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Abstract
We introduce an end-to-end model for participatory
budgeting grounded in social choice theory. Our
model accounts for the interplay between the two
stages commonly encountered in real-life partici-
patory budgeting. In the first stage participants pro-
pose projects to be shortlisted, while in the second
stage they vote on which of the shortlisted projects
should be funded. Prior work of a formal nature has
focused on analysing the second stage only. We in-
troduce several shortlisting rules for the first stage
and analyse them in both normative and algorith-
mic terms. Our main focus is on the incentives of
participants to engage in strategic behaviour during
the first stage, in which they need to reason about
how their proposals will impact the range of strate-
gies available to everyone in the second stage.

1 Introduction
Participatory budgeting (PB) is a loosely defined range of
mechanisms designed to improve the involvement of ordi-
nary citizens in public spending decisions [Cabannes, 2004].
It is usually organised as a two-stage process. In the first
stage, participants are invited to propose projects, a selec-
tion of which are put on a shortlist. Then, in the second
stage, everyone can vote on the shortlisted projects to decide
which of them should receive funding [Shah, 2007]. These
are problems of social choice with a clear algorithmic compo-
nent [Brandt et al., 2016; Aziz and Shah, 2020]. Prior formal
work—in particular in the AI and the Economics & Com-
putation communities—has concentrated almost exclusively
on the second stage [Aziz et al., 2018; Benade et al., 2017;
Fluschnik et al., 2019; Fain et al., 2016; Goel et al., 2019;
Jain et al., 2020; Rey et al., 2020; Talmon and Faliszewski,
2019]. In this paper, we instead propose an end-to-end model
of PB that accounts for both stages. By studying this model,
we aim at better understanding real-life processes.

Our contribution, beyond the formulation of the model it-
self, is twofold. First, we propose and analyse several short-
listing rules for the first stage. Second, we analyse the in-
centives of engaging in strategic manipulation when making
∗Contact Author

proposals during the first stage—in view of how these affect
the second stage. Let us briefly discuss both contributions.

During the first stage, the shortlisting stage, participants
can propose projects (e.g., planting a tree). It is often seen as
desirable to significantly reduce the number of proposals en-
tering the second stage. For instance, if we look at the PB ex-
ercises in Lisbon, around 30% of the projects were shortlisted
[Allegretti and Antunes, 2014]. In Toronto , this number was
as low as 10% [Murray, 2019]. An important objective at this
point is diversity. Inspired by the Thiele rules for committee
elections [Janson, 2016], we study diversity w.r.t. proposers,
by minimising the number of participants without shortlisted
proposals. Secondly, inspired by clustering algorithms [Jain
and Dubes, 1988], we also explore diversity w.r.t. the short-
list, by avoiding selecting too many similar projects.

During the second stage, the allocation stage, participants
vote on the shortlisted projects to decide which of them to
fund—subject to a given budget limit. Since the shortlisting
stage determines the “input” for this stage, there is signifi-
cant interaction between the two, which motivates the study
of end-to-end models that can account for such effects. Our
focus is on participants who strategise during the shortlisting
stage to affect the set of shortlisted projects that people can
vote for during the allocation stage. To this end, we introduce
the notion of first-stage strategyproofness and analyse how it
depends on both the information available to participants and
the choice of aggregation rules used during the two stages.
Related work. Most prior research of a formal nature regard-
ing PB has focused on the allocation stage only. For exam-
ple, Talmon and Faliszewski [2019] propose concrete rules,
Goel et al. [2019] discuss strategic behaviour, and Aziz et al.
[2018] discuss proportionality. Much of this work takes inspi-
ration from the literature on multiwinner voting [Faliszewski
et al., 2017], exploiting the fact that electing a committee of k
representatives is isomorphic to selecting projects when each
project costs 1 dollar and the budget limit is k dollars.

We are not aware of any formal work regarding the short-
listing stage in PB. Note that in multiwinner voting the term
‘shortlisting’ is used in two different senses: either to empha-
sise that choosing a set of k candidates is but a first step in
making a final decision [Faliszewski et al., 2017], or to re-
fer to the problem of electing a set of variable size [Kilgour,
2016; Faliszewski et al., 2020; Lackner and Maly, 2020].
Only the latter is formally related to shortlisting for PB (but



does not involve costs or a budget limit). We note that Lack-
ner and Maly [2020] also discuss connections to clustering.
Paper outline. We develop our end-to-end model for PB in
Section 2. Then, Section 3 is dedicated to shortlisting rules
and Section 4 to first-stage strategyproofness.

