What’s in an axiom?

On the Nature of Axioms in Social Choice Theory*

Ulle Endriss and Marie Christin Schmidtlein

Institute for Logic, Language and Computation
University of Amsterdam

Working Paper
Feedback welcome: ulle.endriss@uva.nl
Version: September 15, 2025

Abstract

In social choice theory we routinely use axioms to rigorously specify nor-
matively appealing properties of mechanisms for collective decision making.
However, we rarely reflect on the nature of those axioms themselves, beyond
the technical needs arising in the context of one specific project at a time.
Here we do so and ponder a number of fundamental questions regarding the
definition and use of axioms in social choice theory. This includes the question
of how to formally capture the meaning of an axiom, how to measure its log-
ical strength, how to characterise the range of situations an axiom is talking
about, and how to put order into the space of axioms by classifying them in
terms of the dimensionality of the constraints they impose. We explore these
questions in the context of voting rules but argue that the observations made
have relevance also beyond this specific context.

1 Introduction

What’s in a name? That which we call a rose
By any other name would smell as sweet.

— Shakespeare, Romeo and Juliet

The axiomatic method is a core staple of the systematic and principled study of
collective decision making. In the context of social choice theory, an aziom is a

*Parts of this work have previously been presented at the 15th OSGAD Seminar on Ordered
Structures in Games and Decision held in Paris in November 2022, the Informatik Kolloquium at
TU Munich in March 2024, the 17th Meeting of the Society for Social Choice and Welfare held in
Paris in July 2024, the Microeconomic Theory Workshop at the Market Design Center (UTMD) of
the University of Tokyo in March 2025, and the 20th European Meeting on Game Theory (SING)
held in June 2025 in Maastricht. We are grateful for the helpful feedback received from numerous
individuals, including in particular Antoinette Baujard, Franz Dietrich, Kenzo Imamura, Michihiro
Kandori, Klaus Nehring, Eric Pacuit, Dominik Peters, Marc Pirlot, Marcus Pivato, Clemens Puppe,
Colin Rowat, William Thomson, and Koji Yokote.



property of mechanisms for collective decision making that someone has argued for
on normative grounds and that they have specified in precise mathematical terms. In
the words of William Thomson, an axiom is “the mathematical expression of some
intuition we have about how a [mechanism] should behave in certain situations”
(Thomson, 2023, p. 76). And in those of Charles Plott, it is “a type of minimal
expectation about system performance” for any mechanism we might consider using
(Plott, 1976, p. 520).! Well-known examples for axioms include Anonymity, postu-
lating that all individuals involved in the decision-making process should be treated
equally; Pareto Efficiency, postulating that mechanisms should not return outcomes
for which there are alternative outcomes that all stakeholders would prefer; and
Strategyproofness, postulating that mechanisms should not incentivise participants
to lie about their true preferences.

Scholars working in the field frequently use axioms to identify the qualities of and
to differentiate between mechanisms. Many of the field’s most celebrated results,
starting with the seminal work of Kenneth Arrow (1963) and Amartya Sen (2017),
take the form of either characterisation results or impossibility results. A character-
isation result establishes a given mechanism (or family of mechanisms) as the only
one that satisfies a certain combination of axioms of interest, while an impossibil-
ity result shows that for certain combinations of axioms of interest there does not
exist—and cannot exist—any mechanism that would satisfy all of them.

Arguably, the axiomatic method is the single most important methodological tool
used by economic theorists working on questions of social choice (Arrow et al., 2002).
Yet, systematic reflections on the nature of axioms and the axiomatic method itself
are rare—though notable exceptions include the works of Fishburn (1973), Plott
(1976), Mongin (2003), and Thomson (2001, 2023).

This paper is such a reflection on the axiomatic method in social choice theory. Our
chief interest is in the nature of the axioms themselves. While in a typical paper
employing the axiomatic method one might find a philosophical discussion of the
normative merits of different axioms, followed by a mathematical analysis of their
logical consequences, here we want to think of axioms as formal objects that need
to be defined, that can be compared to one another, and that might be classified in
a number of different ways. We shall be guided by four questions: What options are
available to us when we need to formally specify an axiom’s meaning? How can we
quantify the strength of an axiom and compare it to that of another axiom? What
is the scope of an axiom, i.e., what are the situations it talks about? And finally,
what is the dimensionality of the constraints imposed by an axiom, i.e., how many
data points would we need before we might infer that the axiom has been violated?

