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Abstract
We introduce a new family of normative principles
for fairness in participatory budgeting. These prin-
ciples are based on the fundamental idea that bud-
get allocations should be fair in terms of the ef-
fort or resources invested into meeting the wishes
of each voter. This is in contrast to earlier propos-
als that are based on specific assumptions about the
satisfaction of voters with a given budget alloca-
tion. We analyse these new principles in axiomatic,
algorithmic, and experimental terms.

1 Introduction
Budgeting, i.e., the allocation of money or other sparse re-
sources to specific projects, is one of the key decisions any
political body or organisation has to take. Participatory bud-
geting (PB) was developed in the 1990s as a method for mak-
ing such decisions in more democratic a way, by putting the
selection of projects to be funded to a vote [Cabannes, 2004;
Shah, 2007]. It has found rapid adoption worldwide, in par-
ticular at the municipal level [Wampler et al., 2021].

The most common form of eliciting the views of voters is
to ask which projects they approve of [Goel et al., 2019], but
the question of how one should then select the projects to be
funded is not yet settled. In this paper, we advocate the use of
measures based on the effort or resources spent on behalf of
the voters. Specifically, we focus on a measure of effort called
the share, which has recently been introduced by Lackner et
al. [2021]. It is computed by equally dividing the cost of each
funded project amongst the supporters of that project.

So why is that an appropriate approach to taking a budget-
ing decision? Suppose 40% of the citizens of a city support
funding more cycling infrastructure, while 60% prefer more
car infrastructure. Then under the kind of voting rule usually
employed in practice, where the projects with the most sup-
port get selected, only car-centric projects would get funded.
This clearly is not desirable. Therefore, in recent years, re-
searchers have started to look for voting rules that make the
PB process fairer by producing proportional outcomes [Fain
et al., 2016; Aziz et al., 2018b; Peters et al., 2021; Aziz and
Lee, 2021; Los et al., 2022]. Such a rule would fund a mixture
of cycling and car infrastructure projects, so as to accurately
reflect the proportion of supporters for both types of projects.

But how should one define proportionality? So far, the lit-
erature has focused on generalising from approval-based mul-
tiwinner voting, where we often aim for a proportional distri-
bution of satisfaction amongst voters, assuming that the elec-
tion of each approved candidate provides the same satisfac-
tion to all of her supporters [Faliszewski et al., 2017; Lackner
and Skowron, 2022]. But lifting this assumption to the richer
framework of PB is questionable, as projects vary in cost.

So, given her approval ballot, how should one infer a
voter’s satisfaction for a set of selected projects?1 Most re-
searchers assume that the satisfaction of a voter is either equal
for all approved projects [Peters et al., 2021; Talmon and Fal-
iszewski, 2019; Los et al., 2022] or proportional to the cost
of a project [Fain et al., 2016; Aziz et al., 2018b; Lackner
et al., 2021; Sreedurga et al., 2022]. Both assumptions are
problematic. Regarding the former, for example, in the 2021
Paris participatory budgeting process a project costing 3 mil-
lion euros (“Act towards a cleaner city”) and a project cost-
ing 10,000 euros (“Enabling houseless people to charge their
phones”) were funded [City of Paris, 2022]. It seems unlikely
that both projects offer the same utility to their supporters.
This is particularly striking when we are concerned with fair-
ness: Funding a new highway for cars for millions of dol-
lars as well as a new bicycle stand for a few thousand dollars
hardly seems like a fair outcome for the supporters of cycling
infrastructure, even though the same number of projects were
funded for both groups At the same time, full proportionality
of utility and cost seems implausible because the cost effec-
tiveness of different projects can vary widely. Consider, for
example, a scenario where two parks of equal size could be
built in different neighbourhoods. Now, it might be more ex-
pensive to build the park in one neighbourhood due to higher
property prices. In that case, there is no reason to assume that
the more expensive park offers more utility to its supporters.
Crucially, these two examples show that a higher cost some-
times implies a higher utility, while sometimes it does not.
That makes it hard to imagine an alternative way of estimat-
ing utilities in a principled way that works for both examples.

To circumvent these difficulties we propose to develop fair-

1In principle, there is also another possibility, namely to directly
ask the voters for their satisfaction (or utility). But this imposes a
large cognitive burden on voters, and it is debatable whether it is
even possible to elicit utilities in a way that allows for interpersonal
comparisons [Hicks and Allen, 1934; Blackorby et al., 2002].



ness measures which are not based on equality of welfare
but aim for equality of resources, an idea first proposed by
Ronald Dworkin [Dworkin, 1981a,b]. In other words, we do
not aim for a fair distribution of satisfaction, but instead we
strive to put the same effort into satisfying each voter. The
advantage is that effort, i.e., invested budget, is a quantity we
can measure objectively. We formalise effort with the no-
tion of share, which is the total budget invested in a voter
assuming that costs of projects are divided equally among ap-
proving voters. Ideally, we want to find a budget allocation
where each voter has the same share. This is in contrast to
the satisfaction-based notions of fairness considered in mul-
tiwinner voting, where it is usually assumed that voters that
are part of a larger cohesive group deserve higher satisfaction
[Aziz et al., 2017]. Finally, fairness notions based on share
provide an explanation on how each voter’s part of the budget
was spent. In contrast to the related property of priceability
[Peters and Skowron, 2020], here all supporters of a project
“contribute” the same amount.

In this paper, we investigate the viability of the share as a
basis of fairness notions in PB in three different ways. First,
we propose several axioms that formalise what it means for
an outcome to be fair in terms of share. We observe that it is
not always possible to guarantee each voter their fair share,
which we define as the budget divided by the numbers of
agents. For this reason, we consider several relaxations, such
as the justified share, where we spend on a voter only the ef-
fort they deserve by virtue of being part of a coherent group.
Moreover, we identify a voting rule, a version of Rule X [Pe-
ters and Skowron, 2020], that satisfies all axioms that are
known to be satisfiable by a tractable voting rule. Secondly,
we investigate the price of fairness for our share-based fair-
ness axioms, by comparing the maximally achievable social
welfare to the maximal welfare achieved by a fair outcome. In
this context, we focus on the special case where all projects
have the same cost, so we can use the number of approved
projects in the outcome as a good proxy for the welfare of a
voter. Finally, using data from a large number of real-life PB
exercises [Stolicki et al., 2020], we analyse to what extent it
is possible to provide voters with their fair share in practice.

Roadmap. After presenting the model in Section 2, we in-
vestigate the fair share in Section 3 and the justified share in
Section 4. We discuss how the different concepts relate to
one another in Section 5, analyse their price of fairness in
Section 6, and report on an experimental study in Section 7.
Full proofs of all results are available in Maly et al. [2022].

2 The Model
A PB problem is described by an instance I = 〈P, c, b〉where
P is the set of available projects, c : P → N is the cost
function—mapping any given project p ∈ P to its cost c(p) ∈
N—and b ∈ N is the budget limit. We write c(P ) instead of∑
p∈P c(p) for sets of projects P ⊆ P . If c(p) = 1 for all

p ∈ P , then we say that I belongs to the unit-cost setting.
Let N = {1, . . . , n} be a set of agents. When facing a

PB instance, each agent is asked to submit an (not necessarily
feasible) approval ballot representing the subset of projects
they approve of. The approval ballot of agent i ∈ N is de-

noted byAi ⊆ P , and the resulting vector A = (A1, . . . , An)
of approval ballots is called a profile. We assume w.l.o.g. that
every project is approved by at least one agent.

Given an instance I = 〈P, c, b〉, we need to select a set of
projects π ⊆ P to implement. Such a budget allocation π has
to be feasible, i.e., we require c(π) ≤ b. Let A(I) = {π ⊆
P | c(π) ≤ b} be the set of feasible budget allocations for I .

