
A Time E�cient KE Based Theorem ProverUlrich EndrissDepartment of Computer Science, King's College London,Strand, London WC2R 2LS, UK, Email: endriss@dcs.kcl.ac.ukURL: http://www.dcs.kcl.ac.uk/~endriss/Abstract. We present a proof procedure based on the KE calculus forpropositional logic and its implementation as a short Prolog program.The procedure's time complexity is discussed and compared to that ofan e�cient Tableau based prover.1 IntroductionThe KE calculus [2] is a refutation system close to Tableau. The crucial featurethat distinguishes the former from the latter is the integration of an analytic cutrule (PB). Even though some sort of `superiority' of KE over Tableau in termsof proof size has been stated in the literature, until now no implemented KEbased proof procedure can compete with state-of-the-art Tableau provers as faras runtimes are concerned.The aim of this work has been to close that gap, at least for the case of clas-sical propositional logic. As a benchmark we take leanTAP [1], a `lean' Tableaubased theorem prover implemented in Prolog, which is simple and e�cient. AsleanTAP was build for �rst order logic we will �rst reduce it to a propositionalprover in order to guarantee a `fair competition'. Then a KE based proof pro-cedure is designed in a similar fashion. The problems naturally arising duringsuch a transformation are addressed and { where possible { solved. We concludewith an experimental comparison of the two procedures.2 Space and TimeIn [2] it has been shown that KE linearly simulates the Tableau method, whereasthe latter cannot p-simulate KE, in other words: KE proofs are basically shorterthan Tableau proofs. This is in fact true { with respect to space { for `ideal'(again, with respect to space) proof procedures.But, from that observation alone, we cannot conclude, that for a speci�cproblem the KE deduction is also faster than the Tableau deduction. Apart fromthe space complexity results also the following points need to be considered:{ The time taken by a proof procedure depends on the number of derivedformulae and on the time required to derive one such formula. In a KEbased procedure an application of a beta rule takes much more time thanany step (apart from closing a branch) in a Tableau prover.



{ KE has more rules than Tableau. A proof procedure has to check which ruleto apply to a given formula. As there are fewer possibilities in Tableau, thechecking will be faster in that setting.{ A fast prover is not necessarily ideal with respect to space. leanTAP forinstance does not build up a minimal proof tree, but still is very time e�cient.3 A Tableau Procedure for Propositional LogicThe Prolog program leanTAP as de�ned in [1] implements a small theorem proverfor �rst order logic, based on free-variable semantic tableaux. Table 1 shows anadaptation for propositional logic, which we call tap.1 Like the original, tap isrestricted to negation normal form (NNF ), i.e. negation has to be pushed downto the atomic level before deduction starts.tap( (A,B), Fmls, Lits) :- !, % apply alphatap( A, [B|Fmls], Lits).tap( (A;B), Fmls, Lits) :- !, % apply betatap( A, Fmls, Lits), !,tap( B, Fmls, Lits).tap( Lit, , Lits) :- % close branch(Lit = -(C) ; -(Lit) = C) -> member( C, Lits).tap( Lit, [Fml|Fmls], Lits) :- % next formulatap( Fml, Fmls, [Lit|Lits]).Table 1. leanTAP for propositional logicTo obtain tap from leanTAP the clauses handling quanti�ed formulae havebeen omitted and the clause for closing branches has been simpli�ed as no occurcheck is necessary. Due to the nature of these simpli�cations, it is clear that tapwill be slightly faster than leanTAP for propositional logic.4 Designing the KE Proof ProcedureIn KE proof trees are constructed in a similar way to the Tableau method. Alpharules and the notion of a closed branch are identical for both calculi. KE betarules are linear and take two premises. For example from A _B and :A we caninfer B. Unlike Tableau, KE is not cut-free. Following the principle of bivalence(PB) a branch may be split adding a formula A to the left and its negation :A tothe right branch. For analytic KE the choice for such PB-formulae is restrictedto subformulae of beta formulae that are already on the branch to be split [2].1 The provers described in this paper can handle conjunction, disjunction, and nega-tion, which have been represented in Prolog as `,', `;', and `-', respectively.