In the aforementioned treatises on the axiomatic method, the focus usually is a
different one. To begin with, we find advice on how to use the axiomatic method

1We stress that the use of the term ‘axiom’ in social choice theory is different from its use in
mathematical logic and the foundations of mathematics, even though the former certainly has been
inspired by the latter. To the mathematical logician an axiom is a property that is ‘obviously true’,
while to a social choice theorist it is a property that is ‘obviously desirable’. In both disciplines,
we must argue for any axiom we wish to introduce outside of the formal system we are working in,
usually employing arguments of a philosophical nature. Only once we have settled on a given set
of axioms can we explore their logical consequences, now using mathematical arguments.



and what typical mistakes to avoid. For instance, Thomson (2001) reminds us
that an axiomatic study should be driven by the properties of mechanisms—i.e., by
the axioms—we deem important rather than by the goal to find a mathematically
neat characterisation of a specific mechanism. Plott (1976) argues that the findings
turned up by careful applications of the axiomatic method should be taken seriously,
going as far as to say that “our philosophical positions must be altered accordingly”
(p. 553) when impossibility theorems show that certain postulates regarding collec-
tive decision making are mutually inconsistent. On the other hand, Mongin (2003)
cautions against the over-interpretation of technical results.

We also find proposals for classifying axioms. For instance, Thomson (2001) argues
that most axioms proposed in the literature belong to a small number of natural
classes, such as axioms identifying efficiency requirements, symmetry requirements,
or monotonicity requirements. This kind of classification relates to the purpose of
an axiom. Fishburn (1973) instead classifies axioms in terms of their form, e.g.,
in view of whether they are formulated using universal or existential quantifiers,
and whether they prescribe behaviour for the mechanism for one situation at a
time or rather impose constraints on how outcomes for different situations should
relate to one another. Thomson (2023) also highlights this latter distinction as an
important characteristic of an axiom. Relatedly, some authors, such as Richelson
(1977) or Sertel and Van der Bellen (1979), have attempted to systematically chart
the logical relationships between large numbers of axioms pertaining to a specific
problem domain, which might also serve as a tool for classification.

There also is a somewhat more recent strand of literature concerned with the formal
representation of axioms in a suitable logical language (Endriss, 2011), which nec-
essarily involves at least some reflection on the nature of axioms. One motivation
for investigating what kind of formal language (or logic) can express what kind of
axiomatic principle is philosophical in nature. In this context, Pauly (2008) argues
that the expressive power required for a formal language to encode a given axiom
tells us something relevant about that axiom—and that we should generally prefer
axioms that can be described in simple languages. The second motivation is prag-
matic. A very fruitful research agenda has been to attempt to automate some of
the process of obtaining axiomatic results using automated-reasoning tools, which
always starts by encoding axioms in a formal language. The use of satisfiability
solvers has been especially successful and has led to a growing literature resolving
several open problems in the field (Geist and Peters, 2017; Endriss, 2023). The for-
mal verification of known proofs using interactive proof assistants such as ISABELLE
(Nipkow, 2009) or LEAN (Holliday et al., 2021) also bears significant promise.

Let us now look ahead to what is to follow in this paper. Any formal statements
we are going to make will be formulated with respect to one concrete model of
collective decision making, namely a widely used and fairly simple model of voting.
We are going to introduce that model in Section 2. But we believe that many of the
conceptual points we make also apply to a wide range of other models of collective
decision making, and we occasionally are going to reference other such models.

We are going to discuss different approaches to specifying the meaning of axioms
in Section 3. The common approach, of course, is to express definitions in a mix



of plain English and set-theoretical notation, without any a priori limitations on
the range of mathematical concepts being referred to. Such definitions, when well
executed, are perfectly rigorous, but they are not formal in the sense of being written
in a formal language with a clearly specified syntax and an unambiguously defined
semantics. Depending on one’s objectives, having definitions of axioms available
that meet such higher standards of formality can be useful, and we are going to
briefly discuss different approaches that have been taken in the literature to do
so. Both the common approach and the logic-based approach to specifying axioms
are intensional, focusing on the attributes of mechanisms that would satisfy the
axiom being defined. We are going to contrast this with an extensional approach
to fixing the meaning of an axiom, which amounts to enumerating the mechanisms
that satisfy the axiom. While actually listing all such mechanisms explicitly will
rarely be feasible in practice, as we are going to see, introducing notation to refer to
the set of all such mechanisms in an abstract manner turns out to be very useful.

In Section 4, we use our notation for the extensional meaning of an axiom to define
the strength of an axiom as the proportion of mechanisms that violate the axiom
(out of all conceivable mechanisms). This notion of strength generalises the familiar
idea that we think of one axiom a being at least as strong as another in case the
latter is a logical consequence of the former. We then discuss two applications of
this notion of strength. First, taking inspiration from Shapley’s idea for how to
quantify a player’s contribution to the worth generated by the grand coalition in
a transferable-utility game (Shapley, 1953), we propose a way of measuring the
contribution of individual axioms to a characterisation or impossibility result of
interest. Second, by considering the ratio between the combined strength of the
set of axioms involved in the result and the sum of the strengths of the individual
axioms, we suggest a way of measuring the degree of ‘surprise’ one might want to
attach to the result. For instance, three relatively weak axioms giving rise to an
impossibility is more surprising than one involving three axioms that each on their
own already rule out most conceivable mechanisms.