Computing allocations is done by means of (resolute) PB
rules. Such a rule F is a function that maps an instance I
and a profile A over I to a single feasible budget allocation
F (I,A) ∈ A(I). We assume that ties are broken in a fixed
and consistent manner (e.g. lexicographically).

We are going to propose several fairness properties we
might want a rule to satisfy. All of these properties will be de-
fined in terms of the fundamental notion of an agent’s share.
Definition 1 (Share). Given an instance I = 〈P, c, b〉 and
a profile A, the share of an agent i for a subset of projects
P ⊆ P is defined as follows:

share(I,A, P, i) =
∑

p∈P∩Ai

c(p)

|{A ∈ A | p ∈ A}|
.

When clear from context, we will omit the arguments of I
and A. We interpret an agent’s share as the effort spent by
the decision maker on satisfying the needs of that agent. It
is important to note that the share cannot be captured via in-
dependent cardinal utility functions as the share of an agent
depends on the ballots submitted by the other agents.

In the sequel, we shall extend the definition of every prop-
erty of budget allocations we define to a property of rules in
the natural manner: F is said to satisfy propertyF defined for
budget allocations if, for every I and A, F (I,A) satisfies F .

3 Fair Share
The first fairness property we study is based on the idea that
every voter deserves 1/n of the budget—a fundamental idea
familiar, for instance, from the classical fair division (“cake
cutting”) literature [Robertson and Webb, 1998]. So a perfect
allocation would give every voter a share of b/n (unless they
do not approve of enough projects for this to be possible).
Definition 2 (Fair Share). Given an instance I = 〈P, c, b〉
and a profile A, a budget allocation π ∈ A(I) is said to
satisfy fair share (FS) if for every agent we have:

share(π, i) ≥ min{b/n, share(Ai, i)}.
It is easy to see that for some instances, no budget alloca-
tion would provide a fair share, and thus no rule can possibly
satisfy FS. Take for instance two projects of cost 1, a bud-
get limit of 1 and two agents each approving of a different
project. Then, both agents deserve a share of min{1/2, 1} =
1/2. However, whichever project is selected (at most one can
be selected), the share of one agent would be 0.

Even more, we show that no polynomial-time computable
rule can return an FS allocation whenever one exists. Indeed,
checking whether an FS allocation exists is NP-complete.
Proposition 1. Given an instance I = 〈P, c, b〉 and a pro-
file A, checking whether there exists a feasible budget allo-
cation π ∈ A(I) that satisfies fair share is an NP-complete
problem, even in the unit-cost setting.
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Because of these shortcomings of FS, we introduce two re-
laxations that are inspired by Extended Justified Represen-
tation (EJR) up to one project [Peters et al., 2021] and
Local-Proportional Justified Representation (PJR) [Aziz et
al., 2018b]. Let us first investigate FS up to one project.
Definition 3 (FS up to one project). Given an instance I =
〈P, c, b〉 and a profile A, a budget allocation π ∈ A(I) is
said to satisfy fair share up to one project (FS-1) if, for every
agent i, there is a project p ∈ P such that:

share(π ∪ {p}, i) ≥ min {b/n, share(Ai, i)} .

FS-1 requires that every agent is only one project away from
their fair share. Unfortunately, FS-1 is not always satisfiable.
Proposition 2. There exist instances I such that no budget
allocation π ∈ A(I) provides FS-1.

Proof. Consider an instance with three projects of cost 3 and
a budget limit b = 5. Consider three agents, with approval
ballots {p1, p2}, {p1, p3} and {p2, p3} respectively.

Here the fair share of each agent is 5/3 ≈ 1.67. But as
a single project only yields a share of 1.5 to an agent who
approves of it, for any agent to reach their fair share threshold,
two projects must be selected. However, a feasible budget
allocation can select at most one project, meaning that for one
agent none of the projects they approve of will be selected. So
even if we were to select an extra project, that agent would
still not obtain their fair share.

Alternatively, we can require that every project that is not part
of the winning budget allocation should give some voter at
least their fair share when that project is added.2

Definition 4 (Local-FS). Given an instance I = 〈P, c, b〉 and
a profile A, a budget allocation π ∈ A(I) is said to satisfy
local fair share (Local-FS) if there is no project p ∈ P \ π
such that, for all agents i ∈ N with p ∈ Ai, we have:

share(π ∪ {p}, i) < min{b/n, share(Ai, i)}.

Intuitively, if there exists a project p that could be added to
the budget allocation π without any supporter of p receiving at
least their fair share, then every supporter of p receives strictly
less than their fair share and one of the following holds:

• p can be selected without exceeding the budget limit b;
• some voter i? receives more than their fair share.

In the first case, it is clear that p should be selected and then π
is deemed unfair. In the second case, it might be considered
fairer to exchange one project supported by i? with p. In this
sense, the property can be seen as an “upper quota” property,
as we have to add projects such that no voter receives more
than their fair share as long as possible.

In contrast to FS-1, we can always find an allocation that
satisfies Local-FS. Indeed, an adaption of rule Rule X [Pe-
ters et al., 2021]3 satisfies Local-FS. Our definition closely

2We stress that this formulation of Local-FS relies on our as-
sumption that every project p is approved by at least one agent.

3Rule X has recently been renamed to method of equal share
[Peters et al., 2021], but this new name is not related to our definition
of share.

resembles the definition of Rule X for PB with additive util-
ities [Peters et al., 2021]. We adapt it by plugging the share
as the utility function in the definition of Peters et al. [2021].
Note that this rule can be executed in polynomial time.

Definition 5 (Effort-based Rule X, Rule Xe). Given an in-
stance I and a profile A, Rule Xe constructs a budget al-
location π, initially empty, iteratively as follows. A load
`i : 2P → R≥0, is associated with every agent i ∈ N , ini-
tialised as `i(∅) = 0 for all i ∈ N . Given π and a scalar
α ≥ 0, the contribution of agent i ∈ N for project p ∈ P \ π
is defined by:

γi(π, α, p) = min (b/n− `i(π), α · share({p}, i)) .

Given a budget allocation π, a project p ∈ P \ π is said to be
α-affordable, for α ≥ 0, if

∑
i∈N γi(π, α, p) · 1p∈Ai = c(p).

At a given round with current budget allocation π, if no
project is α-affordable for any α, Rule Xe terminates. Oth-
erwise, it selects a project p ∈ P that is α∗-affordable where
α∗ is the smallest α such that one project is α-affordable
(π is updated to π ∪ {p}). The agents’ loads are then up-
dated: If p /∈ Ai, then `i(π ∪ {p}) = `i(π), and otherwise
`i(π ∪ {p}) = `i(π) + γi(π, α, p).

Theorem 3. Rule Xe satisfies Local-FS.

Proof. Given a budget allocation π and a scalar α > 0, we
say that agent i ∈ N contributes in full to project p ∈ Ai if
we have: γi(π, α, p) = α · share({p}, i).

During a run of Rule Xe, all the supporters of a project
p ∈ P contribute in full to p if and only if p is 1-affordable.
In this case, for all supporters i of p, we have `i({p}) =
share({p}, i). Moreover, if a project p is α-affordable but
at least one voter cannot contribute in full to p, then α > 1.
Rule Xe only terminates when no project is α-affordable for
any α. Therefore, there is a round where no project p is 1-
affordable. Let k be the first such round and let πk be the
budget allocation before round k. It follows that every project
in πk was 1-affordable and hence `i(πk) = share(πk, i) for
all i ∈ N . As no project p is 1-affordable in round k, for
no projects in P \ πk can all the supporters contribute in full
to. Thus, for every p ∈ P \ πk, there is a voter i ∈ N
such that b/n − `i(πk) < share({p}, i). Using the fact that
`i(πk) = share(πk, i) and the additivity of share, it follows
that (πk∪{p}, i) > b/n. So πk satisfies Local-FS. As RuleXe

returns an allocation π with πk ⊆ π, it satisfies Local-FS.

