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Abstract

We propose a model of judgment aggregation in which agents can choose to provide
a judgment for only some of the issues at stake. A natural class of aggregation rules
in this context are scoring rules for which an agent’s weight in the decision making
process is determined by the number of issues she provides a judgment for. We
formulate several appealing axioms for aggregating incomplete judgments and show
how they characterise specific rules within this class of scoring rules.

1 Introduction

Judgment aggregation, going back to the seminal work of List and Pettit (2002), is a powerful
framework for modelling collective decision making scenarios that involve several logically
related issues. This framework has been studied in depth by scholars in Economics, Legal
Theory, Philosophy, and Mathematics (see, e.g., List and Puppe, 2009), and more recently
it has also attracted the interest of computer scientists (see, e.g., Grossi and Pigozzi, 2014;
Endriss, 2016; Baumeister et al., 2017). Almost all prior work on judgment aggregation
makes the assumption that all individual judgments are complete, i.e., that every agent
provides a judgment on every issue at stake. In this paper, we argue that this assumption is
not always justified and instead consider the problem of aggregating incomplete judgments.
Specifically, we consider a natural class of scoring rules for this problem and characterise
the rules obtained by imposing a number of normatively appealing axioms.

In judgment aggregation we are presented with a set of issues, which together form the
agenda of decision making. In the model typically investigated in the literature, for every
such formula ϕ, every agent has to either accept ϕ or explicitly indicate rejection of ϕ by
accepting its complement. This is a useful model for a wide range of applications. But there
are at least three types of scenarios in which it is natural to assume that agents only provide
such judgments for a subset of the issues in the agenda:

• Agents only care about a subset of the issues. When a group decides on a large
number of issues, it is not uncommon that some members of the group are personally
only interested in some of the issues and thus may want to provide judgments for only
those issues. A similar idea has been discussed in work on strategic considerations
in judgment aggregation, where it is natural to assume that the preferences of agents
depend on the outcome regarding specific issues only (Dietrich and List, 2007b).

• Agents can only reason about a subset of the issues. That is, agents may lack the
information or the reasoning capabilities required for providing a judgment on certain
issues. To model this kind of bounded rationality, we require a framework that allows
for individual judgments that are incomplete. For example, using the well-known
embedding of preference aggregation into judgment aggregation (Dietrich and List,
2007a), incomplete judgments would permit modelling partial preference orders, which
are central to many decision making scenarios studied in AI (Rossi et al., 2011).
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• Agents are only asked about a subset of the issues. For example, judgment aggregation
has been suggested as a paradigm for modelling the aggregation of the information
collected in a crowdsourcing exercise (Endriss and Fernández, 2013). In the context
of crowdsourcing we typically have a very large number of questions we require an
answer for, but each individual participant only answers a small subset of them.

In as far as prior work has considered the case of incomplete judgments, the focus has been
on allowing the output generated by a judgment aggregation rule to be incomplete (rather
than the individual judgments provided as input). Specifically, Gärdenfors (2006) has shown
that dropping the requirement for an aggregation rule to decide on all issues (i.e., to return
complete judgments) does not offer a convincing way out of the impossibility results one
typically runs into when imposing particularly demanding axioms in judgment aggregation.
His results have later been refined by both Dietrich and List (2008) and Dokow and Holzman
(2010). While all of these authors also briefly discuss the idea of dropping the completeness
requirement for the individual judgments, they only do so in the context of investigating
how such design choices affect impossibility results. Along similar lines, van Hees (2007)
has developed a model of judgment aggregation in which agents can accept a given formula
to varying degrees, again concentrating on impossibility results. Somewhat closer to our
approach are Slavkovik and Jamroga (2011), who investigate a family of distance-based
aggregation rules for incomplete individual judgments. However, they treat abstentions in
the same way as the binary (yes/no) opinions of the agents (with the underlying framework
being a three-valued logic), while we interpret an abstention as the lack of any opinion
rather than an opinion itself. To summarise, a systematic discussion of how to design and
choose useful judgment aggregation rules that operate on inputs that may be incomplete
has been missing from the literature to date.

In this paper we concentrate on the following simple and natural class of aggregation
rules. Whenever an agent i accepts a formula ϕ, she implicitly assigns a score to ϕ. For
instance, the scoring function determining this score may be constructed in such a way that
an agent can choose to either have a high impact on a small number of issues or a low impact
on a large number of issues.1 The aggregation rule then selects a collective judgment—from
the range of all possible judgments that are logically consistent—that maximises the sum of
the scores of the formulas accepted by all the agents. These rules are closely related to the
scoring rules introduced by Dietrich (2014), except that we permit incomplete individual
judgments and we require the scoring functions to be neutral, in the sense of being blind to
the issues themselves and only considering the number of formulas a given agent accepts.

We present three kinds of axioms that encode intuitively attractive normative require-
ments for aggregation rules that operate on possibly incomplete judgment sets:

• Majoritarianism. When deciding between accepting ϕ and its complement ∼ϕ, it is
appealing to follow the choice of the majority of agents who have provided a judgment
on these two issues. But, as is well known, doing so can lead to logically inconsistent
outcomes—this is the infamous doctrinal paradox (Kornhauser and Sager, 1993). We
therefore propose three weakened forms of majoritarianism that avoid this conflict
between logical consistency and responsiveness to the will of the majority.

• Splitting. Suppose that a subgroup of the group of all agents observe that simply
accepting the union of all their (disjoint) individual judgments would be logically
consistent. They then might consider all submitting that union of judgments rather
than their own individual judgments. It seems desirable to use an aggregation rule for
which the outcome never changes when a subgroup chooses to make such a move, so
we consider three axioms of varying strengths based on this fundamental idea.

1A similar concept has been explored in the context of studying variants of the system of approval voting
(Alcalde-Unzu and Vorsatz, 2009).
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• Quality over quantity. We may wish to give more weight to agents who choose to
only provide a small number of judgments. For instance, we may think that they
have reflected on those judgments more carefully than another agent who provided
judgments on a large number of issues. We may also consider it a matter of fairness
to either give someone much influence over a few issues or little influence over many,
but not much influence over many issues. We propose an axiom that takes an extreme
position on this matter and requires that a single “quality” agent who provided a
small number of judgments is always more powerful than any number of agents who
all provided a common strictly larger set of judgments.

Our main technical results are characterisations of scoring rules (with neutral scoring func-
tions) that satisfy the axioms sketched above. Under appropriate conditions, imposing a
majoritarian axiom demands constant scores. Similarly, imposing a (weak form of the)
splitting axiom causes scores to be inversely proportional to the number of issues an agent
provides a judgment for. Finally, imposing the quality-over-quantity axiom forces the aggre-
gation rule to make decisions in a lexicographic manner, with agents being ordered according
to the number of issues they express an opinion upon.

The remainder of this paper is structured as follows. In Section 2 we present our model of
judgment aggregation with possibly incomplete individual judgments and define the class of
scoring rules with neutral scoring functions for this model. We then motivate and define our
axioms for aggregating incomplete judgments in Section 3 and show how these axioms char-
acterise some specific scoring rules in Section 4. Section 5 concludes with a brief discussion
of future work. All proofs have been relegated to the appendix.