When trying to follow the lines of tap's design to construct a KE basedtheorem prover (for propositional formulae in NNF ) we encounter the followingproblems:{ If PB is applied to a non-atomic subformula, its negation will not be in NNF .On the other hand we cannot simply restrict PB to literals, as the remainingcalculus would not be complete.{ The most time consuming steps during proof search are those where youhave to search a list for a matching formula, i.e. closure (both calculi) andKE's beta rules. For closing branches it is possible to restrict this search tocomplementary literals. It would be nice to have a similar restriction for thesearch of complements of minor premises for beta formulae. Unfortunately,KE is not complete if beta rules can only be applied to literals as minorpremises.To overcome those di�culties we introduce an adaptation of KE, which wewill call KE*. Informally we obtain KE* from KE by restricting the applicationof beta rules to literals as minor premises, with one exception: directly afterevery application of PB the next (obvious) application of beta is performed inany case. For example, if PB is applied to A, the left subformula of A_B, thenwrite A on the left branch, and :A and B on the right one (whether A is aliteral or not). KE* is restricted to formulae in NNF . The problem addressedbefore, namely that PB can produce non-NNF formulae is solved by immediatelytransforming the negated PB-formula intoNNF . KE* is easily shown to be soundand complete (via a `reduction' to KE and Tableau, respectively).The simplest transformation of tap into a KE* proof procedure would onlyinvolve replacing the Tableau beta rule with the two beta rules for KE* (onefor the left and one for the right subformula) and the new PB rule. This proce-dure can be improved by holding back beta formulae unless there are no moreunexpanded alpha formulae on the branch.A Prolog implementation of this procedure, which we call kep, is shown inTable 2. The alpha rule is the same as for tap. So is the clause which moves theactive literal into the lists Lits and puts the next unexpanded formula into focus(`next formula'). The second clause does the `storing' of beta formulae: they aretemporarily stored in the list Betas and the next formula is tackled. The lastclause takes the �rst element of that list of beta formulae and puts it into focus,if there are no more unexpanded formulae left in the main list Fmls. Also theimplementation of the beta rule for the left subformula is straightforward. Anattempt to apply beta is only made if the left subformula A is a literal. Forthe second beta rule things are more complicated. If the left subformula A isalso a literal, we already know that the complement of A is not on the branch(i.e. in Lits). Otherwise beta would have been applied to it before. Becausethe conclusion of the beta rule is A, the next step would be to try to close thebranch using A, i.e. to search Lits again. As we do not want to repeat this timeconsuming search, which is bound to fail anyway, that step can be omitted; A canbe added to the list of literals directly, and the next formula can be addressed.If there is no such formula left, the procedure fails, because the branch cannot



kep( (A,B), Fmls, Betas, Lits) :- !, % alphakep( A, [B|Fmls], Betas, Lits).kep( (A;B), [Fml|Fmls], Betas, Lits) :- !, % store betakep( Fml, Fmls, [(A;B)|Betas], Lits).kep( (A;B), [], Betas, Lits) :- % apply beta: left(literal( A) -> ((A = -(C); -(A) = C) -> member( C, Lits))), !,kep( B, [], Betas, Lits).kep( (A;B), [], Betas, Lits) :- % apply beta: right(literal( B) -> ((B = -(C); -(B) = C) -> member( C, Lits))), !,(literal( A)-> Betas = [Beta|Rest], kep( Beta, [], Rest, [A|Lits]); kep( A, [], Betas, Lits)).kep( (A;B), [], Betas, Lits) :- !, % apply pb(literal( A)-> Betas = [Beta|Rest], kep( Beta, [], Rest, [A|Lits]); kep( A, [], Betas, Lits)),nnf( -(A), NNF), !,(literal( B)-> kep( NNF, [], Betas, [B|Lits]); kep( NNF, [B], Betas, Lits)).kep( Lit, , , Lits) :- % close branch(Lit = -(C); -(Lit) = C) -> member( C, Lits).kep( Lit, [Fml|Fmls], Betas, Lits) :- !, % next formulakep( Fml, Fmls, Betas, [Lit|Lits]).kep( Lit, [], [Beta|Betas], Lits) :- % next beta formulakep( Beta, [], Betas, [Lit|Lits]).Table 2. The KE based theorem prover kep for propositional logicbe closed. Similarly, when applying PB we already know, that, if one of thesubformulae is a literal, its complement will not be found in Lits. So again,time can be saved. Note that the negated PB-formula is directly transformedinto NNF .5 Performance: Tableau v. KEApplying a beta rule in KE reduces the number of branches compared to Tableau,but in Tableau such additional branches can be closed directly after havingapplied beta. For the given procedures those two actions have the same timecomplexity. In tap we have one basic step for the application of beta and onesearch through the list of literals for the closure. For kep we �rst search the listfor the complement of the literal subformula and then we have the basic step ofthe actual rule application. What remains are four major di�erences between the