Remark 1. The proof of Theorem 3 shows actually a slightly
stronger statement: there is no project p ∈ P \π such that for
all agents i ∈ N with p ∈ Ai we have share(π ∪ {p}, i) ≤
b/n. In other words, any project added to π gives at least one
voter more share than their fair share (b/n).

4 Justified Share
Local-FS and FS-1 require the outcome to be, in some sense,
close to being FS. Another idea for weakening FS is to spend
on a voter only the effort they can claim to deserve by virtue
of being part of a cohesive group. This idea is inspired by the
well-known axioms of justified representation that are exten-
sively studied in approval-based committee elections [Aziz
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et al., 2017, 2018a; Peters and Skowron, 2020; Lackner and
Skowron, 2022].

Before exploring this idea further, let us define what we
mean by cohesive groups.

Definition 6 (P -cohesive groups). Given an instance I =
〈P, c, b〉 and a profile A, for a set of projects P ⊆ P we say
that a non-empty group of agents N ⊆ N is P -cohesive, if
P ⊆

⋂
i∈N Ai and |N |n ≥

c(P )
b .

That is, a group N is cohesive relative to a set P of projects
if, first, everyone in N approves of all the projects in P and,
second, N is large enough—relative to the size n of the soci-
ety and the budget b available—so as to “deserve” the effort
for funding the projects in P .

In the unit-cost setting, one of the strongest proportionality
property that is known to always be satisfiable by a polyno-
mial time computable rule is called Extended Justified Rep-
resentation (EJR) [Aziz et al., 2018a; Peters and Skowron,
2020]. Peters et al. [2021] generalised EJR to the setting
of PB with additive utilities. This generalisation will be our
blue-print for modifying EJR to deal with share. Ideally, we
would want to satisfy the following property:

Definition 7 (Strong Extended Justified Share). Given an in-
stance I = 〈P, c, b〉 and a profile A, a budget allocation
π ∈ A(I) is said to satisfy strong extended justified share
(Strong-EJS) if for all P ⊆ P and all P -cohesive groups N ,
we have share(π, i) ≥ share(P, i) for all i ∈ N .

The idea behind Strong-EJS is the following: since every P -
cohesive group S controls enough budget to fund P , every
agent in S deserves to enjoy at least as much share as what
she would have gotten if P had been the outcome. Intuitively,
this is very similar to Strong-EJR, a property which is known
to not be always satisfiable [Aziz et al., 2017]. The same
holds for Strong-EJS: there exist instances for which no bud-
get allocation can satisfy this axiom.

Example 1. Consider the following instance and profile with
three projects p1, p2 and p3 of cost 1, a budget limit b = 2,
and four agents 1, . . . , 4 such that 1 approves project p1, 2
approves project p1 and p2, 3 approves p1 and p3 and 4 ap-
proves p2 and p3. Note that {1, 2, 3} is {p1}-cohesive, {2, 4}
is {p2}-cohesive and {3, 4} is {p3}-cohesive. Hence, to sat-
isfy Strong-EJS, one needs to select all three projects which
is not possible within the budget limit.

One can observe that in the previous example, it is not even
possible to guarantee each P -cohesive group the same aver-
age share as they receive from P . We thus weaken Strong-
EJS and introduce (simple) EJS.

Definition 8 (Extended Justified Share). Given an instance
I = 〈P, c, b〉 and a profile A, a budget allocation π ∈ A(I)
is said to satisfy extended justified share (EJS), if for all P ⊆
P and all P -cohesive groupsN , there is an agent i ∈ N such
that share(π, i) ≥ share(P, i).

The difference between Strong-EJS and EJS is the switch
from a universal to an existential quantifier: for the former,
we impose a lower bound on the share of every agent in a
cohesive group, while for the latter this lower bound only ap-
plies to one agent of each cohesive group. Therefore, in Ex-

ample 1 both {p1, p3} and {p2, p3} satisfy EJS, as either 3 or
4 satisfy the share requirement for every cohesive group.

We observe that EJR and EJS, while similar in spirit, do
not coincide, not even in the unit-cost case.
Example 2. Consider the following instances with four vot-
ers and six projects with unit cost and b = 4, where
the approvals are as follows: A1 = {p1, p2, p3}, A2 =
{p1, p2, p4}, A3 = A4 = {p4, p5, p6}. It is now easy to
check that {p3, p4, p5, p6} satisfies EJS but not EJR, while
{p1, p4, p5, p6} satisfies EJR but not EJS.

The first question that presents itself is whether EJS is al-
ways achievable. This is indeed the case. To see this, one just
needs to adapt the well known greedy procedure for satisfy-
ing EJR, which was first introduced by Aziz et al. [2017] and
extended to PB by Peters et al. [2021], to the share setting.
Proposition 4. For every instance I = 〈P, c, b〉 and every
profile A, there exists a budget allocation π ∈ A(I) that
satisfied EJS.
However, the greedy approach in general needs exponential
time. This turns out to be unavoidable, unless P = NP, as can
be shown by a standard reduction from SUBSET SUM.
Theorem 5. There is no polynomial-time algorithm that,
given an instance I and a profile A as input, always com-
putes a budget allocation satisfying EJS, unless P = NP.
On the other hand, we observe that the greedy approach gen-
erally runs in FPT-time, when parameterized by the number
of projects [Aziz et al., 2017]. This is also the case in the
share setting.
Proposition 6. For every instance I = 〈P, c, b〉 and every
profile A, we can compute a budget allocation π ∈ A(I) that
satisfied EJS in time O(n · 2|P|).
We have seen that EJS can always be satisfied. However, this
is not entirely satisfactory, given that no tractable rule can
satisfy it. Unfortunately, in many applications of PB, the use
of intractable rules is not practical due to the large instance
sizes. Therefore, we try to find fairness notions that can be
satisfied in polynomial time by relaxing EJS.

Similar to EJR up to one project (EJR-1) proposed by Pe-
ters et al. [2021], we can define EJS up to one project, which
states that at least one agent in every cohesive group is at most
one project away from being satisfied.4

Definition 9 (EJS-1). Given an instance I = 〈P, c, b〉 and
a profile A, a budget allocation π ∈ A(I) is said to satisfy
extended justified share up to one project (EJS-1) if for all
P ⊆ P and all P -cohesive groups N there is an agent i ∈ N
for which there exists a project p ∈ P such that share(π ∪
{p}, i) ≥ share(P, i).
It is possible to adapt the proof of Peters et al. [2021] that
Rule X satisfies EJR up to one project to our setting to prove
that Rule Xe satisfies EJS up to one project.
Proposition 7. Rule Xe satisfies EJS-1.