2 The Model
In this section, we introduce the two stages of our model for
PB and fix our assumptions regarding agent preferences.

2.1 Basic Notation and Terminology
Let P = {p1, . . . , pm} be the (finite) set of all conceivable
projects. The cost of each project is given by c : P→ N. The
total cost of any set P ⊆ P is written c(P ) =

∑
p∈P c(p).

The budget limit is denoted by B ∈ N. For every project p ∈
P, we assume w.l.o.g. that c(p) ≤ B. The set of agents par-
ticipating in the PB exercise is denoted by N = {1, . . . , n}.

We shall make use of the following generic procedure to
choose a “best” subset (fitting the budget) of a given set of
projects in view of a given ranking of those projects.

Definition 1 (Greedy selection). For a set P ⊆ P of projects
and a strict linear order � on P , the greedy selection pro-
cedure returns the set of projects GREED(P,�) defined as
follows. Projects are examined following�. A project p ∈ P
is selected iff the total cost of the selected projects does not
exceed B. The next project, if any, is then considered.

We are going to require a means for breaking ties, both be-
tween alternative projects and between alternative sets of
projects. For any P ⊆ P, let idx (P ) = {i ∈ N | pi ∈ P}
be the set of indices of the projects in P . The canonical tie-
breaking rule T returns T (P ) = pi with i = min(idx (P ))
for any nonempty set P ⊆ P. We also use T to transform
weak orders on projects into strict orders. Take any weak or-
der ≥ on P. Then for every indifference class P ⊆ P of ≥,
we break ties as follows: p = T (P ) is the first project, then
comes T (P \ {p}), and so forth. Overloading notation, we
denote by T (≥) the strict order thus obtained. Finally, we
extend T to nonempty sets P ⊆ 2P of sets of projects in a
lexicographic manner: T (P) is the unique set P ∈ P such
that T ((P \P ′)∪ (P ′ \P )) ∈ P for all P ′ ∈ P\{P}. Thus,
we require that, amongst all the projects on which P and P ′
differ, the one with the lowest index must belong to P .

2.2 The Shortlisting Stage
In the first stage, agents are asked to propose projects. A
shortlisting instance is a tuple 〈P, c, B〉. Because of bounded
rationality, an agent may not be able to conceive of all the
projects she would approve of if only she were aware of them.
We denote by Ci ⊆ P the set of projects that agent i can
conceive of—her awareness set—and we call the vector C =
(C1, . . . , Cn) the awareness profile. Agent i knows the cost
of the projects in Ci as well as the budget limit B.

We denote by Pi ⊆ Ci the set of projects agent i ∈ N
chooses to actually propose, and we call the resulting vector
P = (P1, . . . , Pn) a shortlisting profile. We use (P−i, P

′
i )

to denote the profile we obtain when, starting from profile P ,
agent i changes her proposal to P ′i .

A shortlisting rule R maps any given shortlisting instance
I = 〈P, c, B〉 and shortlisting profile P to a shortlist, i.e., a
set R(I,P ) ⊆

⋃
P = P1 ∪ · · · ∪ Pn of shortlisted projects.

2.3 The Allocation Stage
In the second stage, agents vote on the shortlisted projects to
decide which ones should get funded. An allocation instance
is a tuple 〈P, c, B〉, where P ⊆ P is the set of shortlisted
projects. Contrary to the shortlisting stage, the agents now
know about all the projects they can vote for. They vote by
submitting approval ballots, denoted by Ai ⊆ P for each i ∈
N , giving rise to a profile A = (A1, . . . , An). The approval
score of a project p in profile A is nAp = |{i ∈ N | p ∈ Ai}|.
Moreover, we define the weak order≥A

app on P by stipulating
that p ≥A

app p
′ holds iff nAp ≥ nAp′ .

For a given instance I , the goal is to choose a budget al-
location A ⊆ P . It is feasible if c(A) ≤ B and A(I) is the
set of feasible budget allocations. Moreover, A ∈ A(I) is
exhaustive if there exists no p ∈ P \ A s.t. c(A ∪ {p}) ≤ B
and AEX (I) is the set of exhaustive budget allocations in I .