2 The Model

In this section we introduce the basic model of judgment aggregation that allows for in-
complete individual judgments. Our framework is based on classical propositional logic,
building on the existing literature regarding the aggregation of complete judgments (List
and Pettit, 2002; List, 2012; Grossi and Pigozzi, 2014; Endriss, 2016).

2.1 The Superagenda

A superagenda A is a finite or countably infinite set of formulas in propositional logic (that
is, |A| ∈ N or |A| = ℵ0 respectively). Intuitively, it is the set of all possible issues that
a group of agents may have to decide about; for instance, it can simply be the set of all
formulas of propositional logic.2 Any specific aggregation scenario concerns a subset of A.
We define ∼ϕ, the complement of formula ϕ, as follows: if ϕ is of the form ϕ = ¬ψ for
some formula ψ, then ∼ϕ = ψ, otherwise, ∼ϕ = ¬ϕ. For the purposes of this paper, we will
assume that the superagenda A is closed under complementation, i.e., ∼ϕ ∈ A whenever
ϕ ∈ A, and that it does not contain doubly-negated formulas.

Hereafter, for any cardinal numbers a, b ∈ N∪{ℵ0}, we write a 6 b whenever: (i) a, b ∈ N
and a 6 b in the familiar way of comparing natural numbers, (ii) a ∈ N and b = ℵ0, or
(iii) a = b = ℵ0. Moreover, we adopt the following convention: ℵ0/2 = ℵ0 + 1 = ℵ0.

For λ ∈ N, we say that a superagenda A is λ-constrained if for every consistent subset
J ⊆ A with |J | = λ, it holds that for all ϕ ∈ J :

J \ {ϕ} � ϕ
2The notion of a superagenda captures what numerous scholars already implicitly assume in their models

of judgment aggregation: that the domain of decision making may vary in different scenarios, but it is still
desirable to have a uniform framework that integrates all possible cases.
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A superagenda A is unconstrained if there is no λ 6 |A|
2 for which A is λ-constrained.

Unconstrainedness is a very weak property. In particular, every superagenda becomes un-
constrained if we add to it a new propositional variable and its complement.3

An agenda A is a finite subset of the superagenda that is closed under complementation.
Agendas represent the domain of decision making in specific collective choice problems.

2.2 Aggregating Incomplete Judgments

We consider a finite or countably infinite superpopulation N with |N | > 2. This is the
set of all potential agents that may participate in an aggregation scenario (hence, |N | ∈ N
or |N | = ℵ0). Then, we fix a finite group of agents N = {1, . . . , n} ⊆ N that have to
make a collective decision regarding the issues in an agenda A. During the aggregation
process, every agent i ∈ N submits a logically consistent judgment set (or simply judgment)
Ji ⊆ A. Agent i may abstain from expressing a yes/no opinion on some issue in the
agenda, that is, it may be the case that ϕ /∈ Ji and ∼ϕ /∈ Ji, for some formula ϕ ∈ A.4

We denote by J (A) the set of all logically consistent subsets of the agenda A, and by
J (A)• those that are also complete (J ∈ J (A)• if J ∈ J (A) and ϕ ∈ J or ∼ϕ ∈ J ,
for all ϕ ∈ A). A profile J = (J1, . . . , Jn) ∈ J (A)n captures the individual judgments
of the agents in group N . We denote by NJ

ϕ and NJ
∼ϕ the sets of agents that report

ϕ and ∼ϕ in profile J respectively. Furthermore, we say that a formula ϕ is logically
independent of a profile J whenever ϕ is logically independent of each consistent subset of
{ψ,∼ψ | ψ ∈

⋃
i∈N Ji} \ {ϕ,∼ϕ}. Recall that a formula ϕ is logically independent of a set

of formulas Y if both Y ∪ {ϕ} and Y ∪ {∼ϕ} are logically consistent.
Then, an aggregation rule F is a function that maps any profile of judgments J ∈ J (A)n

for any agenda A and any group N to a nonempty set of collective judgment sets for the
same agenda, i.e., to a nonempty subset of 2A. Thus, there may be a tie between several
“best” judgment sets and these judgments need not be consistent or complete in general.

2.3 Scoring Rules

We now define the family of scoring rules S, following Dietrich (2014). First, a scoring
function s : A×2A → R assigns to each formula ϕ and judgment set Ji (possibly inconsistent
and incomplete for the sake of this definition) a number sJi(ϕ), called the score of ϕ given
Ji and measuring how ϕ performs from the perspective of holding judgment set Ji. We will
make the reasonable assumption that, if a formula does not belong to a judgment set Ji,
then its relevant score is zero:

sJi(ϕ) = 0, if ϕ /∈ Ji (1)

For example, for any given c ∈ R, we call sc, defined as follows, the constant scoring function.

scJi(ϕ) =

{
c, if ϕ ∈ Ji
0, if ϕ /∈ Ji

For our technical purposes, negative scores are also allowed; the requirement of positivity
will be later entailed by an axiom, namely unanimity. Of course, one could also force the

3It is also worth noting that most superagendas used in common judgment aggregation applications,
like those containing a conjunctive or disjunctive agenda with at least two premises (Dietrich and List,
2007b), a preference agenda (Dietrich and List, 2007a) or a budget agenda (Dietrich and List, 2010), are
unconstrained.

4Gärdenfors (2006) and the authors of follow-up papers require deductive closure of (incomplete) judg-
ment sets. However, we do not wish to make this restrictive assumption, since (according to each of the
three motivations we have given in the introduction) an agent may often have no reason to report an opinion
on an extra issue, even if that issue is a logical consequence of her judgment set. Our model is designed to
only take into consideration the agents’ explicitly declared opinions.
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scores to be positive already in the definition. The score of a set of formulas can be thought
of as the sum of the scores of its members. So, we get an extended scoring function which
(given agent i’s judgment set Ji) assigns a score to each set J ⊆ A:

sJi(J) =
∑
ϕ∈J

sJi(ϕ)

Having a profile J = (J1, . . . , Jn) and a scoring function s, we say that sJ (J) =
∑
i∈N sJi(J)

is the score of the judgment set J on the profile J . Then, given a superagendaA and a super-
population N , a scoring rule Fs determines the collective judgments for any agenda A ⊆ A
and group of agents N = {1, . . . , n} ⊆ N by selecting the complete and consistent subsets
of the agenda with the highest total score across all agents:5

Fs(J) = argmax
J∈J (A)•

∑
ϕ∈J,i∈N

sJi(ϕ) = argmax
J∈J (A)•

∑
i∈N

sJi(J) = argmax
J∈J (A)•

sJ (J)

In this paper we focus on a subfamily of all scoring rules, namely the family of all rules
with associated neutral scoring functions.6 Informally speaking, a neutral scoring function
treats all formulas symmetrically. Concretely, the scoring function s is neutral if for every
permutation π : A → A and all formulas ϕ1, . . . , ϕk, ϕ ∈ A it holds that:

s{ϕ1,...,ϕk}(ϕ) = s{π(ϕ1),...,π(ϕk)}(π(ϕ))

Neutral scoring functions induce the same score for all formulas in a judgment set, and
moreover that score depends only on the judgment set’s size.7 Admittedly, the condition of
neutrality of a scoring function is normatively questionable and certainly we do not claim
that it should hold in all decision-making contexts. What our work aims to do, however,
is to focus on and analyse those situations where neutrality is a reasonable and desirable
assumption to make.