4We note that in Definition 9 we require that share(π∪{p}, i) ≥
share(P, i) instead of a strict inequality as used in the definition of
EJR-1. Our rationale is that adding one project guarantees to satisfy
the EJS condition (but not more than that).
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In particular, this implies toghether with Example 2, that
Rule X and Rule Xe are indeed different rules. Finally, note
that we can define a local variant of EJS, based on a similar
motivation as Local-FS.
Definition 10 (Local-EJS). Given an instance I = 〈P, c, b〉
and a profile A, a budget allocation π ∈ A(I) is said to
satisfy local extended justified share (Local-EJS), if there is
no P -cohesive groupN , where P ⊆ P , for which there exists
a project p ∈ P \ π for which it holds for all agents i ∈ N
that share(π ∪ {p}, i) < share(P, i).
The idea behind Local-EJS is that there is no P -cohesive
group N that can claim that they could “afford” another
project p without a single voter in N receiving more share
than they deserve due to their P -cohesiveness. In this sense,
any allocation that satisfies Local-EJS is a local optimum for
any P -cohesive group. Now, in our setting we observe that
Local-EJS is equivalent to a notion that could be called “EJS
up to any project”.
Proposition 8. Let I = 〈P, c, b〉 be an instance and A
a profile. An allocation π satisfies Local-EJS if and only
if for every P ⊆ P and P -cohesive group N there exists
an agent i such that for all projects p ∈ P \ π we have
share(π ∪ {p}, i) ≥ share(P, i).

Proof. It is clear that the statement above implies Local-
EJS. Now, let π be an allocation that satisfies Local-EJS, let
P ⊆ P be a set of projects and N a P -cohesive group. Let
i∗ ∈ N be an agent with maximal share from π in N . Con-
sider p ∈ P \ π. By Local-EJS there is an agent ip such that
share(π ∪ {p}, ip) > share(P, ip). By the choice of i∗ we
have share(π, i∗) ≥ share(π, ip). By the definition of share,
it follows that share(π ∪ {p}, i∗) > share(P, i∗).

From this equivalence, it is easy to see that Local-EJS im-
plies EJS-1. Unfortunately, Rule Xe fails Local-EJS, as the
following example shows.
Example 3. Consider an instance with five projects, a budget
limit b = 20, and four agents where the costs are as follows:

c(p1) = 8, c(p2) = 5, c(p3) = c(p4) = 2, c(p5).

Moreover, voters 1 and 2 approve projects p1, p2, p3 and p4
and voters 3 and 4 prove p3, p4 and p5.

With a suitable tie-breaking, RuleXe can return the budget
allocation π = {p2, p3, p5}. Note that voters 1 and 2 are
{p1, p4}-cohesive and would thus deserve to enjoy a share of
4.5. However, if we add p4 to π, voters 1 and 2 would only
have a share of 3.5, showing that π fails Local-EJS.
Whether Local-EJS can always be satisfied in polynomial
time remains an important open question.

Finally, we observe a crucial difference between EJR and
EJS: Rule Xe does not satisfy EJS in the unit cost setting!
Example 4. Assume that there are two voters 1 and 2, and
three projects p1, p2 and p3, all of cost 1. The budget limit is
b = 2. Voter 1 approves of p1 and p3 and voter 2 of p2 and
p3. Then voter 1 is {p1}-cohesive and hence deserves a share
of 1, the same applies to voter 2 and {p2}. Nevertheless, with
a suitable tie-breaking, Rule Xe would first select p3. In that
case. neither {p1, p2}, nor {p2, p3} would satisfy EJS, as at
least one voter will have only share 1/2.

FS Strong-EJS EJS

Local-EJS

EJS-1

Local-FS

FS-1

Figure 1: Taxonomy of criteria. An arrow from one criterion to an-
other indicates that any budget allocation satisfying the former also
satisfies the latter. For criteria boxed in green solid lines, there are
polynomial-time algorithms to compute allocations satisfying them.
For the criterion boxed in orange dashed lines, no such algorithm
exists (unless P = NP). Criteria boxed in red dotted lines are not
always satisfiable. The status is unknown for unboxed criteria.

However, it does satisfy Local-EJS in the unit-cost setting.
Theorem 9. Rule Xe satisfies Local-EJS in the unit-cost
case.

5 A Taxonomy of the Fairness Criteria
We now investigate links between the different fairness no-
tions we introduced and draw a taxonomy.
Proposition 10. Given an instance I and a profile A, every
budget allocation π ∈ A(I) that satisfies FS also satisfies
Strong-EJS and every allocation that satisfies FS-1 also sat-
isfies EJS-1.

Figure 1 summarises the implications between the different
properties. It can be shown that no other implications hold.
For example EJS-1 does not imply Local-EJS, even in the
unit-cost setting.
Example 5. Consider an instance with two voters, 1 and 2,
and six projects p1, . . . , p6 all of cost 1. Voter 1 approves
of p1, p2, p3, p4, and p5; and voter 2 approves of p4, p5 and
p6. The budget limit is b = 4. It can be checked that π =
{p1, p2, p3, p4} satisfies EJS-1 but not Local-EJS.

Moreover, the following example shows that Local-FS
does not even imply EJS-1.
Example 6. Consider an instance with three projects, a bud-
get limit of b = 6, and two agents where c(p1) = 6 and
c(p2) = c(p3). Moreover, 1 approves all projects, 2 only p2
and p3. Allocation π = {p1} satisfies Local-FS: for both p2
and p3, if we were to add them to π, agent 1 would have a fair
share. However, it does not satisfy EJS-1: {2} is a {p2, p3}-
cohesive group but neither project is selected.

Additional proofs can be found in Maly et al. [2022].

6 Fairness versus Social Welfare
It is well-known that enforcing fairness criteria often de-
creases utilitarian social welfare, i.e., the sum of voters’ util-
ities. In the context of multi-winner voting and participatory
budgeting, this phenomenon has been studied by Lackner and
Skowron [2020], Elkind et al. [2022], and Fairstein et al.
[2022]. For our purposes, the work of Elkind et al. [2022] is
particularly relevant as they study the “price” of representa-
tion axioms, measured as the relative loss of utilitarian social
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welfare. Our goal here is to quantify the price of asserting
share-based fairness concepts.

Let us first discuss a conceptual difficulty. To be able to
define social welfare in participatory budgeting, we have to
rely on an understanding of what satisfies voters. However,
avoiding assumptions about voters’ satisfaction was exactly
the motivation of our investigation of share. Thus, we do not
consider the general PB setting here, but instead restrict our
analysis to the unit-cost setting5. In this setting, it is a stan-
dard assumption to measure a voter’s satisfaction as the num-
ber of approved and funded projects (all of which have the
same cost). That is, we define the social welfare of a budget
allocation π given A as sw(A, π) =

∑
i∈N |Ai ∩ π|. Based

on this simplification, we will explore that the link between
fairness based on share and social welfare.

We first make a simple observation: EJS and fair share may
induce a high cost with respect to social welfare as we can
show it is not compatible with a unanimity axiom.
Definition 11 (Unanimity). Given an instance I = 〈P, c, b〉
and a profile A, a budget allocation π ∈ A(I) is said to
satisfy unanimity if for every two projects p, p′ ∈ P such that
|{A ∈ A | p′ ∈ A}| < |{A ∈ A | p ∈ A}| = n, it is never
the case that p′ ∈ π but p /∈ π.
Proposition 11. For some instances I , no budget allocation
π ∈ A(I) satisfying EJS also satisfies unanimity, even in the
unit-cost setting. The same holds for fair share.
We will now formalise the idea that share-based concepts in-
duce a large cost on social welfare. For that we adopt the
definition of the social welfare price by Elkind et al. [2022],
which measures the worst case ratio between the social wel-
fare of a budget allocation satisfying a property F and that
of the budget allocation that maximises the social welfare. In
the following, let c1 denote the unit-cost cost function.
Definition 12 (Social Welfare Price). The social welfare
price of a property F is defined as

PFsw(b) = sup
I=〈P,c1,b〉

A

maxπ∈A(I) sw(A, π)

maxπ∈A(I)
π sat. F

sw(A, π)
.

Proposition 12. It holds that PEJS
sw ∈ o(b).