two procedures that determine which of them will perform better when tryingto refute a set of formulae.{ As kep has more clauses than tap, for every formula on the tree more checksof which clause applies have to be made.{ As in Prolog it is easier to insert an element at the beginning of a list than atthe end, the storing of beta formulae in kep changes the order in which thetwo procedures analyse those formulae. What impact this has on the proofsize is not clear and depends very much on the speci�c example.{ PB introduces a new formula on the right branch, the negated PB-formula,which Tableau does not do. This may help closing a branch earlier, but couldalso distract from applying the `right' rules.{ For kep the transformation into NNF during an application of PB will re-quire additional time.
No.1234567891011121314151617

tapTime Formulae Branches(msecs) Derived Closed4 16 42 6 22 6 14 16 44 18 31 2 11 2 12 6 24 22 96 38 92 6 226 138 246 36 98 42 104 16 42 6 110 64 14

kepTime Formulae Branches(msecs) Derived Closed4 13 22 7 22 6 14 13 24 12 21 2 11 2 12 5 14 16 38 42 72 7 241 185 327 28 313 52 94 13 22 6 112 39 3Table 3. Performances of tap and kep on the Pelletier Problems 1{17Table 3 shows results for the runtimes of tap and kep on the PelletierProblems for propositional logic [4]. Both programs have been tested on a SunSparc 10 running SWI-Prolog 2.1. The times given (average runtime for 100tests) include the search for a NNF . While kep derives slightly fewer formulae



and requires about three quarters of the branches,2 it is on average around 10%slower than tap.In [3] the KE based prover leanKE is compared with leanTAP (both for �rstorder logic). It derives slightly fewer formulae than kep and closes slightly fewerbranches. The average runtime compared to leanTAP on the same set of problemsis around 350%. That leanTAP is that much faster than leanKE is partly dueto the size of the latter: leanKE has many more clauses, which means that forevery formula to be analysed the time to �nd the right clause is longer. Moreover,leanKE, unlike kep, does not implement a strategy preventing it from searchingfor the complement of a formula a second time after a beta rule or PB has beenapplied.Acknowledgements. The author would like to thank Marco Mondadori, Mar-cello D'Agostino, and Bernhard Beckert for many inspiring discussions, and twoanonymous referees for their helpful comments.References1. B. Beckert and J. Posegga. leanTAP : Lean Tableau-based deduction. Journal ofAutomated Reasoning, 15(3):339{358, 1995.2. M. D'Agostino and M. Mondadori. The taming of the cut. Classical refutationswith analytic cut. Journal of Logic and Computation, 4(3):285{319, 1994.3. J. Pitt and J. Cunningham. Theorem proving and model building with the calculusKE. Bulletin of the IGPL, 4:129{150, 1995.4. F. Pelletier. Seventy-�ve problems for testing automatic theorem provers. Journalof Automated Reasoning, 2:191{216, 1986.

2 Remember that both procedures have not been designed for minimal space require-ments. The smallest possible proof trees are smaller for most of the examples.