An allocation rule F maps any given allocation instance I
and profile A to a feasible budget allocationF (I,A) ∈ A(I).
Two well-known (polynomial-time) allocation rules try to
maximise the approval score of their output, either greedily
[Goel et al., 2019] or exactly [Talmon and Faliszewski, 2019].
Definition 2 (Greedy-approval rule). The greedy-approval
rule F returns, for any given allocation instance I =
〈P, c, B〉 and profile A, the following budget allocation:

F (I,A) = GREED
(
P, T

(
≥A

app

))
Definition 3 (Approval-maximising rule). The approval-
maximising rule F returns, for any given allocation instance
I=〈P, c, B〉 and profile A, the following budget allocation:

F (I,A) = T

argmax
A∈A(I)

∑
p∈A

nAp


We say that an allocation rule F is exhaustive if, for all in-
stances I and all profiles A, we have F (I,A) ∈ AEX (I).
We furthermore say that F is unanimous if, for every instance
I = 〈P, c, B〉 and every profile of the form A = (A, . . . , A)
with A ∈ A(I), we have F (I,A) ⊇ A. We will at one point
in the paper need the following strengthening of unanimity.
Definition 4 (Strong unanimity). An allocation rule F is
strongly unanimous if, for every allocation instance I =
〈P, c, B〉, every agent i ∈ N , every feasible set A ∈ A(I),
and every profile A with |A| ≥ 3 and Ai′ = A for all agents
i′ ∈ N \ {i}, we have F (I,A) ⊇ A.
Observe that both of the rules defined above are exhaustive
and strongly unanimous (and thus also unanimous).

2.4 Agent Preferences
Suppose agent i ∈ N has preferences over all individual
projects in P expressed as a strict linear order Bi (even
though she might not be aware of Bi in full). For P ⊆ P,
we denote by Bi|P the restriction of Bi to P . Moreover,
amongst the projects in P , agent i has an ideal set topi(P)



of projects, assumed to be determined by the greedy selec-
tion procedure: topi(P) = GREED(P,Bi|P). This ap-
proach will permit us to model what constitutes a truthful
vote by an agent for varying shortlists P . We call the vector
top(P) = (top1(P), . . . , topn(P)) the ideal profile givenP .

Following Goel et al. [2019] and Talmon and Faliszewski
[2019], we make use of two preference models that an agent
can use to derive preference relations from her ideal set. For
any ideal set P ⊆ P, we denote by �P the induced weak
preference relation and by �P its strict part. For any two
budget allocations A and A′, under the overlap preference
model we have A �P A′ if and only if |A ∩ P | ≥ |A′ ∩ P |,
while under the cost preference model we have A �P A′ if
and only if c(A ∩ P ) ≥ c(A′ ∩ P ).

Finally, for any preference relation � and any family of
budget allocations P ⊆ 2P, we use best(�,P) to denote the
set of budget allocations that are undominated in P w.r.t. �.

3 Shortlisting Rules
We are not aware of any shortlisting rules introduced in the
literature for PB. In the following, we propose several.

The first of these is what arguably is the simplest of all
rules, the nomination rule, where every agent acts as a nomi-
nator, i.e., someone whose proposals are always all accepted.

Definition 5 (Nomination rule). The nomination rule R re-
turns, for every shortlisting instance I = 〈P, c, B〉 and short-
listing profile P , the shortlist R(I,P ) =

⋃
P .

Although very natural, the nomination shortlisting rule is not
effective in reducing the number of projects.

3.1 Equal-Representation Shortlisting Rules
Since the budget limit is not a hard constraint at the short-
listing stage, we might want to try to ensure that every par-
ticipant has their say. Building on this idea, we introduce
the k-equal-representation shortlisting rules—inspired by the
Thiele rules for multiwinner voting [Janson, 2016]—where k
indicates an upper bound on the total cost of the shortlist.

Definition 6 (k-equal-representation shortlisting rules). Let
k ∈ N. The k-equal-representation shortlisting rule R re-
turns, for any given shortlisting instance I = 〈P, c, B〉 and
profile P = (P1, . . . , Pn), the following shortlist:

R(I,P ) = T

argmax
P⊆

⋃
P

c(P )≤kB

∑
i∈N

|Pi∩P |∑
`=0

1

n`


The weight 1/n in the rule ensures that the rule will always
select, if possible, a project proposed by the agents with the
smallest number of thus-far-selected projects.

While intuitively attractive, computing shortlists under this
rule is a computationally demanding task.

Proposition 1. For any k ∈ N, computing the outcome of the
k-equal-representation shortlisting rule is NP-hard.