Proof. Let us consider the following instance and profile with
budget limit b ∈ N>0. We introduce 2b − 1 projects P =
{p1, . . . , p2b−1}, each costing 1. There are b agents. The
profile A is such that the approval ballot of any agent 1 ≤
i ≤ b is Ai = {pi} ∪ {pb+1, . . . , p2b−1}.

Now, for every agent i ∈ N , it is the case that {i} is
{pi}-cohesive. Hence all agents must have a share of 1 in
the final outcome to satisfy EJS. The only way to achieve
that is by selecting π = {p1, . . . , pn}. This budget alloca-
tion provides a social welfare of b. The budget allocation
π? = {pb, . . . , p2b−1} maximises the social welfare, reach-
ing a social welfare of b · (2b− 1) + 1.

This result shows that EJS has a relatively high cost compared
to proportionality axioms such as EJR, for which the price is
only Θ(

√
b) [Elkind et al., 2022].

5The unit-cost setting is equivalent to approval-based committee
voting, which is the setting used by Elkind et al. [2022].

7 Experimental Analysis
As we saw in Section 3, there exist PB instances for which it
is impossible to give every agent their fair share. In this sec-
tion we report on an experimental study aimed at understand-
ing how serious this problem is for real-life PB instances. We
analysed all instances with up to 65 projects found on Pabu-
lib [Stolicki et al., 2020], an online collection of real-world
PB instances—except for instances that are trivial (either not
a single or the set of all projects are affordable) or that raised
parsing errors (unknown projects appearing in the ballots).
Five instances have been additionally omitted due to very
high compute time. A total of 350 PB instances are covered
by our analysis.6

For a given budget allocation π, we can compute the
capped fair share ratio of agent i with approval ballot Ai by
dividing her actual share by her fair share (and capping that
number at 1 in case she gets more than her fair share):

min{[share(π, i) /min{b/n, share(Ai, i)}], 1}.

For each PB instance we searched for an allocation that is as
close as possible to the ideal of an FS allocation. We did so
in terms of three different optimality criteria:

• the average capped fair share ratio of the agents;
• the minimum capped fair share ratio across all agents;
• the number of agents who got their fair share.

To better understand what might cause an instance to not ad-
mit a good solution, we also considered different ways to pre-
process the instances by removing ‘problematic’ projects:

• Threshold: any project not approved by at least x% of
agents is removed. We considered 1%, 5%, and 10%.

• Cohesiveness: any project the approvers of which do not
control enough money (share of the budget they repre-
sent) to actually buy the project is removed.

Threshold preprocessing removes under 10% of projects for
a threshold of 1%, around 10–20% for a threshold of 5%, and
around 20–30% for a threshold of 10%. Cohesiveness pre-
processing removes between 30% (for the largest instances)
and 70% of projects (for the smallest instances).

Let us now turn to our results. The first observation is that it
is almost always impossible to provide a non-zero share to all
agents, so the minimum capped fair share almost always is 0.
For the other two criteria, the results are shown in Figure 2.

We draw the following conclusions. Without preprocess-
ing, we can provide agents on average between 45% (for
small instances) and 75% (for larger instances) of their fair
share, albeit with a lot of variation. Furthermore, we can typ-
ically guarantee a fair share to 50–60% of the agents. Prepro-
cessing helps when using the cohesiveness condition, but not
with the threshold condition. Importantly, we do not wish to
advocate preprocessing as a method to make budget decisions
in practice, but rather as a way of checking whether the fail-
ure to guarantee fair share is due to the specific structure of
real-life PB instances and whether similar instances ‘nearby’

6Our experiments are implemented using integer linear programs
solved with Gurobi 9.5.1 ran on a Debian machine with 16 cores and
16GB RAM. Running the full set takes around 150 hours.
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Figure 2: Optimal average capped fair share ratio (left) and optimal number of agents with fair share (right) for Pabulib instances. Each range
(for a number of projects) shown on the x-axis contains roughly 70 instances.
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Figure 3: Impact of approximation factor α on average approx. fair share ratio (left) and number of agents with approx. fair share (right).

might be significantly better behaved. Our experimental find-
ings suggest that this is not the case, and that guaranteeing fair
share simply is very hard across a wide range of instances.

We then repeated the same set of experiments, but now in-
stead of employing preprocessing we relaxed our objective
by trying to approximate the fair share. Specifically, for a
number of different given approximation ratios α ∈ (0, 1], in
our formula for the capped fair share ratio we replaced the
fair share by α · min{b/n, share(Ai, i)}. For the second op-
timality criterion, where we track the worst-off agent, also
this relaxation does not improve significantly on the overall
picture: we never get beyond 2%, even for α = 0.1. For the
other two criteria, our results are shown in Figure 3. They fur-
ther underline the general take-away message that providing
fair share is hard. In particular, even for α = 0.1, the average
ratio does not improve by much. For the number of agents
who can be given their approximate fair share, however, the
picture is more encouraging. For example, if we are satisfied
with providing agents with 50% of their fair share, then, for
a large PB instance, we can expect to be able to do this for
a large part of the population (for around 75%). A positive
finding across our experiments is the insight that the situation
tends to improve as we move to larger PB instances.

In general, we conclude that guaranteeing all or most voters
a certain share is difficult in real-world PB elections. This
strengthens the motivation of share-based notions relying on
cohesive groups, which are always satisfiable.

8 Conclusion
We have proposed to use fairness criteria based on the share
of a voter as a means of basing budget decisions in PB on
the effort spent on satisfying the needs of voters rather than
on the (assumed) satisfaction each voter might derive from
an allocation. Our results suggest that these are interesting
criteria that deserve further attention. On the one hand, the
most demanding criteria are impossible to satisfy in general,
computationally hard to satisfy when doing so is possible,
and only approximately satisfiable in practice. On the other,
for the less demanding criteria our findings are much more
encouraging. In addition, our share concepts can be be used
to validate outcomes of PB elections, since they can help to
explain voters how their “share” of the budget was spent.

An open question we would like to raise is whether
a (meaningful) compromise between effort-based and
satisfaction-based fairness is possible. A notion of propor-
tionality that guarantees both effort and satisfaction to voters
would be very desirable. However, such a combined axiom
would have to be significantly weaker than EJS and EJR (in
view of, e.g., Proposition 11).
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A Full Proofs
A.1 Proof of Proposition 1
Proof. It is clear that checking if a fair share allocation ex-
ists is in NP. We show NP-hardness by a reduction from 3-
SET-COVER [Fürer and Yu, 2011], which is the problem of
deciding, given a universe U = {u1, . . . , u|U |}, a set S of 3-
element subsets of U , and an integer k, whether there exists a
subset S′ of S such that

⋃
S′ = U and |S| ≤ k. Let (U, S, k)

be an instance of 3-SET-COVER. We can assume w.l.o.g. that
k ≤ |U |.

We build a PB instance as follows: For every element in
U there is a voter 1, . . . , |U |. Moreover, there are 2|U | +
3 many auxiliary voters |U | + 1, . . . , 3|U | + 3 , i.e., N =
{1, . . . , 3|U |+ 3}. Furthermore, P = {p1, . . . , p|S|, p∗}, i.e.,
for every set sj ∈ S there is a project pj , and there is one
auxiliary project p∗. We assume unit costs and b = k + 1.
The ballot for each voter i ≤ |U | is given by pj ∈ Ai if
and only if ui ∈ sj , i.e., i approves the project representing
the set sj if and only if ui is in sj . The auxiliary voters all
approve only of p∗. We claim that there is an allocation π
that satisfies FS if and only if (U, S, k) is a positive instance
of 3-SET-COVER.

