, belongs to the concept C.

Given a set of concept names and a set of role names the set of valid concept
formulas of ALC may be defined inductively. Any concept name is also a concept
formula. Let C and D be concept formulas and let r be a role name. Then also
—C (negation), C' M D (conjunction), C' U D (disjunction), Vr.C' (value restriction),
and 3r.C' (existential restriction) are valid concept formulas. So are T (“top”) and
1 (“bottom”). We may assign a concept formula the status of a terminological
axiom to express that we want every individual to belong to that concept. A set of
terminological axioms is called a TBox. Here’s an example for a concept formula:

Mowie T Comedy M —3actor.Famous

3 Description Logics 3

Negation -C A\ CT

Conjunction cnbD ctnD*

Disjunction cub ctubp?

Value restriction vr.C {aeA|{beA|(a,b) €rt} CC}
Existential restriction Ir.C {ac A|{be A|(a,b) ert}NCT £{}}

Figure 1: Syntax and Semantics of ALC Concepts

The operations of implication and equivalence can be defined in terms of dis-
junction and negation in the usual way. We have C = D = —-C U D and
CeD=(C=D)n(D=0).

The semantics of a concept formula are defined in terms of a domain A and
an interpretation function . Every concept name is interpreted as a subset of
A. Every role name is interpreted as a subset of A x A, the set of pairs over the
domain. The interpretation of complex concept formulas is defined in Figure 1. An
interpretation is a model for a terminological axiom C' iff it satisfies CT = A. The
model of a TBox is an interpretation that is a model for every formula in that TBox.

In the context of knowledge representation applications, terminological axioms
are often restricted to formulas of the form C'C D (short for ~C' U D) and C=D
(short for (~CUD)M(CU-D)), where C is a concept name. Formulas of the latter
kind are called concept definitions; those of the former kind are commonly referred
to as primitive concept definitions. Observe that (C'C D)T = A iff 07 C DT and
(C=D)* = A iff T = D?. That is, from a purely logical perspective C is nothing
but an implication and = coincides with <.

To express assertional knowledge we introduce a set of individual names. Let
a and b be names of individuals, let » be a role name, and let C be a concept
formula. We distinguish two kinds of assertions. A relational assertion is of the
form (a,b) : r and asserts a and b as being related via the role r. An instantiational
assertion a : C asserts a as belonging to C'. A set of assertions is called an ABoz.
An ABox together with a TBox is called a knowledge base.

The interpretation function Z maps individuals to elements of the domain A. A
relational assertion (a,b) : r is satisfied by an interpretation iff (a,b%) € r¥ and an
instantiational assertion a : C is satisfied iff «Z € CZ. An interpretation is called
a model for an ABox, if it satisfies all the assertions in that ABox. It is called a
model for an ABox with respect to a TBox, if it is a model for both of them.

Typical reasoning services include concept subsumption, concept consistency,
ABozx consistency, and instance checking. The former two only concern the termi-
nological part of a description logical system. A concept C is said to be subsumed
by another concept D iff CT C D7 holds for every interpretation. We also speak
about subsumption with respect to a TBox, namely whenever that subset-relation
holds for all models of a TBox. We may classify a TBox by computing the subsump-
tion relation for every pair of atomic concepts mentioned in that TBox. A concept
formula C' is consistent (with respect to to a TBox) iff there is an interpretation (a

4 Wellington 1.0 User Manual

model of the TBox) for which C7 is not the empty set. An ABox is consistent (with
respect to a TBox) iff it has a model (with respect to that TBox). An individual a
is an instance of a concept C' (with respect to a TBox) iff for every interpretation
(every model of that TBox) a” is in the set CZ. Observe that all these inference
services can be reduced to ABox consistency checking (possibly with respect to a
TBox). A concept C' is consistent iff the ABox {a : C'} (for some individual name
a) is consistent. Furthermore, C is subsumed by D iff the ABox {a : C M —D} is
inconsistent. Finally, we can infer that ¢ needs to be an instance of C iff adding
a : —~C to the ABox renders it inconsistent.