Proof. Note that for any k′ ∈ N, if all projects have cost B/k′,
computing the outcome of the k-equal-representation short-
listing rule amounts to finding a committee of size k′ with a

Thiele voting rule with weights (1, 1/n, 1/n2, . . .) in a multi-
winner election [Janson, 2016]. Interestingly, the reduction
presented by Aziz et al. [2015] to show that the well-known
rule of proportional approval voting (PAV) is NP-hard works
for all Thiele rules with decreasing weights. Since this is
the case here, their reduction applies as well and show NP-
hardness for the k-equal-representation rule.

3.2 Median-Based Shortlisting Rules
One criterion frequently used for excluding projects in prac-
tice is the similarity between them. Based on this intuition,
we introduce a family of shortlisting rules that cluster the
projects and only select representatives of each cluster.

We call distance any metric over P. For a distance δ,
the geometric median of P ⊆ P is defined as med(P ) =
T (argminp?∈P

∑
p′∈P δ(p

?, p′)). A partition of P , denoted
by V = {V1, . . . , Vp}, is a (k, `)-Voronoı̈ partition w.r.t. δ if∑
Vj∈V c(med(Vj)) ≤ kB and for every distinct Vj , Vj′ ∈ V

and every p ∈ Vj , we have:

• δ(p,med(Vj)) ≤ δ(p,med(Vj′)), i.e., every project is
in the cluster of its closest geometric median; and

• δ(p,med(Vj)) ≤ `, i.e., every project is within dis-
tance ` of the geometric median of its cluster.

Let Vδ,k,`(P ) be the set of all (k, `)-Voronoı̈ partitions of P .

Definition 7 (k-median shortlisting rules). Let k ∈ N. The
k-median shortlisting rule R w.r.t. distance δ returns, for any
shortlisting instance I and profile P , the following shortlist:

R(I,P ) = T

 ⋃
V ∈Vδ,k,`? (

⋃
P )

{med(Vj) | Vj ∈ V }


Here `? is the smallest ` such that Vδ,k,`(

⋃
P ) 6= ∅.

Note that we chose to minimise ` in our definition; one could
similarly try to minimise k, or both ` and k, instead.

For most natural choices of δ, computing outcomes for the
k-median shortlisting rule will be NP-hard. For instance, for
the Euclidean distance, our formulation coincides with the k-
median problem, known to be NP-hard [Kariv and Hakimi,
1979]. Still, known results on approximation algorithms and
fixed-parameter tractability can be exploited here.

3.3 End-to-End Example
Let us now clarify our whole setting with an example.

Example 1. Consider a shortlisting instance I = 〈P, c, B〉
with projects P = {p1, . . . p10}, cost c(p) = 1 for every
project p ∈ P, and a budget limit of B = 3. Now consider
five agents with the following characteristics:

Preference Order Awareness Set

Agent 1 p1 B p4 B p5 B p10 B . . . {p1, p4, p5, p10}
Agent 2 p1 B p2 B p6 B p4 B . . . {p2, p6}
Agent 3 p1 B p2 B p7 B p4 B . . . {p2, p7}
Agent 4 p1 B p3 B p8 B p5 B . . . {p3, p8}
Agent 5 p1 B p3 B p9 B p5 B . . . {p3, p9}

At the shortlisting stage, if agents are truthful they will all
submit their ideal set w.r.t. their awareness set, leading to the



profile ({p1, p4, p5}, {p2, p6}, {p2, p7}, {p3, p8}, {p3, p9}).
The outcome would be P\{p10} for the nomination rule, and
{p1, p2, p3, p4, p6, p7} for the 2-equal-representation rule.

Suppose the shortlist is P = P \ {p10}. All agents now be-
come aware of all the shortlisted projects. The truthful profile
for the allocation stage would then be A = ({p1, p4, p5},
{p1, p2, p6}, {p1, p2, p7}, {p1, p3, p8}, {p1, p3, p9}). Both
the greedy-approval and the approval-maximising allocation
rules would select the budget allocation A = {p1, p2, p3}. M

3.4 Axioms for Shortlisting Rules
We now present several basic axioms for shortlisting rules.
The first one, non-wastefulness, stipulates that it should be
possible to exhaust the budget in the allocation stage.
Definition 8 (Non-wastefulness). A shortlisting rule R is
non-wasteful if, for every shortlisting instance I = 〈P, c, B〉
and profile P , either c(R(I,P )) ≥ B or R(I,P ) =

⋃
P .

