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Abstract. We present a proof procedure based on the KE calculus for
propositional logic and its implementation as a short Prolog program.
The procedure’s time complexity is discussed and compared to that of
an efficient Tableau based prover.

1 Introduction

The KE calculus [2] is a refutation system close to Tableau. The crucial feature
that distinguishes the former from the latter is the integration of an analytic cut
rule (PB). Even though some sort of ‘superiority’ of KE over Tableau in terms
of proof size has been stated in the literature, until now no implemented KE
based proof procedure can compete with state-of-the-art Tableau provers as far
as runtimes are concerned.

The aim of this work has been to close that gap, at least for the case of clas-
sical propositional logic. As a benchmark we take lean TP [1], a ‘lean’ Tableau
based theorem prover implemented in Prolog, which is simple and efficient. As
lean TP was build for first order logic we will first reduce it to a propositional
prover in order to guarantee a ‘fair competition’. Then a KE based proof pro-
cedure is designed in a similar fashion. The problems naturally arising during
such a transformation are addressed and — where possible — solved. We conclude
with an experimental comparison of the two procedures.

2 Space and Time

In [2] it has been shown that KE linearly simulates the Tableau method, whereas
the latter cannot p-simulate KE, in other words: KE proofs are basically shorter
than Tableau proofs. This is in fact true — with respect to space — for ‘ideal’
(again, with respect to space) proof procedures.

But, from that observation alone, we cannot conclude, that for a specific
problem the KE deduction is also faster than the Tableau deduction. Apart from
the space complexity results also the following points need to be considered:

— The time taken by a proof procedure depends on the number of derived
formulae and on the time required to derive one such formula. In a KE
based procedure an application of a beta rule takes much more time than
any step (apart from closing a branch) in a Tableau prover.



— KE has more rules than Tableau. A proof procedure has to check which rule
to apply to a given formula. As there are fewer possibilities in Tableau, the
checking will be faster in that setting.

— A fast prover is not necessarily ideal with respect to space. lean P for
instance does not build up a minimal proof tree, but still is very time efficient.

3 A Tableau Procedure for Propositional Logic

The Prolog program lea nTP as defined in [1] implements a small theorem prover
for first order logic, based on free-variable semantic tableaux. Table 1 shows an
adaptation for propositional logic, which we call tap.! Like the original, tap is
restricted to negation normal form (INNF'), i.e. negation has to be pushed down
to the atomic level before deduction starts.

tap( (A,B), Fmls, Lits) :- !, % apply alpha
tap( A, [B|Fmls], Lits).

tap( (A;B), Fmls, Lits) :- !, % apply beta
tap( A, Fmls, Lits), !,
tap( B, Fmls, Lits).

tap( Lit, _, Lits) :- % close branch
(Lit = -(C) ; -(Lit) = C) -> member( C, Lits).
tap( Lit, [Fml|Fmls], Lits) :- % next formula

tap( Fml, Fmls, [Lit|Lits]).

Table 1. IeanT4P for propositional logic

To obtain tap from leanP the clauses handling quantified formulae have
been omitted and the clause for closing branches has been simplified as no occur
check is necessary. Due to the nature of these simplifications, it is clear that tap

will be slightly faster than lean P for propositional logic.

4 Designing the KE Proof Procedure

In KE proof trees are constructed in a similar way to the Tableau method. Alpha
rules and the notion of a closed branch are identical for both calculi. KE beta
rules are linear and take two premises. For example from AV B and A we can
infer B. Unlike Tableau, KE is not cut-free. Following the principle of bivalence
(PB) a branch may be split adding a formula A to the left and its negation —A to
the right branch. For analytic KE the choice for such PB-formulae is restricted
to subformulae of beta formulae that are already on the branch to be split [2].

! The provers described in this paper can handle conjunction, disjunction, and nega-
tion, which have been represented in Prolog as *,’, *;’, and ‘-’, respectively.



When trying to follow the lines of tap’s design to construct a KE based
theorem prover (for propositional formulae in NNF) we encounter the following
problems:

— If PB is applied to a non-atomic subformula, its negation will not be in NNF'.
On the other hand we cannot simply restrict PB to literals, as the remaining
calculus would not be complete.

— The most time consuming steps during proof search are those where you
have to search a list for a matching formula, i.e. closure (both calculi) and
KE’s beta rules. For closing branches it is possible to restrict this search to
complementary literals. It would be nice to have a similar restriction for the
search of complements of minor premises for beta formulae. Unfortunately,
KE is not complete if beta rules can only be applied to literals as minor
premises.

To overcome those difficulties we introduce an adaptation of KE, which we
will call KE*. Informally we obtain KE* from KE by restricting the application
of beta rules to literals as minor premises, with one exception: directly after
every application of PB the next (obvious) application of beta is performed in
any case. For example, if PB is applied to A, the left subformula of AV B, then
write A on the left branch, and =A and B on the right one (whether A is a
literal or not). KE* is restricted to formulae in NNF'. The problem addressed
before, namely that PB can produce non-NNF' formulae is solved by immediately
transforming the negated PB-formula into NNF'. KE* is easily shown to be sound
and complete (via a ‘reduction’ to KE and Tableau, respectively).

The simplest transformation of tap into a KE* proof procedure would only
involve replacing the Tableau beta rule with the two beta rules for KE* (one
for the left and one for the right subformula) and the new PB rule. This proce-
dure can be improved by holding back beta formulae unless there are no more
unexpanded alpha formulae on the branch.