Reasoning with respect to a TBox is considerably more complex than pure ABox
reasoning. If formulas in the TBox are all of the form C'C D or C=D, where C is a
concept name, and if these definitions are acyclic, we may replace every occurrence of
such a defined concept C' in the ABox with the respective concept formula through
a process known as unfolding and make the TBox obsolete. In the general case,
however, this might not be possible.

For further information on description logics we refer to [1] for a very readable
introduction to the field, which includes an extensive bibliography. The next section
documents how formulas in ALC are represented in the WELLINGTON system.

4 Syntax of the Input Language

In this section we define the syntax of the input language for ALC formulas used in
WELLINGTON. This language complies to the quasi-standard set by the description
logic knowledge representation system specification from the KRSS group of the
ARPA knowledge sharing effort in 1993 [7].

In the future, we plan to extend WELLINGTON’s reasoning engine to cover a
description logic enriched with arithmetical constraints over role fillers and a number
of other non-standard features. Such a logic has first been introduced in [6] and [5].
Wellington 1.0 can already be used to manage knowledge bases in that language,
but implementations of the reasoning services have not yet been included in the
current release. Therefore, the following specification is restricted to the syntax of
formulas in ALC.

4.1 Concept Formulas

We start by describing the grammar of concept formulas in Backus-Naur-form
(BNF). Expressions starting with a capital letter are non-terminals. Lowercase
expressions are terminals, i.e. these are typed into the system as they appear here.
With STRING we mean arbitrary alphanumeric strings (plus underscore _ and hy-
phen -) that start with a letter.

Note that in BNF a bar | denotes a choice. A ConceptFormula, for example,
could be either a PropositionalAtom, or a ConceptNegation, or etc. A plus +
after an expression denotes a non-empty list of expressions of the kind described.

4 Syntax of the Input Language 5

ConceptFormula ::= PropositionalAtom |

ConceptNegation |

ConceptConjunction |

ConceptDisjunction |

ConceptImplication |

ConceptEquivalence |

QuantifiedFormula

(ConceptFormula)
PropositionalAtom = ConceptName |

top |

bottom
ConceptName ::= STRING
ConceptNegation ::= (not ConceptFormula)
ConceptConjunction ::= (and ConceptFormula+)
ConceptDisjunction ::= (or ConceptFormula+)
ConceptImplication ::= (implies ConceptFormula ConceptFormula)
ConceptEquivalence ::= (equivalent ConceptFormula ConceptFormula)
QuantifiedFormula = (all Role ConceptFormula) |

(some Role ConceptFormula)

Role STRING

Consider, for example, the following concept expression describing the set of all
movies that aren’t comedies and that have an actor who is of the “hero type”:

Mowvie T = Comedy M JhasActor.HeroType

In WELLINGTON syntax, this formula would be written as follows:
(and Movie (not Comedy) (some hasActor HeroType))

In this example a few additional pairs of parentheses won’t matter. This is
because of the last line in the definition of ConceptFormula.

The atom top (or T) denotes the universal concept to which every object belongs
and which is a superconcept to any given concept formula. Analogously, bottom (or
1) stands for the inconsistent (or empty) concept to which no object belongs and
which is a subconcepts to any given concept formula.

6 Wellington 1.0 User Manual

As pointed out in the section on description logics, a concept implication like
C = D is logically equivalent to the primitive concept definition C'C D. It is part
of the WELLINGTON philosophy not to assign concept definitions any highlighted
status. Moreover, concept names need not be defined as such; they can simply
be used within formulas. To comply with the syntax of other systems, however,
a number of synonymous keywords have been defined. For example, you may use
define-concept instead of equivalent, or define-primitive-concept instead of
implies.