The second axiom we put forward here encodes the idea that
every agent should be represented by the outcome.
Definition 9 (Representation efficiency). For shortlisting in-
stance I = 〈P, c, B〉 and a shortlisting profile P , a short-
list P ⊆ P is representatively dominated if there exists a set
P ′ ⊆ P with c(P ′) ≤ c(P), and |P ′ ∩ Pi| ≥ |P ∩ Pi| for all
i ∈ N , with a strict inequality for at least one agent.

A shortlisting rule R is representatively efficient if its out-
come is never representatively dominated.

Let us now see how our shortlisting rules perform w.r.t. these
axioms. The proof of the next result is immediate.
Fact 2. The nomination shortlisting rule is both non-wasteful
and representatively efficient.

Proposition 3. For k ≥ 2, the k-equal-representation short-
listing rule R is non-wasteful. For k ≥ 1, the k-equal-
representation shortlisting rule is representatively efficient.

Proof. First, assume that there exists a k ≥ 2 such that R is
wasteful. Then there must exist I = 〈P, c, B〉 and P such
that c(R(I,P )) < B and R(I,P ) 6=

⋃
P . There exists then

a project p ∈
⋃
P \ R(I,P ) such that the representation

score of the set R(I,P )∪{p} is higher than that of R(I,P ).
Moreover, since c(p) ≤ B, we have c(R(I,P ) ∪ {p}) ≤
2B ≤ kB. Hence, R(I,P ) ∪ {p} would have been returned
by R, yielding a contradiction.

The fact that, for every k ≥ 1, the k-equal-representation
shortlisting rule is representatively efficient is immediate
from the choice of the weight 1/n in Definition 6.

Proposition 4. For k ≥ 2, the k-median shortlisting rule
is non-wasteful. But there exists no k ∈ N such that the k-
median shortlisting rule is representatively efficient.

Proof. The proof that, for k ≥ 2, the k-median shortlisting
rule is non-wasteful is similar to the corresponding part of the
proof of Proposition 3. Indeed, for no shortlisting instance I
and profile P , can there be a p ∈

⋃
P \ R(I,P ) such that

c(R(I,P ) ∪ {p}) ≤ kB, since selecting this p would lead to
a smaller within-cluster distance.

Finally, a k-median shortlisting rule is not efficiently rep-
resentative, since the agents are not taken into account.

4 First-Stage Strategyproofness
We now turn to the analysis of strategic interaction during the
shortlisting stage. The central challenge here is that we need
to account for agents who, during the first stage, reason about
what will happen during the second stage.

Let us first discuss the information available to a manipu-
lator. In the classical voting framework [Zwicker, 2016], it is
assumed that the manipulator has access to all the other bal-
lots before submitting her own. In our setting, when consid-
ering a manipulator choosing which proposal to submit dur-
ing the first stage, the same assumption is reasonable w.r.t.
the proposals about to be submitted by the other agents dur-
ing the first stage—but not w.r.t. the ballots the other agents
are going to submit during the second stage, after the short-
list will have been determined. Indeed, the set of actions for
the second stage depends on the proposal of the manipulator
in the first stage. We explore three possibilities. In the first
two cases, a manipulator in the first stage is unsure what will
happen during the second stage, but assumes that either the
worst scenario will be realised (pessimistic manipulation) or
the best one (optimistic manipulation). In the third case, she
knows the other agents’ true preferences and trusts they will
vote accordingly (anticipative manipulation).

Let us fix some further notation. For a given allocation rule
F , allocation instance I = 〈P, c, B〉, profile A, and agent i ∈
N , let A?i (I,A, F ) be defined as the ballot T (best(�topi(P)
, {F (I, (A−i, A′i)) | A′i ⊆ P})), the best response of i to
A. When clear from the context, we omit I , A, and/or F .
Also recall that every agent i ∈ N can determine an ideal
set topi(P) for any given set P , which induces a preference
relation �topi(P) on budget allocations.
Definition 10 (Successful manipulation). Let R be a short-
listing rule, F an allocation rule, I1 = 〈P, c, B〉 a short-
listing instance, P a shortlisting profile, and P ′i ⊆ P an
alternative proposal for agent i ∈ N . Consider the short-
lists P = R(I1,P ) and P ′ = R(I1, (P−i, P

′
i )), determining

the allocation instances I2 = 〈P, c, B〉 and I ′2 = 〈P ′, c, B〉,
and abbreviate F (I2, (A−i, A?i (I2,A))) as F ?(I2,A) and
F (I ′2, (A

′
−i, A

?
i (I
′
2,A

′))) as F ?(I ′2,A
′), for any two ap-

proval profiles A on P and A′ on P ′. Then we say that:
• P ′i is a successful pessimistic manipulation if, for all

profiles A on P and A′ on P ′, it is the case that
F ?(I ′2,A

′) �topi(P∪P′) F
?(I2,A), with a strict pref-

erence for at least one pair (A,A′).
• P ′i is a successful optimistic manipulation if, for at least

one profile A on P and one profile A′ on P ′, it is the
case that F ?(I ′2,A

′) �topi(P∪P′) F
?(I2,A).