Additionally, one may find it useful to impose scores that are non-increasing in the
judgment set’s size (otherwise the agents would always prefer to submit complete opinions).
This requirement can be achieved by an axiom analogous to contraction in the framework
of size-approval voting (Alcalde-Unzu and Vorsatz, 2009). However, since all the interesting
axioms we consider in Section 3 already entail contraction, we are not going to further
discuss this axiom in its own right.

We call SN the class of all neutral-scoring rules, i.e., the aggregation rules with associated
neutral scoring functions.8 In the remainder we will write sλ as a shorthand for sJ(ϕ) with
ϕ ∈ J , where 0 < λ = |J |. For instance, s1 will designate the score corresponding to all
singletons. Hence s|J| is the score of judgment set J . Restricting attention to SN , a scoring
rule Fs can also be defined as:

Fs(J) = argmax
J∈J (A)•

∑
i∈N

s|Ji| · |J ∩ Ji|

5Note that if an agent i does not express a yes/no judgment on any issue, that is, if Ji = ∅, then
by assumption (1) this agent is completely disregarded as far as the collective outcome is concerned. In
alternative frameworks, empty judgment sets could influence the collective decision (see, e.g., Slavkovik and
Jamroga, 2011).

6The scoring rules are anonymous by definition. Moreover, we have defined scoring rules to satisfy
collective rationality, which requires that all collective judgment sets must be complete and consistent. One
could easily relax the completeness assumption, with no important technical implications for our results.

7The reader who finds our definition of neutrality for a scoring function too stringent can also think of an
alternative—possibly more plausible—definition restricted to all consistency-preserving permutations, that
is, permutations π such that {π(ϕ) | ϕ ∈ J} is consistent whenever J is consistent. Since all judgment sets
we consider in this paper are consistent, our results are invariant under the definition of neutrality we adopt.

8It is crucial to stress that what we call a neutral-scoring rule should not be confused with a neutral rule
as studied so far in judgment aggregation (Endriss, 2016). These two notions are logically independent; for
instance, the generalised Kemeny rule is a neutral-scoring rule but it is not neutral (Costantini et al., 2016).
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Before continuing to the main sections of this paper, it is important to underline a detail
regarding rules on the one hand and scoring vectors defining rules on the other. Given a
superagenda A, for a neutral-scoring rule Fs there exists a (possibly infinite) scoring vector
s = (sλ)λ∈N,λ6|A|/2, with sλ ∈ R for every λ, such that for every agenda A ⊆ A only the
prefix of s of cardinality |A|/2 is relevant for Fs. Furthermore, for every neutral-scoring
rule Fs there are infinitely many scoring vectors that induce Fs. For example, if we multiply
all scores with some positive constant c, then the rule being induced does not change.

3 Axioms

In this section we discuss a number of reasonable features of aggregation rules for incom-
plete individual judgments and we formalise them in terms of axioms. For the sake of our
definitions, let us consider a fixed agenda A ⊆ A, a group of agents N ⊆ N of size n, and
an aggregation rule F defined on profiles in J (A)n.

To start off, a fundamental property in the economics literature demands that whenever
all agents have the same opinion, then the collective outcome should respect that opinion:

Unanimity. For every profile of the form J = (J ′, . . . , J ′) ∈ J (A)n, it holds that J ′ ⊆ J
for all J ∈ F (J).

Making a collective decision based on the opinion of the majority on each issue of the agenda
separately is commonly considered as a desirable attribute of an aggregation rule. However,
we know that majorities easily lead to inconsistencies when logical interconnections between
the formulas are involved (we refer, for instance, to the doctrinal paradox by Kornhauser
and Sager, 1993). On the other hand, there clearly are situations where the role of logic
is not critical for the decision-making process, while the judgment of the majority is still
considered a reliable indication concerning the judgment of the whole group. Suppose, for
instance, that the jury of a court has to deliver a verdict on two distinct cases, deciding
whether the defendant of the first case is guilty (proposition ϕ1), and similarly for the
second case (proposition ϕ2). In this scenario, no matter what the verdict on ϕ1 is, the
jury can independently decide in favour of ϕ2 or of ∼ϕ2. Formally, for the agenda A =
{ϕ1, ϕ2,∼ϕ1,∼ϕ2} and for a jury of size n, it holds that ϕ2 is logically independent of J for
every profile J ∈ J (A)n. Now, imagine that the jury consists of five members, three of which
find that the defendant of the second case is guilty. This means that a strict majority of the
jury members accept proposition ϕ2. The axiom of forward majoritarianism says exactly
that this majority ought to be respected by an aggregation rule; regardless of what the jury
decides about the first case, any collective judgment of it should contain proposition ϕ2.
Then, suppose that the judge of the court does not have access to the individual judgments
of the jury members, but she can observe the outcome of an aggregation rule, where every
collective judgment contains ϕ2. Hence, the judge cannot avoid but announce the defendant
of the second case guilty, without knowing how many out of the five jury members agree with
this verdict. The axiom of backward majoritarianism provides the judge with the guarantee
that a strict majority of the jury members have deemed the defendant guilty.

For a profile J ∈ J (A)n, let us define the simple-majority set m(J) = {ϕ ∈ A | |NJ
ϕ | >

|NJ
∼ϕ|}, that is, the set of all formulas that have more advocates than adversaries in J .9

9One could also want to work with the absolute-majority set m(J) = {ϕ ∈ A | |NJ
ϕ | > n

2
} (see, e.g.,

Lang et al., 2017). By adopting this definition for incomplete individual judgments, our axioms of forward
majoritarianism and of general majoritarianism would become weaker, while backward majoritarianism
would be logically stronger.
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Forward majoritarianism. For every profile J ∈ J (A)n and formula ϕ ∈ A that is
logically independent of J , it holds that if ϕ ∈ m(J), then ϕ ∈ J for all J ∈ F (J).

Backward majoritarianism. For every profile J ∈ J (A)n and formula ϕ ∈ A that is
logically independent of J , it holds that if ϕ ∈ J for all J ∈ F (J), then ϕ ∈ m(J).

Regarding the general matter of majority judgments conflicting with logical constraints,
a notion of minimal divergence from the majority outcome based on set-inclusion can be
defined: For a set of formulas Y ⊆ A, Y ′ ⊆ Y is a maximal consistent subset of Y if and only
if Y ′ is consistent and there exists no other consistent set Y ′′ such that Y ′ ⊂ Y ′′ ⊆ Y . The
set of maximal consistent subsets of Y is denoted by max(Y,⊆). Following Nehring et al.
(2014), we call Con(J) = {Y ′ | Y ′ complete and consistent, and Y ′ ⊇ Y, for some Y ∈
max(m(J),⊆)} the Condorcet set. The property of general majoritarianism ensures that
the aggregation rule induces only judgment sets that extend (possibly in an inconsistent
way) judgment sets in the Condorcet set.10

General majoritarianism. For every profile J ∈ J (A)n and every judgment set
J ∈ F (J), there exists a judgment set J ′ ∈ Con(J) such that J ′ ⊆ J .