4.2 ABox Formulas

The assertional part of a knowledge base is a list of ABox formulas. A major
component of those are the previously introduced concept formulas. An ABox
formula is either of instantiational or of relational type. Here’s the grammar in

BNF:

ABoxFormula = (instance ABoxIndividual ConceptFormula) |
(related ABoxIndividual ABoxIndividual Role)
ABoxIndividual ::= STRING

As an example, consider the following little ABox, which contains two assertions,
an instantiational and a relational one:

juliaRoberts : Actress T Famous
(juliaRoberts,prettyWoman) : actsln

Here, juliaRoberts and prettyWoman are ABox individuals, Actress T Famous
is a concept formula, and actsIn is a role. In WELLINGTON we would encode this
as follows:

(instance juliaRoberts (and Actress Famous))
(related juliaRoberts prettyWoman actsIn)

We use the same kind of strings for concept names, roles, and ABox individuals.
Only by the structure of the formulas submitted to the system WELLINGTON is able
to determine what category a given term belongs to. In particular, you could use
the same string, say julia, to denote an individual, a role, and a concept name
within the same knowledge base.

4.3 Pattern Matching

WELLINGTON is equipped with a simple search function to find formulas of interest
in a large knowledge base. You may search for specific formulas or you may search
for groups of formulas at a time by providing a pattern describing the kind of
formulas you are interested in. WELLINGTON’s pattern matching mechanism has

5 User Interface and Reasoning Services 7

been inspired by the anonymous variable construct used in the Prolog programming
language. The underscore _ may represent any syntactically valid subformula of a
TBox or an ABox formula (this includes role and individual names).

For example, in order to find all instantiational assertions about the individual
juliaRoberts that are present in the current knowledge base we could search for
the following pattern:

(instance juliaRoberts _)

As another example, suppose we were interested (for one reason or the other)
in all concept formulas in the TBox that are implications whose consequent is an
existentially quantified concept with an unspecified role referring to the concept
VeryLarge. The corresponding pattern would be:

(implies _ (some _ VeryLarge))

The delete function uses the same pattern matching mechanism. For the above
example all formulas matching the query would be deleted from the current knowl-
edge base.

5 User Interface and Reasoning Services

The WELLINGTON interface consists of a (small) text field for user input (description
logical formulas and patterns), a larger text area on which WELLINGTON will print
any output, four buttons, and a number of menus. This is shown in Figure 2. Some
of the menu options will also launch some very simple data input dialogues.

We separate the description of each menu option and push button into issues
relating to the management of knowledge bases (mainly buttons, File, and Show
menu) and reasoning services (Reasoning and Options menu), respectively.

5.1 Managing Knowledge Bases

File menu. Choose the Open file option to open a file containing a list of TBox
and ABox formulas specified in Ohlbach’s description logic with arithmetical con-
straints [5] (which includes ALC). The contents will be parsed automatically and
added to the current knowledge base. If there are any syntax errors the first error
is reported to the user and no changes are made to the current knowledge base.

The knowledge base currently in memory can be written to a file by selecting
the Save KB as option. Reset will clear the entire knowledge base. The File menu
is also used to exit WELLINGTON.

Show menu. The Show menu can be used to view the currently loaded ABox or
TBox, respectively. The TBox is separated into concept formulas and role azioms.
Please note that there are no role axioms in standard ALC.

8 Wellington 1.0 User Manual

[File Edit Reasoning Show Options Help

(instance juliaReoberts _J) |

Add Search Delate Clear

wWelcome to Wellington 1.0.

Opening hollywood.abox. Please wait ...

The contents of hollywood.abox has been parsed successfully.
Checking ABox for consistency. Please wait ...

The current ABox 15 consistent. It took me a mere 429 milliseconds
to show this.

> Searching the ABox for {(instance juliaRoberts _). Please wait ...
» The following formulas in the ABox match your guery:

{instance juliaRoberts ({and Actress Famous Beautiful))

{(instance juliaRoberts {(not {(some actsIn {and Mowvie VeryViolent))))

WOW W WY

Figure 2: The Wellington Interface

Adding, searching, and deleting formulas. To add a single ABox or TBox
formula, type it into the input text field and press the Add button. Syntax errors
will be reported where applicable. To search for a formula or a pattern in the
current knowledge base, type it into the input field and press Search. Pressing the
Delete button will delete all formulas from the current knowledge base that match
the pattern given in the input field.