• P ′i is a successful anticipative manipulation if, for the
two profiles A = top(P) and A′ = top(P ′), it is the
case that F ?(I ′2,A

′) �topi(P∪P′) F
?(I2,A).

Thus, a pessimist is pessimistic w.r.t. the advantages she can
gain from manipulating: assuming the best if she is truthful
and the worst otherwise. For optimists it is the other way
around. Finally, an anticipative manipulator knows every-
one’s preferences on both P and P ′ and uses them to pre-
dict their votes for the second stage. Note that this definition
works under both the overlap and the cost preference model.



What information is available
to the manipulator i ∈ N ?

Only her own
awareness set Ci

R-FSSP

Ci and the proposals
of the other agents

U-FSSP

What is the manipulator
anticipating for the allocation stage?

The worst
The best

The others to
behave truthfully

R-FSSP-P
R-FSSP-O

R-FSSP-A

U-FSSP-P
U-FSSP-O

U-FSSP-A

Figure 1: Taxonomy of first-stage strategyproofness concepts

We are looking for rules that do not allow for successful
manipulation, i.e., that are first-stage strategyproof (FSSP).
We distinguish two cases: either the manipulator is restricted
to her awareness set (R-FSSP) or she can also propose any of
the projects proposed by others (unrestricted, U-FSSP).
Definition 11 (FSSP). For a given preference model, a pair
〈R,F 〉 consisting of a shortlisting and an allocation rule
is R-FSSP w.r.t. a given type of manipulation, if for every
shortlisting instance 〈P, c, B〉, every awareness profile C =
(C1, . . . , Cn), every shortlisting profile P = (P1, . . . , Pn)
where Pi′ ⊆ Ci′ for all i′ ∈ N , and every agent i ∈ N , there
is no P ′i ⊆ Ci such that submitting P ′i instead of topi(Ci) is
a successful manipulation for i.

In case P ′i ⊆ Ci ∪
⋃
P and we consider topi(Ci ∪

⋃
P )

instead of topi(Ci), we say that 〈R,F 〉 is U-FSSP.
Thus, under U, agents are assumed to first gain access to ev-
eryone’s proposals and then decide whether or not to vote
truthfully. We are going to use FSSP-P to denote FSSP
w.r.t. pessimistic manipulation attempts, FSSP-O for opti-
mistic, and FSSP-A for anticipative manipulation. A sim-
plified overview is given in Figure 1.

The following result summarises how the different notions
introduced relate to each other, where X implying X′ means
that any pair 〈R,F 〉 satisfying X also satisfies X′.
Proposition 5. The following implications hold for both the
overlap preference model and the cost preference model:

• R-FSSP-O implies R-FSSP-A and R-FSSP-P.
• U-FSSP-O implies U-FSSP-A and U-FSSP-P.
• R-FSSP implies U-FSSP for all types of manipulation.

Proof. To see that the last of these claims is true, observe
that U-FSSP is a special case of R-FSSP, namely when the
manipulator can conceive of all the proposed projects, i.e.,
when Ci =

⋃
P .1 The other claims are immediate.

All results in this section hold for both preference models, so
we will not explicitly specify any preference model.

1This may be counter-intuitive at first, but as explained at the end
of Section 4.1, U-FSSP does not imply R-FSSP.

4.1 Awareness-Restricted Manipulation
We start by proving an impossibility theorem stating that,
when manipulators are restricted to their awareness sets, no
pair of reasonable rules can be first-stage strategyproof.
Theorem 6. Every pair 〈R,F 〉 of a non-wasteful shortlist-
ing rule R and an exhaustive allocation rule F is neither R-
FSSP-P nor R-FSSP-A (and thus also not R-FSSP-O).

Proof. We provide a proof for R-FSSP-P, but the same proof
also goes through for R-FSSP-A. The claim for R-FSSP-O
then follows from Proposition 5.