By inspecting the definitions above we can see that, as far as all aggregation rules are
concerned, general majoritarianism logically implies forward majoritarianism and both these
axioms are independent of backward majoritarianism. However, we will show in Section 4
that the logical relations differ when we focus on all neutral-scoring rules.

Next, we introduce three novel axioms. To illustrate the idea behind them, consider the
following scenario. A group of doctors has to make a decision concerning the treatment of
a patient. For example, they may have to decide if treatment 1 is suitable (proposition ϕ1),
similarly for treatment 2 (proposition ϕ2), but also if treatment 1 and 2 can be combined
(proposition ϕ1∧ϕ2), etc. In this context, it is reasonable to think that the doctors may have
different specialisations, or that they may choose to spend their limited time investigating
different issues regarding the decision they have to make. This would result in a meeting
where these doctors submit judgments on different propositions. Suppose now that a subset
of the doctors have the chance to eat lunch together before the meeting, and of course they
discuss about their patient. Hence, they are able to share the information they collected
individually and the judgments they arrived at. Then, this subset of the doctors may realise
that all their judgments together form a consistent set of propositions {ϕ1, . . . , ϕλ}. In
such a case it is safe to assume that, trusting their colleagues, the doctors in this subset
will report the whole set of propositions in the meeting, instead of the more restricted
judgments they held before the discussion. We would like the aggregation rule employed by
the group to reach the same outcome independently of whether some of the doctors choose
to combine their individual judgments prior to aggregation. We present three axioms that
enforce exactly this property in various degrees, ordered from stronger to weaker:

Arbitrary-splitting. For every profile J ∈ J (A)n and subgroup ∅ 6= N ′ ⊆ N of agents
with pairwise disjoint and mutually consistent judgment sets, we have F (J) = F (J ′), where
J ′ arises from J by replacing the judgment set of each member of N ′ by the union

⋃
i∈N ′ Ji.

Equal-splitting. For every profile J ∈ J (A)n and subgroup ∅ 6= N ′ ⊆ N of agents
whose judgment sets are pairwise disjoint, mutually consistent, and of equal size, we have

10If the aggregation rule satisfies collective rationality, inducing only consistent collective judgments,
general majoritarianism means that F (J) ⊆ Con(J) for every profile J ∈ J (A)n.
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F (J) = F (J ′), where J ′ arises from J by replacing the judgment set of each member of N ′

by the union
⋃
i∈N ′ Ji.

Single-splitting. For every profile J ∈ J (A)n and subgroup ∅ 6= N ′ ⊆ N of agents
whose judgment sets are pairwise disjoint, mutually consistent, and singletons, we have
F (J) = F (J ′), where J ′ arises from J by replacing the judgment set of each member of
N ′ by the union

⋃
i∈N ′ Ji.

The following property is particularly desirable when smaller judgment sets are signifi-
cantly more important to the collective decision than larger ones. For instance, in case the
agents have a fixed and limited amount of energy/time/cognitive effort at their disposal,
then one could expect that small judgment sets are more well-thought-out than large ones,
and hence of greater value to the group. We restrict attention to profiles where only two
judgments—which differ in size—are reported. The axiom of quality-over-quantity states
that the collective judgment ought to always agree with the smaller individual judgment
set, no matter how many agents adopt each opinion:11

Quality-over-quantity. Consider two arbitrary judgment sets ∅ 6= J ′, J ′′ ∈ J (A) with
|J ′| < |J ′′|. For every profile J ∈ J (A)n where a subgroup ∅ 6= N ′ ⊂ N of agents declare
judgment J ′, another subgroup ∅ 6= N ′′ ⊂ N of agents declare judgment J ′′, and the rest
of the agents submit an empty set, it holds that J ′ ⊆ J for all J ∈ F (J).

For the impatient reader we shall already mention that within the context of scoring rules,
the axiom of quality-over-quantity does not simply require smaller judgments sets to weight
more than larger ones—as we have indicated in Section 2, this would be imposed by a
contraction-like property. The specific scores that the quality-over-quantity axiom generates
will be fully analysed in Section 4, along with the scores related to the rest of our axioms.

4 Characterisation Results

The goal of this section is to provide axiomatic characterisations for aggregation rules within
the family SN . Recall that, for a given superagenda A and a given superpopulation N , a
scoring rule Fs induces an aggregation rule for every specific agenda A ⊆ A and specific
group N ⊆ N . We say that Fs satisfies a certain axiom if and only if all aggregation rules
induced by Fs in this manner satisfy the axiom.

Our first lemma is straightforward and states that unanimity requires positive scores:

Lemma 1. For any superagenda A with at least one logically contingent formula, super-
population N , and neutral scoring function s, the scoring rule Fs ∈ SN satisfies unanimity

if and only if sλ > 0 for all λ ∈ N with λ 6 |A|2 .

We begin by investigating the three majoritarian properties. For a finite superpopulation,
we show that each one of the axioms of general majoritarianism and of forward majori-
tarianism characterises a family of rules with scores that are “close enough”, while if the
superpopulation is infinite we obtain an axiomatisation of the constant-scoring rule:12

11The property of quality-over-quantity may be judged as weak or strong, depending on different consid-
erations. On the one hand, the axiom’s scope (i.e., the profiles that its antecedent refers to) may categorise
it as weak, since it only mentions cases where just two distinct judgment sets are reported. On the other
hand, the axiom may also be considered strong, because it clearly prioritises small judgment sets over large
ones, not allowing for any compromise.

12Note that every constant scoring function sc with c > 0 induces the same scoring rule.
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Definition 1. Take any constant scoring function sc with c > 0. We call the scoring rule
F c that is induced by sc the constant-scoring rule.

In frameworks with complete individual judgments, the constant-scoring rule is known as
the distance-based rule (Endriss et al., 2012), the simple scoring rule (Dietrich, 2014), the
median rule (Nehring et al., 2014), the Prototype rule (Miller and Osherson, 2009), and the
generalised Kemeny rule (Endriss, 2016).

Proposition 2. For any unconstrained superagenda A, finite superpopulation N , and neu-
tral scoring function s, the scoring rule Fs ∈ SN satisfies general majoritarianism if and
only if it satisfies forward majoritarianism if and only if sλ > 0 and sλ

sλ′
< k

k−1 for all

λ, λ′ ∈ N with λ, λ′ 6 |A|2 , where k = d |N |2 e.

Theorem 3. For any unconstrained superagenda A and infinite superpopulation N , the
only neutral-scoring rule satisfying general majoritarianism is the constant-scoring rule F c.

Theorem 4. For any unconstrained superagenda A and infinite superpopulation N , the
only neutral-scoring rule satisfying forward majoritarianism is the constant-scoring rule F c.

In case, however, we wish to make no assumptions regarding the superpopulation, the
constant-scoring rule F c is directly characterised by backward majoritarianism:

Theorem 5. For any unconstrained superagenda A and superpopulation N , the only
neutral-scoring rule satisfying backward majoritarianism is the constant-scoring rule F c.

The above results highlight an interesting fact about the logical relations between the three
majoritarian properties, when restricting attention within the family SN . The axioms of
forward and of general majoritarianism are now logically equivalent (even though in general
the latter is stronger than the former), and logically weaker than backward majoritarianism
(which in general is logically independent of both).