5.2 Reasoning Services

Reasoning menu. Choosing the ABox consistency option will check the current
ABox for consistency. Note that reasoning with respect to a TBox has not yet
been implemented, so TBox formulas in the knowledge base will simply be ignored.
Both the Concept consistency and the Concept subsumption options will result in
a dialogue window being launched to put in the concept formula(s) in question.
Please recall that these two reasoning services are independent of the currently
defined knowledge base.

So far, reasoning is restricted to ABoxes and concept formulas in ALC. If any
of the formulas involved are not in ALC, an error message will be issued.

Recall that you can perform an instance check for an individual ¢ and a concept

REFERENCES 9

formula C (with respect to the currently defined ABox) by adding a : =C' to the
knowledge base and checking the resulting ABox for inconsistency.

Options menu. At this stage there’s just one option available. You may change
the timeout value, that is the time (in milliseconds) after which any inference process
should be interrupted.

5.3 Other Items

The Edit menu provides cut and paste facilities. Pushing the Clear button will
clear the input text field. Use the Fdit menu to clear the output text area. The
Help function has not been implemented yet.

6 Conclusion

We have presented the description logics based knowledge representation system
WELLINGTON. It currently implements a Tableaux-like calculus to check the con-
sistency of the assertional component of a knowledge base specified in ALC. Other
reasoning services are based on this core algorithm. It incorporates a number of well-
known optimisation techniques, including lexical normalisation, semantic branching
with heuristic guided search, beta simplification, boolean constraint propagation,
and backjumping. We refer to [2] for a recent survey paper on Tableaux for de-
scription logics and to [4] for a good overview of optimisation techniques for these
calculi.

Acknowledgements. The work described in this paper is part of the Data Driven
Logic Algorithms project at King’s College and has been supported by the UK En-
gineering and Physical Sciences Research Council (EPSRC) under grant reference
number GR/L91818. Thanks to Stefan Schlobach and Hans Jirgen Ohlbach for
many helpful discussions. WELLINGTON wouldn’t be what it is today ...

References

[1] Franz Baader. Logic-based knowledge representation. In M. J. Wooldridge and
M. Veloso, editors, Artificial Intelligence Today, Recent Trends and Develop-
ments. Springer-Verlag, 1999.

[2] Franz Baader and Ulrike Sattler. Tableau algorithms for description logics.
In R. Dyckhoff, editor, Automated Reasoning with Tableauzr and Related Meth-
ods, Proceedings of Tableauz’2000, number 1847 in LNAI, pages 1-18. Springer-
Verlag, 2000.

10

Wellington 1.0 User Manual

[3]

Ulrich Endriss. Reasoning in description logics with Wellington 1.0 — system
description. In H. J. Ohlbach, U. Endriss, O. Rodrigues, and S. Schlobach, ed-
itors, Proceedings of the Seventh Workshop on Automated Reasoning, Bridging
the Gap between Theory and Practice, volume 32 of CEUR Workshop Proceed-
ings, July 2000.

Tan Horrocks and Peter F. Patel-Schneider. Optimising description logic sub-
sumption. Journal of Logic and Computation, 9(3):267-293, 1999.

Hans Jiirgen Ohlbach. A theory resolution style ABox calculus. Extended ab-
stract. In M4M, Methods for Modalities 1, Workshop Proceedings. ILLC, Uni-
versity of Amsterdam, 1999.

Hans Jurgen Ohlbach and Jana Koehler. Modal logics, description logics and
arithmetic reasoning. Artificial Intelligence, 109(1-2):1-31, 1999.

Peter F. Patel-Schneider and Bill Swartout. Description-logic knowledge rep-
resentation system specification from the KRSS group of the ARPA knowledge
sharing effort, November 1993.