Let I = 〈P, c, B〉 be the shortlisting instance with P =
{p1, p2}, c(p1) = c(p2) = 1, and B = 1. Suppose
there are two agents, with p2 B1 p1 and C1 = {p1} and
p1 B2 p2 and C2 = {p2}, i.e., each agent is aware only
of the project they like less. The truthful shortlisting pro-
file is P = ({p1}, {p2}). Since R is non-wasteful, we have
|R(I,P )| ≥ 1. We distinguish three cases for R(I,P ).

In case R(I,P ) = {p1}, whichever way the agents vote in
the allocation stage, as F is exhaustive, the final budget allo-
cation must be {p1}. If agent 1 manipulates by not proposing
any project for the shortlist, {p2} will get shortlisted, since R
is non-wasteful. In that case, {p2} will also be the final bud-
get allocation, since F is exhaustive. It is clear that for either
preference model, agent 1 prefers {p2} over {p1}. So agent 1
has an incentive to pessimistically manipulate.

The case of R(I,P ) = {p2} is symmetric to the previous
one, except that now agent 2 can manipulate.

Finally, consider the case R(I,P ) = {p1, p2}. W.l.o.g.,
suppose the final budget allocation is {p1} in case both agents
vote truthfully. Then, just as in the first case, agent 1 has an
incentive to submit an empty set of proposals instead, as that
guarantees a final budget allocation of {p2}.

Note that the scenario used in the proof shows that strate-
gyproofness under U does not imply strategyproofness under
R. Indeed, under U no agent would have an incentive to ma-
nipulate in this scenario, as they would have all the informa-
tion they need to submit an optimal truthful proposal.

4.2 Unrestricted Manipulation
For the case of U, let us start with the nomination rule. We
first prove that it is immune to pessimistic manipulation when
used with a strongly unanimous allocation rule.
Proposition 7. For every allocation rule F that is exhaus-
tive and strongly unanimous, the pair 〈R,F 〉, where R is the
nomination rule, is U-FSSP-P.

Proof. Let I = 〈P, c, B〉 be a shortlisting instance, and P
the truthful shortlisting profile. Consider an agent i ∈ N .
Let Pi = topi(Ci ∪

⋃
P ). From Definition 5, we know

that if i submits P ′i instead of Pi, the shortlist will become
P ′i ∪ (

⋃
i′∈N\{i} Pi′). Since now weakly fewer projects from

topi(Ci∪
⋃

P ) are shortlisted, none of the budget allocations
newly reachable will be strictly better for i. Moreover, strong
unanimity entails that for every exhaustive budget allocation
A, there is a profile realising it, namely, the one where every
agent except i submits A. This directly implies that i cannot
be better off by pessimistically manipulating.



On the other hand, we can show that the nomination shortlist-
ing rule paired with either one of the allocation rules defined
in Section 2.3 is not U-FSSP-A (and thus not U-FSSP-O).
Example 2. Recall Example 1, where for both the greedy-
approval and the approval-maximising rule the outcome was
A = {p1, p2, p3}. Suppose now that agent 1 submits
{p4, p5, p10} instead of {p1, p4, p5} in the shortlisting stage.
The shortlist then becomes P = P \ {p1}. In the second
stage, all agents now approve of their second, third, and
fourth most preferred projects, leading to the budget alloca-
tion {p2, p4, p5}. It is clear that under both of our preference
models, this is better than A for agent 1. M
Unfortunately, also the other shortlisting rules we defined turn
out to not be first-stage strategyproof.
Proposition 8. For all k ∈ N, the pair 〈R,F 〉, where R is
the k-equal-representation shortlisting rule and F is a unan-
imous allocation rule, is neither U-FSSP-P nor U-FSSP-O.

Proof. We first prove the claim for k = 1 and then explain
how to generalise to any k ∈ N. Let I = 〈P, c, B〉 be a short-
listing instance with P = {p1, . . . p4}, c(p2) = 2, c(p) = 1
for all p ∈ P \ {p2}, and B = 2. Consider this scenario:

Preference Order Awareness Set

Agent 1 p3 B p4 B p2 B p1 {p1, p2, p3, p4}
Agent 2 p1 B p2 B p3 B p4 {p1, p2}
Agent 3 p2 B p1 B p3 B p4 {p2}

Consider the 1-equal-representation shortlisting rule. Under
the truthful profile P = {{p3, p4}, {p1, p2}, {p2}}, the short-
list would be P = {p2}. Note that P ∩ top1(

⋃
P ) = ∅. As-

sume now that agent 1 submits {p1, p3} instead of {p3, p4}.
Then the outcome of the first stage becomes P ′ = {p1, p3}.
It is clear that every A′ ∈ A(〈P ′, c, B〉) is weakly preferred
by agent 1 to every A ∈ A(〈P, c, B〉) and some are strictly
preferred (the ones in which p3 appears). Since the allocation
rule is unanimous, all these budget allocations can be reached
(when every agent submit the budget allocation) so agent 1’s
manipulation is pessimistically successful.