Assume first that there is no set cover of size k, so for
any set S′ ⊆ S of size k there is an element ui that is not
contained in any set in S′. It follows that for every alloca-
tion π of k or fewer projects there is one voter i ≤ |U | with
share(π, i) = 0. Moreover, for any allocation that does not
contain p∗, all voters i > |U | have share 0. Hence, no alloca-
tion with at most k + 1 projects can satisfy FS.

Now assume that S′ is a set cover of size k. We claim that
π := {pj | sj ∈ S′} ∪ {p∗} satisfies FS. By assumption,

b

|N |
=

k + 1

3|U |+ 3
≤ |U |+ 1

3|U |+ 3
=

1

3
.

Moreover, for every project pj we have |{i | pj ∈ Ai}| = 3
because |sj | = 3 for all sj ∈ S. Now, because S′ is a set
cover, for each voter i ≤ |U | there is a project pj ∈ π such
that pj ∈ Ai. It follows that share(π, i) ≥ 1/3 for all i ≤ |U |.
For every i > |U | we have Ai = {p∗}. Now as p∗ ∈ π we
have share(π, i) = share(Ai, i) for all i > |U |. It follows
that π satisfies FS.

A.2 Proof of Proposition 4
It should be noted that Algorithm 1 runs in exponential time.

Proof. We show that Algorithm 1 computes a feasible bud-
get allocation that satisfies EJS. Let us consider an arbitrary
instance I = 〈P, c, b〉 and profile A.

We first show that the budget allocation returned by the
algorithm indeed is feasible.

Claim 1. The budget allocation π returned by Algorithm 1
on I and A is feasible.

Proof: Consider the run of the algorithm on I and A and as-
sume that the while-loop is run k times. Let us call (Nj , Pj)
the sets of agents and projects that are selected during the j-
ith run of the while-loop, for all j ∈ {1, . . . , k}. We then

Algorithm 1: Greedy EJS
Input: An instance I = 〈P, c, b〉 and a profile A
Output: A budget allocation π ∈ A(I) satisfying EJS
Intialise π and N? as the empty set: π ← ∅, N? ← ∅
while there exists an N ⊆ N \N? with N 6= ∅ and a
P ⊆ P \ π with P 6= ∅, such that N is P -cohesive do

Let N ⊆ N \N? and P ⊆ P \ π be such that:

(N,P ) ∈ arg max
(N ′,P ′) ∈ 2N\N

?
×2P\π

N ′ is P ′-cohesive

max
i∈N ′

share(P ′, i)

Select the projects in P : π ← π ∪ P
Agents in N have been satisfied: N? ← N? ∪N

return the budget allocation π

have:

c(π) =

k∑
j=1

c(Pj) ≤
k∑
j=1

|Nj | × b
n

= b.

The first equality comes from the fact that P1, . . . , Pk is a
partition of π. The inequality is derived from the fact that Nj
is a Pj-cohesive group, for all j ∈ {1, . . . , k} (it is an in-
equality because for any of the projects p ∈ Pj , some agents
outside ofNj may approve of it; c(p) can thus be split among
more than |Nj | agents). The final equality is linked to the fact
that N1, . . . , Nk is a partition of N . Overall, the outcome of
Algorithm 1 is a feasible budget allocation. �

Let us now prove that the algorithm does compute an EJS
budget allocation.

Claim 2. The budget allocation π returned by Algorithm 1
on I and A satisfies EJS.

Proof: Assume towards a contradiction that π violates EJS.
Then, there must exist some N ⊆ N and P ⊆ P such that
N is P -cohesive but also such that, for all agents i ∈ N , we
have share(π, i) < share(P, i). Note that, if P * π, this
means that at the end of the algorithm either one agent i ∈ N
has been satisfied (i ∈ N? when the algorithm returns) or
that one project p ∈ P has been selected (p ∈ π when the
algorithm returns). We distinguish these two cases.

First, consider the case where one agent has been satisfied
by the end of the algorithm. Using the same notation as for
the previous claim, there exists then a smallest j ∈ {1, . . . , k}
such that there exist i? ∈ N ∩Nj . Given that (N,P ) has not
been selecting during that run of the while loop, it means that:

max
i′∈Nj

share(Pj , i
′) ≥ max

i∈N
share(P, i).

Since the cost of a project is split equality among its support-
ers, it is easy to observe that for any P -cohesive group N ,
and for every two agents i, i′ ∈ N , we have share(P, i) =
share(P, i′). Moreover, we also have that share(P ′, i) ≤
share(P, i) for any P ′ ⊆ P ⊆ P and i ∈ N . Overall, for our
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specific agent i? ∈ N ∩Nj , we have:

share(π, i?) ≥ max
i′∈Nj

share(Pj , i
′)

≥ max
i∈N

share(P, i)

≥ share(P, i?),

which contradicts the fact that π fails EJS.
Let us now consider the second case, i.e., when P ∩ π 6= ∅

but P * π. In this case, it is important to see that if N
is P -cohesive, then it is also P ′-cohesive for all P ′ ⊆ P .
Then, we can run the same proof considering the (P \ π)-
cohesive group N . Iterating this argument, would either lead
to the conclusion that P ⊆ π, a contradiction, or to another
contradiction due to the first case we considered (when some
agent of N is already satisfied). �

Finally, it should be noted that Algorithm 1 always termi-
nates. Indeed, after each run of the while-loop, at least one
agent is added to the set N?. Moreover, if N? = N , the
condition of the while-loop would be violated and the algo-
rithm would terminate. Overall at most n runs through the
while-loop can occur. This concludes the proof.

A.3 Proof of Theorem 5
Proof. Assume, that there is an algorithm A that always com-
putes an allocation satisfying EJS.

We will make use of the SUBSET-SUM problem, known to
be NP-hard. In this problem, we are given as input a set S =
{s1, . . . , sm} of integers and a target t ∈ N and we wonder
whether there exists an X ⊆ S such that

∑
x∈X x = t.

Given S and t as described above, we construct I =
〈P, c, b〉 and A as follows. We have m projects P =
{p1, . . . , pm} with the following cost function c(pj) = sj
for all j ∈ {1, . . . ,m} and a budget limit b = t. There is
moreover only one agent, who approves of all the projects.

Now, (S, t) is a positive instance of SUBSET-SUM if and
only if there is a budget allocation π ∈ A(I) that cost is
exactly b. If such an allocation π exists, then the one voter
1 is π-cohesive. Therefore, any allocation π′ that satisfies
EJS must give that voter share(1, π′) ≥ share(1, π) = c(π).
Hence, (S, t) is a positive instance of SUBSET-SUM if and
only if c(A(I,A)) = b. This way, we can use A to solve
SUBSET-SUM in polynomial time.

A.4 Proof of Proposition 6
Proof. Consider an instance I = 〈P, c, b〉 and a profile A on
which Algorithm 1 is run.

The first thing to note is that at least one agent is added to
N? during each run through the while-loop and that, if ever
N? = N , the condition of the while-loop is trivially satisfied.
Overall, the while-loop can only be run n times.

Let us have a closer look at what is happening inside the
while-loop. The main computational task here is the maximi-
sation that goes through all subsets of agents and of projects.
We will show that we can avoid going through all subsets of
agents. Indeed, consider a subset of projects P ⊆ P and let
N ⊆ N be the largest set of agents such that for all i ∈ N ,
P ⊆ Ai. Note such a set N can be efficiently computed
(by going through all the approval ballots). Now, if some

group of agents is P -cohesive, then for sure N should be P -
cohesive. Moreover, note that for any P -cohesive group N ′,
and for every two agents i ∈ N and i′ ∈ N ∪ N ′, we have
share(P, i) = share(P, i′). Overall, one can, without loss of
generality, only consider the group of agents N when consid-
ering the subset of projects P . This implies that the maximi-
sation step can be computed by going through all the subsets
of projects and, for each of them, only considering a single
subset of agents (that is efficiently computable).