We proceed with exploring how the splitting axioms function within the family SN .
Interestingly, for a sufficiently large superpopulation we can show that the weakest axiom
of the three, namely the single-splitting axiom, together with unanimity characterises the
aggregation rule Fs ∈ SN induced by scores sλ that are inversely proportional to λ (The-
orem 6), and by Theorem 7 the same holds for the equal-splitting axiom. Moreover, the
arbitrary-splitting axiom is proven to be too strong: it is not satisfied by any unanimous
neutral-scoring rule (Proposition 8).13

Definition 2. Take any neutral scoring function s with sλ = s1
λ > 0 for all λ ∈ N, λ 6 |A|2 .

We call the scoring rule F ee that is induced by s the equal-and-even-scoring rule.

The equal-and-even-scoring rule borrows its name from its counterpart in voting theory: the
equal and even cumulative voting procedure, which can be considered a special version of
cumulative voting (Glasser, 1959; Alcalde-Unzu and Vorsatz, 2009).

Theorem 6. For any unconstrained superagenda A and superpopulation N with |N | >
|A|
2 + 1, the only neutral-scoring rule satisfying the single-splitting axiom simultaneously

with unanimity is the equal-and-even-scoring rule F ee.

Theorem 7. For any unconstrained superagenda A and any superpopulation N with |N | >
|A|
2 +1, the only neutral-scoring rule satisfying the equal-splitting axiom simultaneously with

unanimity is the equal-and-even-scoring rule F ee.

13The results about the splitting axioms would fail without the property of unanimity in the relevant state-
ments and the hypothesis of a sufficiently large superpopulation; dropping any one of these two assumptions
would lead to a characterisation of some family of rules instead of a single rule. Similarly, assuming that
s1 > 0 in Definition 2 is necessary in order to guarantee the induction of a single scoring rule.
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Recalling the formulations of the splitting axioms in Section 3, the reader may be curious
to know how essential for our characterisation results the assumption of disjointness of the
individual judgments is. The answer is “very”—without it, the splitting properties would
fail for all unanimous neutral-scoring rules.

Finally, the axioms of arbitrary-splitting and of unanimity are mutually exclusive:

Proposition 8. For any unconstrained superagenda A and superpopulation N with |N | >
|A|
2 + 1 > 4, no unanimous neutral-scoring rule satisfies the arbitrary-splitting axiom.

In the sequel we introduce an original aggregation rule, which makes sense in settings where
giving strict priority to agents who report smaller judgment sets is recommendable. In
words, the upward-lexicographic rule first tries to agree as much as possible with the agents
holding the smallest judgment sets; in case this process induces more than one collective
judgment, the rule aims at maximising agreement with the agents with the second smallest
judgment sets, and so on, until no ties can be broken anymore.

In order to proceed to a formal definition of the aggregation rule, we first need an
additional technical notion, namely the one of the lexmax function. Consider a set V =
{v1,v2, . . . ,vm} of equal-sized vectors of real numbers, and denote by vki ∈ R the ith element
of vector vk. The function lexmax picks up the vector from the set V the elements of which
are maximal in a lexicographic manner. More precisely, lexmax : V 7→ vk, where vk ∈ V is
such that if v`i > vki for some v`i ∈ V , then there exists some j < i for which v`j < vkj .

Let us now fix an agenda A, a group of agents N , and a profile J ∈ J (A)n, and define
kJλ (J) =

∑
i |λ=|Ji| |J ∩ Ji|, the “raw points” the agents with judgment sets of size λ assign

to choosing J , and KJ
λ (J) =

∑K
k=1 k

J
λ (J), the “raw points” the agents with judgment sets of

size up to λ assign to choosing J . The upward-lexicographic rule selects those complete and
consistent judgment sets that result in a lexicographically maximal vector (the argument
function arg is defined in the standard way):

F ulex(J) = arglexmax
J∈J (A)•

(
KJ

1 (J), . . . ,KJ
|A|/2(J)

)
We have defined the upward-lexicographic rule in terms of a procedure to be followed to
compute the outcome for any given profile. We are now going to show that we can define
the same rule in terms of a scoring vector. We observe that (for N being finite) if a scoring
function s is such that sλ−1

sλ
= λ · |N |, this means that each formula of a small judgment set

that appears in a profile of at most |N | agents has greater value for the aggregation rule Fs
than all formulas in larger judgment sets; and this precisely captures the intuition behind
the upward-lexicographic rule:

Definition 3. Given a superagenda A and a finite superpopulation N , take the scoring

function s such that sλ =
∏λ
k=1

1
k·|N | for all λ ∈ N, λ 6 |A|2 . We call the scoring rule F ulex

that is induced by s the upward-lexicographic rule.

Recall that every scoring rule is represented by many different scoring vectors. The following
lemma shows that the upward-lexicographic rule is special in the sense that, if we change
the scoring vector in such a way that some or all of the ratios sλ−1

sλ
of consecutive scores

increase, then we do not change the corresponding aggregation rule:

Lemma 9. For any superagenda A and finite superpopulation N , let s be any neutral

scoring function with sλ > 0 and sλ−1

sλ
> λ · (|N | − 1) for all λ ∈ N, λ 6 |A|2 . Then Fs is

the upward-lexicographic rule F ulex.
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As one may have already predicted, the upward-lexicographic rule is characterised by the
property of quality-over-quantity:14

Theorem 10. For any superagenda A that is closed under conjunction of literals and con-
tains all propositional variables and for any finite superpopulation N , the only neutral-
scoring rule that satisfies quality-over-quantity is the upward-lexicographic rule F ulex.

After having analysed the upward-lexicographic rule, it is natural to define the downward-
lexicographic rule, which selects those complete and consistent subsets of the agenda that
result in a lexicographically maximal vector prioritising the points collected by all judgment
sets in a profile. This rule breaks ties by excluding the points collected by individual
judgment sets of a fixed size in rounds, moving from the largest to the smallest ones:15

F dlex(J) = arglexmax
J∈J (A)•

(
KJ
|A|/2(J), . . . ,KJ

1 (J)
)

Even though at first sight the upward-lexicographic rule and the downward-lexicographic
rule seem to satisfy some notion of duality, we will show that this is not true in general.
In particular, for any infinite and unconstrained superagenda (such as a superagenda that
contains all propositional variables that was used in the proof of Theorem 10), the downward-
lexicographic rule is not a neutral-scoring rule:

Proposition 11. For any infinite and unconstrained superagenda A and for any superpop-
ulation N , the downward-lexicographic rule F dlex does not belong to SN .

5 Conclusion

We have developed a general model of judgment aggregation that makes room for agents
who may express an opinion on a limited number of the issues in question. An individual
judgment is then assigned a weight depending on how many issues it covers, and a scor-
ing rule tries to maximise the relevant score gained by the collective judgment. We have
defined various appealing axioms in this context, concerning first the problem of dealing
with clashing majority opinions, second situations of alliance-formation, and third settings
where judgments referring to less issues may be deemed much more precious than those
involving more issues. We have showed that each type of axiom uniquely characterises a
natural scoring rule under very light conditions on the domain of decision making (i.e., the
agenda) and the number of all potential agents participating in an aggregation problem.