A Prolog implementation of this procedure, which we call kep, is shown in
Table 2. The alpha rule is the same as for tap. So is the clause which moves the
active literal into the lists Lits and puts the next unexpanded formula into focus
(‘next formula’). The second clause does the ‘storing’ of beta formulae: they are
temporarily stored in the list Betas and the next formula is tackled. The last
clause takes the first element of that list of beta formulae and puts it into focus,
if there are no more unexpanded formulae left in the main list Fmls. Also the
implementation of the beta rule for the left subformula is straightforward. An
attempt to apply beta is only made if the left subformula A is a literal. For
the second beta rule things are more complicated. If the left subformula A is
also a literal, we already know that the complement of A is not on the branch
(i.e. in Lits). Otherwise beta would have been applied to it before. Because
the conclusion of the beta rule is A, the next step would be to try to close the
branch using A, i.e. to search Lits again. As we do not want to repeat this time
consuming search, which is bound to fail anyway, that step can be omitted; A can
be added to the list of literals directly, and the next formula can be addressed.
If there is no such formula left, the procedure fails, because the branch cannot



kep( (A,B), Fmls, Betas, Lits) :- !, % alpha
kep( A, [B|Fmls], Betas, Lits).

kep( (A;B), [Fml|Fmls], Betas, Lits) :- !, % store beta
kep( Fml, Fmls, [(A;B)|Betas], Lits).
kep( (A;B), [], Betas, Lits) :- % apply beta: left

(literal( A) -> ((A = -(C); -(A) = C) -> member( C, Lits))), !,

kep( B, [1, Betas, Lits).

kep( (A;B), [], Betas, Lits) :- % apply beta: right
(literal( B) -> ((B = -(C); -(B) C) -> member( C, Lits))), !,
(literal( A)
-> Betas = [Beta|Rest], kep( Beta, [], Rest, [A|Lits])
; kep( A, [], Betas, Lits)).

kep( (4;B), [1, Betas, Lits) :- !, % apply pb
(literal( A)
-> Betas = [Beta|Rest], kep( Beta, [], Rest, [A|Lits])
; kep( A, [1, Betas, Lits)),
nnf ( -(A), NNF), !,
(literal( B)
-> kep( NNF, [], Betas, [B|Lits])
; kep( NNF, [B], Betas, Lits)).

kep( Lit, -, _, Lits) :- % close branch
(Lit = -(C); -(Lit) = C) -> member( C, Lits).

kep( Lit, [Fml|Fmls], Betas, Lits) :- !, % next formula
kep( Fml, Fmls, Betas, [Lit|Lits]).

kep( Lit, [1, [Beta|Betas], Lits) :- % next beta formula
kep( Beta, [], Betas, [Lit|Lits]).

Table 2. The KE based theorem prover kep for propositional logic

be closed. Similarly, when applying PB we already know, that, if one of the
subformulae is a literal, its complement will not be found in Lits. So again,
time can be saved. Note that the negated PB-formula is directly transformed
into NNF'.

5 Performance: Tableau v. KE

Applying a beta rule in KE reduces the number of branches compared to Tableau,
but in Tableau such additional branches can be closed directly after having
applied beta. For the given procedures those two actions have the same time
complexity. In tap we have one basic step for the application of beta and one
search through the list of literals for the closure. For kep we first search the list
for the complement of the literal subformula and then we have the basic step of
the actual rule application. What remains are four major differences between the



two procedures that determine which of them will perform better when trying
to refute a set of formulae.

— As kep has more clauses than tap, for every formula on the tree more checks
of which clause applies have to be made.

— As in Prolog it is easier to insert an element at the beginning of a list than at
the end, the storing of beta formulae in kep changes the order in which the
two procedures analyse those formulae. What impact this has on the proof
size is not clear and depends very much on the specific example.

— PB introduces a new formula on the right branch, the negated PB-formula,
which Tableau does not do. This may help closing a branch earlier, but could
also distract from applying the ‘right’ rules.

— For kep the transformation into NNF' during an application of PB will re-
quire additional time.

tap kep

Time |Formulae|Branches|| Time |Formulae|Branches

(msecs)| Derived | Closed ||(msecs)| Derived | Closed
[ 1] 4 16 4 4 13 2
2 2 6 2 2 7 2
3 2 6 1 2 6 1
4 4 16 4 4 13 2
5 4 18 3 4 12 2
6 1 2 1 1 2 1
7 1 2 1 1 2 1
8 2 6 2 2 5 1
9 4 22 9 4 16 3
10 6 38 9 8 42 7
11 2 6 2 2 7 2
12 26 138 24 41 185 32
13 6 36 9 7 28 3
14 8 42 10 13 52 9
15 4 16 4 4 13 2
16 2 6 1 2 6 1
17 10 64 14 12 39 3

Table 3. Performances of tap and kep on the Pelletier Problems 1-17

Table 3 shows results for the runtimes of tap and kep on the Pelletier
Problems for propositional logic [4]. Both programs have been tested on a Sun
Sparc 10 running SWI-Prolog 2.1. The times given (average runtime for 100
tests) include the search for a NNF. While kep derives slightly fewer formulae



and requires about three quarters of the branches,? it is on average around 10%
slower than tap.

In [3] the KE based prover leanKE is compared with lean TP (both for first
order logic). It derives slightly fewer formulae than kep and closes slightly fewer
branches. The average runtime compared to lea nTP on the same set of problems
is around 350%. That leanTP is that much faster than leanKE is partly due
to the size of the latter: leanKE has many more clauses, which means that for
every formula to be analysed the time to find the right clause is longer. Moreover,
leanKE, unlike kep, does not implement a strategy preventing it from searching
for the complement of a formula a second time after a beta rule or PB has been
applied.
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