A.5 Proof of Theorem 9
Proof. Let π = {p1, . . . , pk} be the budget allocation out-
put by Rule Xe on instance I and profile A, where p1 was
selected first, p2 second etc. For any 1 ≤ j ≤ k, set
πj := {p1, . . . , pj}. Consider N ⊆ N , a P -cohesive group,
for some P ⊆ P . We show that π satisfies Local-EJS for N .
If P ⊆ π then Local-EJS is satisfied by definition. We will
thus assume that P 6⊆ π.

Let k∗ be the first round after which there exists a voter
i∗ ∈ N whose load is larger than b/n − 1/|N |. Such a round
must exist as otherwise the voters in N could afford another
project from P . As we assumed P 6⊆ π, this would mean that
Rule Xe cannot have stopped. Let π∗ = πk∗ and consider an
arbitrary project p∗ ∈ P \ π∗. Our goal is to prove that π∗
satisfies Local-EJS for N , i.e.:

share(π∗ ∪ {p∗}, i∗) > share(P, i∗)

⇔ share(π∗, i∗) > share(P \ {p∗}, i∗)
⇔ share(π∗ ∩ P, i∗) + share(π∗ \ P, i∗) >

share(P ∩ π∗, i∗) + share(P \ (π∗ ∪ {p∗}), i∗)
⇔ share(π∗ \ P, i∗) > share(P \ (π∗ ∪ {p∗}), i∗). (1)

We will now work on each side of inequality (1) to eventually
prove that it is indeed satisfied.

We start by the left-hand side of (1). Let us first introduce
some notation that will allow us to eason in terms of share
per unit of load. For a project p ∈ π, we denote by α(p)
the smallest α ∈ R>0 such that p was α-affordable when
Rule Xe selected it. Moreover, we define q(p)—the share
that a voter that contributes fully to p gets per unit of load—
as q(p) := 1/α(p).

Since before round k∗, agent i∗ contributed in full for all
projects in π∗ (as `i∗ < b/|N | after each round 1, . . . , k∗), we
know that α(p) · share({p}, i∗) equals the contribution of i∗
for p, and that for any p ∈ π∗. We thus have:

share(π∗ \ P, i∗)

=
∑

p∈π∗\P

share({p}, i∗)

=
∑

p∈π∗\P

α(p) · share({p}, i∗) · 1

α(p)

=
∑

p∈π∗\P

γi∗(p) · q(p), (2)

where γi∗(p) denotes the contribution of i∗ to any p ∈ π,
defined such that if p has been selected at round j, i.e., p =
pj , then γi∗(p) = γi∗(πj , α(pj), pj).
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Now, let us denote by qmin the smallest q(p) for any p ∈
π∗ \ P . From (2), we get:

share(π∗ \ P, i∗) ≥ qmin

∑
p∈π∗\P

γi∗(p). (3)

We now turn to the right-hand side of (1). We introduce
some additional notation for that. For every project p ∈ P , we
denote by q∗(p) the share per load that a voter in N receives
if only voters in N contribute to p, and they all contribute in
full to p, defined as:

q∗(p) =
share({p}, i)

1/|N |
=

|N |
|{A ∈ A | p ∈ A}|

,

where i is any agent in N .
We have then:

share(P \ (π∗ ∪ {p∗}), i∗)

=
∑

p∈P\(π∗∪{p∗})

share({p}, i∗)

=
∑

p∈P\(π∗∪{p∗})

share({p}, i∗)
1/|N |

· 1

|N |

=
∑

p∈P\(π∗∪{p∗})

q∗(p) · 1

|N |
(4)

Setting q∗max to be the largest q∗(p) for all p ∈ P \(π∗∪{p∗}),
(4) gives us:

share(P \ (π∗∪{p∗}), i∗) ≤ q∗max ·
|P \ (π∗ ∪ {p∗})|

|N |
. (5)

In the aim of proving inequality (1), we want to show that

qmin ·
∑

p∈π∗\P

γi∗(p) > q∗max ·
|P \ (π∗ ∪ {p∗})|

|N |
. (6)

Note that proving that this inequality holds, would in turn
prove (1) thanks to (3) and (5). We divide the proof of (6)
into two claims.

Claim 3. qmin ≥ q∗max.

Proof: Consider any project p′ ∈ P \ (π∗ ∪ {p∗}). It must
be the case that p′ was at least 1/q∗(p)-affordable in round
1, . . . , k∗, for all p ∈ π∗, as all voters in N could have fully
contributed to it based on how we defined k∗.

As no p′ ∈ P \ (π∗ ∪ {p∗}) was selected by Rule Xe, we
know that all projects that have been selected must have been
at least as affordable, i.e., for all p ∈ π∗ and p′ ∈ P \ (π∗ ∪
{p∗}) we have:

α(p) ≤ 1

q∗(p′)

⇔ q(p) ≥ q∗(p′)
⇔ qmin ≥ q∗max.

This concludes the proof of our first claim. �

Claim 4.
∑

p∈π∗\P

γi∗(p) >
|P \ (π∗ ∪ {p∗})|

|N |
.

Proof: From the choice of k∗, we know that the load of agent
i∗ at round k∗ is such that:

`i∗(π
∗) +

1

|N |
>
b

n
.

On the other hand, since N is a P -cohesive group, we know
that:

|P |
|N |

=
|P \ {p∗}|
|N |

+
1

|N |
≤ b

n
.

Linking these two facts together, we get:

`i∗(π
∗) >

|P \ {p∗}|
|N |

.

By the definition of the load, we thus have:

`i∗(π
∗) =

∑
pj∈π∗

γi∗(pj) >
|P \ {p∗}|
|N |

.

This is equivalent to:∑
pj∈P∩π∗

γi∗(pj) +
∑

pj∈P\π∗
γi∗(pj) >

|P ∩ π∗|
|N |

+
|P \ (π∗ ∪ {p∗})|

|N |
(7)

Now, we observe that every voter in N contributed in full for
every project in π∗. It follows that the contribution of every
voter in N for a project pj ∈ P ∩ π∗ is smaller or equal the
contribution needed if the voters in N would fund the project
by themselves. In other words for all p ∈ P ∩ π∗ we have:

γi∗(p) ≤
1

|N |
.

It follows then that:∑
pj∈P∩π∗

γi∗(pj) ≤
|P ∩ π∗|
|N |

.

For (7) to be satisfied, we must have that:∑
pj∈π∗\P

γi∗(pj) >
|P \ (π∗ ∪ {p∗})|

|N |

This concludes the proof of our second claim. �
Putting together these two claims immediately shows that

inequality (6) is satisfied, which in turn shows that (1) also
is. Since P , N and p∗ were chosen arbitrarily, this shows that
Rule Xe satisfied Local-EJS in the unit-cost setting.

A.6 Proof of Proposition 10
Proof. Let π be an allocation that satisfies FS. Let i ∈ N be
an arbitrary agent. We distinguish two cases. First, assume
share(Ai, i) <

b
n . For FS to be satisfied, we must then have

share(π, i) ≥ share(Ai, i). This entails that Ai ⊆ π should
be the case. Hence, the conditions for Strong-EJS are trivially
satisfied for agent i.
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Secondly, assume share(Ai, i) ≥ b
n . Since π satisfies FS,

we know that share(π, i) ≥ b
n . Let N ⊆ N be a P -cohesive

group, for some P ⊆ P , such that i ∈ N . By definition
of a cohesive group, we know that c(P ) ≤ b

n |N |. Hence,
share(P, i) ≤ b

n . Overall, we have:

share(π, i) ≥ b/n ≥ share(P, i).