The results presented in this paper can be seen as the beginning towards a more struc-
tured study of the possibilities that aggregating incomplete individual judgments offers, both
regarding theory and applications. Our work brings into light several concrete open ques-
tions. Technically, it would be interesting to examine whether the downward-lexicographic
rule we introduced corresponds to a neutral-scoring rule under the assumption of a finite
superagenda, and if so, what kind of axiom(s) could characterise it. Of course, further
formal properties related to incomplete individual judgments could also be considered and
analysed within the family of neutral-scoring rules. In addition, it would be intriguing to

14The axiomatisation of Theorem 10 holds for a finite superagenda A too, under the condition that for

every λ 6 |A|
2

there exists a set of propositional variables {p1, . . . , pλ} ⊆ A such that ¬p1 ∧ · · · ∧ ¬pλ ∈ A.
However, if we take an infinite superpopulationN instead of a finite one, then the characterisation result does
not hold. Specifically, the upward-lexicographic rule cannot be defined as a neutral-scoring rule anymore,
and the quality-over-quantity axiom is not satisfied by any rule in SN .

15Observe that the definition of the upward-lexicographic rule is not affected if we substitute all KJ
λ by

kJλ , while for the downward-lexicographic rule it is (and the new rule we obtain is not intuitively attractive).
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provide complete axiomatisations for the aggregation rules we discussed in this paper, with-
out restricting ourselves to the class of neutral-scoring rules—inspiration could be drawn
from the recent work of Nehring and Pivato (2018). Finally, in more philosophical terms, it
would be worth clarifying which exact characteristics of the agents’ reasoning and motiva-
tions are meant to be captured by an aggregation framework of incomplete judgments and
spell out how these considerations play a role when designing useful aggregation rules.

Acknowledgments. We thank the COMSOC-2018 reviewers for the extensive and helpful
feedback received.
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Appendix: Proofs

Proof of Proposition 2. We will demonstrate the characterisation of the scores only for the
property of general majoritarianism, since the proof for forward majoritarianism is similar.
Given an unconstrained superagenda A and a finite superpopulation N , we address the case
for an even number |N | = 2k (when |N | is odd the proof is totally analogous). Consider an
arbitrary neutral scoring function s and its induced scoring rule Fs.

Suppose that Fs satisfies general majoritarianism and consider two arbitrary λ, λ′ ∈ N.
We first show that sλ > 0: Since A is unconstrained, there exists a consistent set J =
{ϕ1, ϕ2, . . . , ϕλ} ⊆ A such that J ′ = {∼ϕ1, ϕ2, . . . , ϕλ} is also consistent. We take the
agenda A = {ϕ1, . . . , ϕλ,∼ϕ1, . . . ,∼ϕλ} ⊆ A and some number n 6 |N | of agents and we
construct the unanimous profile J = (J, . . . , J), where all agents report the judgment set J .
Obviously it holds that Con(J) = {J}, and by general majoritarianism of Fs we must have
that Fs(J) = {J}. However, if it was the case that s|J| = sλ 6 0, we could deduce that
Fs(J) 6= {J}, because then it would be sJ (J) = n · λ · sλ 6 n · (λ − 1) · sλ = sJ (J ′) and
J ′ ∈ J (A)•. Hence, it must be true that sλ > 0.

Then, if sλ = sλ′ , we have that sλ
sλ′

< k
k−1 . So, assume that sλ > sλ′ and λ > λ′ (if

λ < λ′ the proof is analogous). Consider J, J ′ as above and take J ′′ to be a consistent subset
of J ′ with ∼ϕ1 ∈ J ′′ and |J ′′| = λ′. Consider the following profile, corresponding to a group
of |N | agents:

J = (∅,
k − 1︷ ︸︸ ︷

J, . . . , J,

k︷ ︸︸ ︷
J ′′, . . . , J ′′)

Since |NJ
∼ϕ1
| > |NJ

ϕ1
| and J ′′ ⊂ J ′ = (J \ {ϕ1})∪ {∼ϕ1}, it is true that Con(J) = {J ′}.

Then, Fs satisfying general majoritarianism implies that Fs(J) = {J ′}, so ϕ1 must score
strictly less than ∼ϕ1 in J . That is, (k − 1) · sλ < k · sλ′ or sλ

sλ′
< k

k−1 .

For the other direction we will show the contrapositive. Concretely, we will prove that if
Fs does not satisfy general majoritarianism, then sλ < 0 for some λ or sλ

sλ′
> k

k−1 for some

λ, λ′. We start with assuming that Fs does not satisfy general majoritarianism. Since Fs—
being a scoring rule—produces only complete and consistent collective judgments, failing
general majoritarianism means that Fs(J) * Con(J) for some agenda A ⊆ A and some
profile J ∈ J (A)n with n 6 |N |. This means that there exists a judgment set J ∈ Fs(J) and
J /∈ Con(J). The fact that J /∈ Con(J) implies that there are some formulas ϕ1, . . . , ϕ` ∈ J
such that |NJ

∼ϕj | > |N
J
ϕj | for all j ∈ {1, . . . , `}, and J ′ = (J \{ϕ1, . . . , ϕ`})∪{∼ϕ1, . . . ,∼ϕ`}

is consistent. Since J ∈ Fs(J), it must hold that
∑
i∈N s|Ji| · |J ∩Ji| >

∑
i∈N s|Ji| · |J ′ ∩Ji|.

This means that
∑
j∈{1,...,`}

∑
i∈NJ

ϕj

s|Ji| >
∑
j∈{1,...,`}

∑
i∈NJ

∼ϕj
s|Ji|. Consequently,

(|NJ
ϕ1
|+ . . .+ |NJ

ϕ`
|) ·max|Ji| s|Ji| > (|NJ

∼ϕ|+ . . .+ |NJ
∼ϕ` |) ·min|Ji| s|Ji|. Now, if sλ < 0 for

some λ, we are done. Otherwise, it must hold that min|Ji| s|Ji| > 0. Then, we have that

|NJ
ϕ1
| + . . . + |NJ

ϕ`
| > 0. So

|NJ
∼ϕ1
|+...+|NJ

∼ϕ`
|

|NJ
ϕ1
|+...+|NJ

ϕ`
| >

|NJ
ϕ1
|+...+|NJ

ϕ`
|+`

|NJ
ϕ1
|+...+|NJ

ϕ`
| = 1 + `

|NJ
ϕ1
|+...+|NJ

ϕ`
| >

1 + `
`(k−1) = k

k−1 . We conclude that (k − 1) ·max|Ji| s|Ji| > k ·minλ sλ, which means that
sλ
sλ′
> k

k−1 for some λ, λ′. �

Proof of Theorem 3. We give a sketch of the proof. If general majoritarianism holds for
an infinite superpopulation N , then it has to hold for every finite group {1, . . . , n} ⊆ N
of agents. So, following the idea of Proposition 2 we can show that (i) sλ > 0 and
(ii) sλ

sλ′
< k

k−1 for all k ∈ N, implying that sλ = sλ′ > 0 for all λ, λ′. �

Proof of Theorem 4. Analogous to the proof of Theorem 3. �
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Proof of Theorem 5. Consider an unconstrained superagenda A and an infinite superpop-
ulation N . For the first direction we take an arbitrary profile J = (J1, . . . , Jn) ∈ J (A)n

for some A ⊆ A and some n 6 |N | and a formula ϕ ∈ A logically independent of J . The
independence assumption for ϕ implies that the constant-scoring rule F c with c > 0 will
simply count how many agents report the formulas ϕ and ∼ϕ in the profile J and proceed
as follows: if NJ

ϕ = NJ
∼ϕ, then both ϕ and ∼ϕ will belong to some collective judgment set

in F c(J); if NJ
ϕ > NJ

∼ϕ, then only ϕ will belong to some collective judgment set in F c(J);

and if NJ
ϕ < NJ

∼ϕ, then only ∼ϕ will belong to some collective judgment set in F c(J). This

means exactly that if ϕ ∈ J for all J ∈ F c(J), then NJ
ϕ > NJ

∼ϕ, and thus ϕ ∈ m(J). Hence
backward majoritarianism holds.