To generalise to k > 1, add 3(k − 1) agents in groups of
3. Each group can conceive and approve of two new projects.
It is easy to check that all the new projects will always be
shortlisted, so we are back to the scenario above.

Proposition 9. For all k ∈ N, the pair 〈R,F 〉, whereR is the
k-median shortlisting rule based on the Euclidean distance
over R2 and F is a unanimous allocation rule, is neither U-
FSSP-P nor U-FSSP-O.

Proof. We first prove the claim for k = 1 and then explain
how to generalise it to all k ∈ N. Consider the shortlisting
instance I = 〈P, c, B〉 with P = {p1, . . . , p6}, all projects
have cost 1, and B = 3. Suppose the distance δ is the usual
distance in the plane, with the projects as in the figure below:

•p1

•p2

•p3 •
p4

• p5

• p6

• p7

2

2

2

2/
√ 3 √
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Consider two agents such that p1 B1 p2 B1 p3 B1 . . . and
C1 = {p1, p2, p3, p5}, and p4 B2 p6 B2 p7 B2 . . . and C2 =
{p4, p6, p7}. The truthful profile is (C1 \ {p5}, C2) which
will lead to the clusters {p1, p2, p3, p4}, {p5}, and {p6} for
the 1-median shortlisting rule. The set of shortlisted projects
then is P = {p4, p6, p7}. Note that P ∩ top1(P) = ∅.

Now assume that agent 1 submits {p1, p2, p5}. Then there
will be the clusters {p1}, {p2, p4}, and {p5, p6, p7}. The
shortlist would then be P ′ = {p1, p2, p5}. For the same rea-
son as in the proof of Proposition 8, since F is unanimous,
agent 1’s manipulation is pessimistically successful.

To extend this to all k > 1, add k − 1 agents, all knowing
and approving of three new projects of cost 1. All the new
projects are placed uniformly on a circle with centre p4 and
a radius large enough so that all new projects will be in their
own cluster. Then all the new projects will be shortlisted and
we are back to the original case for k = 1.

Note that the previous statement can be generalised to other
distances; in particular, it holds for any surjective distance.

To conclude this section, note that the proofs of Proposi-
tions 8 and 9 do not extend to U-FSSP-A as that notion is
about a specific profile for which we have no relevant infor-
mation. However, the following facts hold for U-FSSP-A.
Fact 10. For no k ∈ N is the pair 〈R,F 〉 U-FSSP-A, when R
is the k-equal-representation shortlisting rule and F is either
the greedy-approval or the approval-maximising rule.
Fact 11. For no k ∈ N is the pair 〈R,F 〉 U-FSSP-A, when R
is the k-median shortlisting rule and F is either the greedy-
approval or the approval-maximising rule.
The counterexample used in the proof of Proposition 9 also
works for Fact 11. That of Proposition 8 can be made to work
for Fact 10 by slightly changing the agent preferences (mak-
ing p1 and p3 the most preferred projects of many agents).

5 Conclusion
To account for the fact that real-life PB is a two-stage process,
we have initiated the study of PB encompassing not only the
allocation stage but also the shortlisting stage preceding it.
This has prompted several proposals for concrete shortlist-
ing rules, and allowed us to analyse the incentives of agents
to manipulate the shortlisting stage, in view of how their ac-
tions affect the ultimate outcome during the allocation stage.
Our results suggest that it is hard to devise sensible shortlist-
ing rules that incentivise the citizens to truthfully propose the
projects they would like to see achieved.

This paper is a first step towards the principled investiga-
tion of the full PB process. There are still many other features
deserving attention. For instance, it would be interesting to
consider other allocation rules, not only based on approval
scores, e.g., proportional rules [Aziz et al., 2018]. More gen-
erally, other types of interaction between the two stages can
be investigated, such as devising allocation rules that take into
account not only the outcome of the shortlisting stage but also
the shortlisting profile itself, to enforce some kind of fairness
across the two stages. This leads to the idea of defining and
studying single rules for the whole process instead of taking
the composition of a shortlisting and an allocation rule.
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