This shows that π satisfies Strong-EJS.
Now, let π be an allocation that satisfies FS-1. First, con-

sider an agent i ∈ N such that share(Ai, i) < b
n . For

FS-1 to be satisfied, there must be a project p ∈ P such
that share(π ∪ {p}, i) ≥ share(Ai, i). This entails that
|Ai ∩ π| ≤ 1 should be the case. Hence, the conditions for
EJS-1 are trivially satisfied for agent i.

Consider now an agent i ∈ N such that share(Ai, i) ≥ b
n .

Since π satisfies FS-1, we know that there must be a project
p ∈ P such that share(π ∪ {p}, i) ≥ b/n. Let N ⊆ N be
a P -cohesive group, for some P ⊆ P , such that i ∈ N . By
definition of a cohesive group, we know that c(P ) ≤ b

n |N |.
Hence, share(P, i) ≤ b

n . Overall, we have:

share(π ∪ {p}, i) ≥ b/n ≥ share(P, i).

This shows that π satisfies Strong-EJS.

A.7 Counter Examples for the Taxonomy
We observe that Local-FS and FS-1 are independent proper-
ties, i.e., neither implies the other.
Proposition 13. FS-1 does not imply Local-FS and Local-FS
does not imply FS-1.

Proof. Consider an instance with four projects, a budget limit
of b = 6, and three agents, where c(p1) = c(p2) = 3, c(p3) =
6 and c(p4) = 1. The approvals are given by A1 = {p1, p2}
and A2 = A3 = {p3, p4}. Then {p1, p2} satisfies FS-1 as
agent 1 already receives (more than) her fair share, while 2
and 3 receive their fair share from {p1, p2}∪ {p3}. However,
no supporter of p4 receives their fair share from {p1, p2} ∪
{p4}. Therefore, Local-FS is violated. The other direction
follows from the fact that we know of a rule satisfying Local-
FS (see Theorem 3) while FS-1 is not always satisfiable.

Following the “Strong-EJS path”, by definition, we know that
Strong-EJS implies EJS, which in turn implies Local-EJS and
EJS-1. From Proposition 8, it is also clear that Local-EJS
implies EJS-1. We can further show that Local-EJS and EJS-
1 are not equivalent, even in the unit-cost setting.
Proposition 14. EJS-1 does not imply Local-EJS, even in the
unit-cost setting.

Proof. Consider an instance with two voters, 1 and 2, and
six projects p1, . . . , p6 all of cost 1. Voter 1 approves of
p1, p2, p3, p4, and p5; and voter 2 approves of p4, p5 and
p6. The budget limit is b = 4. It can be checked that
π = {p1, p2, p3, p4} satisfies EJS-1 but not Local-EJS.

Let us now turn to FS-1. While FS-1 implies the “weakest”
concept of our taxonomy, we can show that it fails to imply
the “second weakest” concept, namely Local-EJS.

Proposition 15. FS-1 does not imply Local-EJS.

Proof. Consider an instance with four projects, a budget limit
of b = 12, and three agents where c(p1) = 4, c(p2) = 2,
c(p3) = 5, c(p4) = 7. Voter 1 only approves p4 while 2 and
3 approve p1, p2 and p3. Allocation π = {p1, p4} satisfies
FS-1 but fails Local-EJS: the {p2, p3}-cohesive group {2, 3}
deserves a share of 3.5, but adding p2 to π would not meet
this requirement.

We now turn to Local-FS and show that it does not imply any
of the other concepts we have introduced.
Proposition 16. Local-FS does not imply EJS-1.

Proof. Consider an instance with three projects, a budget
limit of b = 6, and two agents where c(p1) = 6 and
c(p2) = c(p3). Moreover, 1 approves all projects, 2 only
p2 and p3. Allocation π = {p1} satisfies Local-FS: for both
p2 and p3, if we were to add them to π, agent 1 would have
a fair share. However, it does not satisfy EJS-1: {2} is a
{p2, p3}-cohesive group but neither project is selected.

This shows that Local-FS also does not imply any of Local-
EJS, EJS, Strong-EJS and FS-1. We can go further and show
none of these concepts imply Local-FS.
Proposition 17. Neither Strong-EJS nor FS-1 implies Local-
FS.

Proof. Consider the following instance with five projects, a
budget limit of b = 16, and two agents: c(p1) = c(p2) =
12, c(p3) = c(p4) = 1 and c(p5) = 4 while A1 =
{p1, p2, p3, p4} and A2 = {p1, p5}. In this instance, the
cohesive groups are: {1, 2} is {p1}-cohesive, {1} is {p3}-
cohesive, {p4}-cohesive and {p3, p4}-cohesive, and {2} is
{p5}-cohesive. Overall, to satisfy Strong-EJS, a budget al-
location should provide a share of at least 6 to agents 1 and 2.
The budget allocation π = {p1, p5} thus satisfies Strong-EJS
(note that is is exhaustive). However, one can easily check
that π does not satisfy the conditions of Local-FS as adding
p3 to π only provides a share of 7 to agent 1 while the lower
bound for their fair share is 8.

Note that budget allocation π = {p1, p5} does satisfy FS-
1: the fair share of the voters is 8; voter 2 already has a share
of 10 in π, and voter 1 would get a share of 18 in π∪{p2}.

The above result also shows that neither EJS, Local-EJS, nor
EJS-1 imply Local-FS. This completes the picture.

B ILPs for FS and EJS
We now present an ILP for finding a budget allocation Y ⊆ P
that maximises ∑

i∈N
min{b/n, share(Y, i)}, (13)

i.e., we maximise the total share of all voters but cap the share
of individual voters at their fair share (b/n). Note that bud-
get allocations satisfying fair share achieve an optimal value
for (13) (which is b). Thus, this ILP finds budget allocations
satisfying FS if they exist. The ILP is shown in Figure 4.
Variable si is the share of voter i bounded by b

n . Variable yp
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maximise
n∑
i=1

si (8)

subject to:
yp ∈ {0, 1} for p ∈ P (9)

si ≤
∑
p∈Ai

yp ·
c(p)

|{A ∈ A | p ∈ A}|
for i ∈ N (10)

si ≤ b/n for i ∈ N (11)∑
p∈P

yp · c(p) ≤ b (12)

Figure 4: An ILP for maximizing the total capped share of all voters.

indicates whether project p is selected in the winning budget
allocation.

Figure 5 shows an ILP for verifying whether a given bud-
get allocation π satisfies EJS. It searches for a set P ⊆ P and
a setN ⊆ N that certifies a violation of the EJS property, i.e.,
N is P -cohesive and all voters receive a strictly larger share
from P than from π. Here, variable xi indicates whether
i ∈ N and variable zp indicates whether p ∈ P . Con-
ditions (17) and (18) enforce that N is indeed P -cohesive.
Condition (19) implies that share(π, i) < share(P, i) for all
i ∈ N . The inequality in Condition (19) is only strict for
ε > 0. Consequently, π fails EJS if and only if this ILP yields
a solution with ε > 0.
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maximise ε (14)
subject to:
xi ∈ {0, 1} for i ∈ N (15)
zp ∈ {0, 1} for p ∈ P (16)
zp + xi − 1 ≤ Ip∈Ai for i ∈ N , p ∈ P (17)
1

n
·
∑
i∈N

xi ≥
1

b
·
∑
p∈P

zp · c(p) (18)

xi · share(π, i) + ε ≤
∑
p∈P

zp ·
c(p)

|{A ∈ A | p ∈ A}|
for i ∈ N (19)

Figure 5: An ILP for verifying whether a budget allocation π satisfies EJS.
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