For the other direction we have to consider two cases. First, the neutral-scoring rules
associated with zero or negative constant scores obviously violate backward majoritarian-
ism. Hence, it suffices to show that if backward majoritarianism is satisfied by some scoring
rule Fs ∈ SN , induced by a neutral scoring function s, then it must hold that sλ = sλ′ for
all λ, λ′. We proceed with proving the contrapositive. Take a neutral scoring function s
such that sλ 6= sλ′ for some λ 6= λ′. Suppose that sλ > sλ′ and λ > λ′ (if λ < λ′ the proof
is analogous). Then, since A is unconstrained, there is some consistent judgment set J ⊆ A
of size λ such that ϕ ∈ J and J ′ = (J \ {ϕ})∪{∼ϕ} is also consistent. Consider the agenda
A ⊆ A that contains all formulas in J and their complements, and take J ′′ ⊂ J ′ such that
∼ϕ ∈ J ′′ and |J ′′| = λ′. Then, we construct the profile J = (∅, . . . , ∅, J, J ′′), where by
definition, ϕ is logically independent of J . Since s|J′′| = sλ′ < sλ = s|J|, we will have that
ϕ ∈ J for all J ∈ Fs(J). However, |NJ

ϕ | = |NJ
∼ϕ| = 1, thus ϕ /∈ m(J). We conclude that

backward majoritarianism fails. �

Proof of Theorem 6. Consider given an unconstrained superagenda A and a superpopula-

tion N with |N | > |A|
2 + 1. For the first direction we need to show that the scoring rule

F ee satisfies the single-splitting axiom (since F ee is induced by positive scores, we know it
satisfies unanimity by Lemma 1). So we consider an arbitrary instance of the single-splitting
axiom: an agenda A ⊆ A, a group N of n 6 |N | agents, a non-empty subgroup N ′ ⊆ N of
agents whose judgment sets are pairwise disjoint, mutually consistent, and singleton, and
two profiles J = (J1, . . . , Jn) and J ′, where J ′ arises from J by replacing the judgment set
of each member of N ′ by the union

⋃
i∈N ′ Ji. By the definition of the scores for the rule F ee

we know that every formula in
⋃
i∈N ′ Ji scores exactly the same in the profiles J and J ′,

because |Ji| = 1 for every i ∈ N ′, and sλ = s1
λ for every λ. The same holds for all formulas

that are not in
⋃
i∈N ′ Ji too, since they trivially appear in exactly the same judgment sets

in both profiles J and J ′. This means that F ee(J) = F ee(J ′).
For the other direction consider an arbitrary λ 6 |N | − 1 (note that we do not

need to consider larger values for λ because |N | > |A|
2 + 1). Since A is uncon-

strained, we take a consistent subset J = {ϕ1, ϕ2, . . . , ϕλ} such that {∼ϕ1, ϕ2, . . . , ϕλ}
is also consistent. Consider the agenda A that contains all formulas in J and
their complements and take two profiles J = ({∼ϕ1}, {ϕ1}, {ϕ2}, . . . , {ϕλ}) and
J ′ = ({∼ϕ1}, {ϕ1, ϕ2, . . . , ϕλ}, {ϕ1, ϕ2, . . . , ϕλ}, . . . , {ϕ1, ϕ2, . . . , ϕλ}) (this can be done
because λ 6 |N | − 1). Then, if a scoring rule Fs induced by a neutral scoring function s
satisfies the single-splitting axiom, it must be the case that Fs(J) = Fs(J

′). So the scores
of ϕ1 and ∼ϕ1 should be the same in profile J ′, that is, s1 = λ · sλ. If moreover Fs satisfies
unanimity, then by Lemma 1 it holds that sλ > 0. Hence, by Definition 2, Fs is the
equal-and-even-scoring rule. �

Proof of Theorem 7. Trivially, if a neutral-scoring rule Fs satisfies the equal-splitting
axiom (together with unanimity), then it satisfies the single-splitting axiom (together with
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unanimity) too, so Theorem 6 implies that Fs must be the equal-and-even-scoring rule. For
the other direction it is easy to see that for all scores of the form sλ = s1

λ > 0 (which induce
the equal-and-even-scoring rule by Definition 2), the equal-splitting axiom is satisfied (note,
however, that the arbitrary-splitting axiom is not). �

Proof of Proposition 8. For the sake of contradiction, assume that there exists some neutral
scoring function s for which the induced scoring rule Fs satisfies both the arbitrary-splitting
axiom and unanimity. Then Fs should clearly also satisfy the single-splitting axiom.
Hence, by Theorem 6, we should have that sλ = s1

λ > 0 for every λ. However, we will
now show that if this is the case, then Fs can in fact not satisfy the arbitrary-splitting
axiom, which stands in direct contradiction to our assumption. Consider three formulas
ϕ1, ϕ2, ϕ3 ∈ A such that both {ϕ1, ϕ2, ϕ3} and {∼ϕ1, ϕ2, ϕ3} are consistent (which is
possible due to unconstrainedness), and take the agenda A = {ϕ1, ϕ2, ϕ3,∼ϕ1,∼ϕ2,∼ϕ3}.
Then, consider J = ({∼ϕ1}, {ϕ1}, {ϕ2, ϕ3}) and J ′ = ({∼ϕ1}, {ϕ1, ϕ2, ϕ3, }, {ϕ1, ϕ2, ϕ3, }).
Since both ϕ1 and ∼ϕ1 score s1 in profile J , it holds that both ϕ1 and ∼ϕ1 be-
long to some judgment set in Fs(J). Now, note that s|{ϕ1,ϕ2,ϕ3}| = s1

3 (this is true

given that |N | > 4 and thus Theorem 6 holds). So, ϕ1 scores 2s1
3 < s1 in J ′. This

means that for every judgment set in Fs(J
′), only ∼ϕ1 but not ϕ1 will belong to that

judgment set. To conclude, Fs(J) 6= Fs(J
′), which violates the arbitrary-splitting axiom. �

Proof of Lemma 9. By definition, the upward-lexicographic rule is induced by a neutral
scoring function s with sλ−1

sλ
> λ · (|N | − 1) for all λ > 1 and is such that sλ > 0 for

all λ. It remains to be shown that all scoring functions of this kind in fact define the same
aggregation rule. So consider any two neutral scoring functions s and s′ with sλ > 0 and

s′λ > 0 for all λ, as well as with sλ−1

sλ
> λ · (|N | − 1) and

s′λ−1

s′λ
> λ · (|N | − 1) for all

λ > 1. We need to show that Fs = Fs′ . Consider an arbitrary agenda A ⊆ A, n 6 |N |, and
profile J ∈ J (A)n, as well as two arbitrary judgment sets J, J ′ ∈ J (A)•. We are done if
we can show that sJ (J) > sJ (J ′) holds if and only if s′J (J) > s′J (J ′) does. We can rewrite
sJ (J) as follows:

sJ (J) =
∑
i∈N

∑
ϕ∈J

sJi(ϕ) =
∑
i∈N

s|Ji| · |J ∩ Ji| =
∑
λ>1

sλ ·
∑

i |λ=|Ji|

|J ∩ Ji|

In case profile J is such that all agents report judgment sets of the same size λ, our claim
clearly holds, as then sJ (J) = sλ ·

∑
i∈N |J ∩ Ji|, meaning that sJ (J) > sJ (J ′) reduces

to
∑
i∈N |J ∩ Ji| >

∑
i∈N |J ′ ∩ Ji| (because we know that sλ > 0). So, without loss of

generality, we may assume that at most |N | − 1 agents report a judgment set of the same
size and thus

∑
i |λ=|Ji| |J ∩ Ji| 6 (|N | − 1) · λ for all λ (and accordingly for J ′). Together

with our assumptions regarding the lower bounds for sλ−1

sλ
and

s′λ−1

s′λ
, this implies that

sJ (J) > sJ (J ′) holds if and only if the |A|2 -vector (
∑
i |λ=|Ji| |J ∩ Ji|)λ>1 lexicographically

precedes (
∑
i |λ=|Ji| |J

′ ∩ Ji|)λ>1. In other words, the relative ranking of J and J ′ does not
depend on the exact choice of scores, provided the condition on ratios is respected, i.e., we
have shown that sJ (J) > sJ (J ′) if and only if s′J (J) > s′J (J ′). �

Proof of Theorem 10. First it is easy to verify that the upward-lexicographic rule satisfies the
quality-over-quantity axiom. For the other direction consider any finite superpopulation N
and any superagenda A of the required kind. Let Fs be a scoring rule for A and N that
is induced by some neutral scoring function s. Since A contains the set of all propositional
variables {p1, p2, . . .}, if Fs satisfies the quality-over-quantity axiom it is easy to see that
sλ > 0 for every λ: We can construct an agenda A with p1, . . . , pλ, pλ+1 ∈ A and the
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judgment sets J = {p1, . . . , pλ} ∈ J (A) and J ′ = {p1, . . . , pλ, pλ+1} ∈ J (A). Afterwards,
we may consider the profile J = (∅, . . . , ∅, J, J ′). The quality-over-quantity property implies
that J ⊆ J ′′ for all J ′′ ∈ Fs(J), which is only true if s|J| = sλ > 0.

Now consider any λ > 1. We are going to establish a lower bound on the ratio sλ−1

sλ
based on quality-over-quantity. As A is closed under conjunction of literals and contains
all propositional variables, we can construct an agenda A with p1, . . . , p2λ−2 ∈ A and
¬p1 ∧ · · · ∧ ¬pλ ∈ A. We then use the judgment sets J = {p1, . . . , pλ} ∈ J (A) and
J ′ = {¬p1 ∧ · · · ∧ ¬pλ, pλ+1, . . . , p2λ−2} ∈ J (A) to construct the profile J = (J, . . . , J, J ′)
for n = |N | agents in which |N | − 1 agents submit J and a single agent submits J ′. As
|J | = λ and |J ′| = λ − 1, the quality-over-quantity axiom requires that J ′ ⊆ J ′′ for all
J ′′ ∈ Fs(J). Given that the propositions pλ+1, . . . , p2λ−2 are logically independent of the
profile J , having that J ′ ⊆ J ′′ for all J ′′ ∈ Fs(J) means that accepting ¬p1 ∧ · · · ∧ ¬pλ
must have yielded a higher total score than accepting all of p1, . . . , pλ, i.e., we must have
sJ ({¬p1∧ · · · ∧¬pλ}) > sJ (J). But this is equivalent to 1 ·1 · sλ−1 > (|N |−1) ·λ · sλ, which
in turn is equivalent to sλ−1

sλ
> λ · (|N | − 1). The claim now follows from Lemma 9. �

Proof of Proposition 11. For an infinite and unconstrained superagenda A and a super-
population N , we will assume, aiming for a contradiction, that the downward-lexicographic
rule F dlex belongs to SN . In other words, we assume that F dlex is induced by a neutral
scoring function s, or equivalently, with a scoring vector s = (s1, s2, . . .). We will first prove
that if this is the case, then it must hold that (i) sλ > 0 and (ii) sλ > sλ+1 for all λ > 0.
This means that s corresponds to a decreasing and bounded sequence of real numbers,
which by the monotone convergence theorem (see, e.g., Schechter, 1996) has to converge
to a non-negative real number. Then, we will show that (iii) sλ − sλ+1 > sλ−1 − sλ for
all λ > 1, which in simple words means that consecutive members of the sequence s must
be further and further from each other as λ grows large, and hence the sequence cannot
converge. To prove the statements (i) − (iii), consider an arbitrary λ > 0 and a consis-
tent judgment set J of size λ such that J ′ = (J \ {ϕ}) ∪ {∼ϕ} is also consistent, where
ϕ ∈ J (such a J exists because the superagenda is unconstrained). Take the agenda A that
contains all formulas in J and their complements. For (i), we construct the unanimous
profile J = (J, . . . , J). According to the definition of the downward-lexicographic rule, it
must be the case that F dlex(J) = {J}, which implies that sλ > 0 (otherwise it would hold
that J ′ ∈ F dlex(J)). For (ii), take J and J ′ as before, but now with |J | = |J ′| = λ + 1.
Then consider a judgment set J ′′ = J ′ \ {ψ}, where ψ 6= ∼ϕ (that is, |J ′′| = λ). Using the
profile J ′ = (∅, . . . , ∅, J, J ′′), the definition of the downward-lexicographic rule prescribes
that F dlex(J ′) = {J ′}, which implies that sλ > sλ+1. Finally, for (iii) we assume that
λ > 1 and we additionally consider the judgment set J ′′′ = J \ {ψ′, ψ′′}, where ψ′, ψ′′ 6= ϕ,
which is of size λ − 1. We construct the following profile: J ′′′ = (∅, . . . , ∅, J ′′, J ′′, J, J ′′′).
Then, KJ′′′

λ+1(J) = 2 · (λ − 1) + λ + 1 + λ − 1 = 2 · λ + λ + λ − 2 = KJ′′′

λ+1(J ′) and

KJ′′′

λ (J) = 2 ·(λ−1)+λ−1 < 2 ·λ+λ−2 = KJ′′′

λ (J ′), which means that F dlex(J ′′′) = {J ′}.
Thus it must be the case that 2 · sλ > sλ−1 + sλ+1 or equivalently sλ − sλ+1 > sλ−1 − sλ.

Now, by (i) and (ii) we have that the sequence of scores in s converges. Take
0 < α < sλ−1 − sλ. By the definition of convergence we know that there must exist some
k′ ∈ N such that sk − sk+1 < α for all k > k′. But by (iii) we see that this is impossible.
We reached a contradiction and we can conclude that the downward-lexicographic rule
F dlex does not belong to SN . �
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