A typical axiom will talk about some ‘situations’ (which in the case of voting are
profiles of preferences) and not have anything to say about others. When we are
given the definition of an axiom in intensional form, be it in plain English or using
a formal language, we might be able to extract which situations those are. But
any given formulation of the axiom might obscure the fact that for some situations
the constraints imposed by the axiom are vacuous, so even though the specific
rendering of the axiom mentions the situation, it in fact has nothing to say about
that situation. And if we are given the axiom’s definition in extensional form, then
we have no rendering in language we could refer to in the first place. In Section 5,
we propose a definition of scope—the set of situations an axiom talks about—that is
language-independent and works directly on the extensional semantics of the axiom.

It is important to distinguish the number of situations an axiom talks about in
total from the number of situations it relates to one another through any one of
the constraints it imposes. For example, the axiom of Neutrality, requiring us to
treat all alternatives the same, talks about all profiles of preferences, because for any
given profile the collective choice we settle on is constrained by the choices we would



make for the profiles we can obtain by permuting the alternatives in the profile at
hand. Yet, we can fully describe the effect of imposing Neutrality by looking at two
profiles at a time. We say that Neutrality has dimensionality 2. We formally define
and then discuss this notion of dimensionality in Section 6.

As mentioned earlier, Fishburn (1973) proposed a natural manner in which to classify
axioms. At least parts of his classification—the differentiation between intraprofile
and interprofile axioms—are widely used in the literature. While convincing at
an intuitive level, Fishburn’s account, however, is lacking a precise definition of
the classes of axioms identified. Using the machinery developed here, in particular
the notions of dimensionality and scope, in Section 7 we suggest a way of making
Fishburn’s classification mathematically precise. Finally, in Section 8 we conclude,
raising a few remaining questions deserving of attention in future work.

Throughout, our interest will be in axioms as formal objects rather than in axioms
as descriptions of normative principles. This is not to say that the latter is not
important. On the contrary. Any meaningful axiomatic analysis must start and end
with the normative content of the principles being analysed. The formal tools we
develop here are intended to support and enrich this kind of analysis.

2 The Model

While many of the conceptual points we wish to make in this paper apply to a
variety of formal models of collective decision making, for our technical exposition
we are going to focus on one specific such model, namely the model of irresolute
social choice functions with a fized electorate and a fixed agenda. Examples for such
social choice functions include many of the best-known voting rules, such as the
Plurality rule, the Borda rule, and the Copeland rule (Zwicker, 2016).

Let X be a finite set of alternatives. We think of X as being fixed throughout and
use m = | X| to denote the number of alternatives. We think of preferences as strict
linear orders on X, ranking them from best to worst, and we use X! to denote the
set of all m! such strict linear orders.

Let N be a finite set of voters. We also think of this electorate N as being fixed
throughout and use n = | N| to denote its size. A profile of preferences is a function
R : N — X! mapping each of the individuals in N to the preference order they
report.? We use top;(R) to denote the top-ranked alternative in R(i); and we use
x =1 y to express that voter i ranks alternative z above alternative y in profile R.
We write PROF as a shorthand for the set of all profiles:?

Pror = X!V

For any given profile of preferences, we would like to be able to select a single
alternative from X that best reflects the preferences reported. But accounting for the

2Equivalently, one can also think of profiles as n-vectors of preferences.
3For any two sets S; and Sy, we use the familiar notation of Sﬁg ! to denote the set of all functions
from S; to Sg, so X!V is the set of all functions from voters to preferences.



fact that sometimes resolving ties between seemingly equally deserving alternatives
will be difficult, we shall be content with being able to select a nonempty subset
of X. We shall refer to such nonempty subsets of X as outcomes and introduce the
following notation to refer to them:

our = 2¥\{o}

The mechanisms we are interested in are voting rules (or social choice functions)
that map any given profile R to a valid outcome in OUT:

F : PROF — OuT

So our voting rules are irresolute. But we are free to impose resoluteness, i.e., the
need to always return just a single alternative, as an additional requirement.

Our notation is consciously chosen so as to hide most of the specifics of the model.
Indeed, at the conceptual level, what matters is that we are interested in mecha-
nisms F' that map profiles of preferences to outcomes. How preferences are modelled
is not crucial: besides strict linear orders, they could also be, for instance, weak or-
ders or sets of approved alternatives. What constitutes valid outcomes also is not
crucial: besides nonempty sets of alternatives, they could also be, for instance, single
alternatives (to model resolute voting rules) or sets of a fixed cardinality (to model
multiwinner voting rules). We also could expand the notion of profile and work
with a variable-electorate model, where any finite subset of some given universe of
potential voters might report preferences.*

Observe that, due to the fact that for our model of voting both PROF and OuUT are
finite sets, the set of all voting rules is finite as well. This will be important for our
discussion in Section 4, which deals with the strength of axioms, but it is not crucial
for any of the other parts of the paper.

An aziom is a property of voting rules F' : PROF — OuT. Taking a purely technical
perspective, it could be absolutely any kind of property. Of course only certain prop-
erties are of interest in practice. These are the properties of voting rules that encode
some kind of normative principle one might reasonably want to postulate, either in
general or for a specific kind of scenario. What is and what is not a reasonable
property to encode as an axiom is not a question we can answer using mathematical
tools. Rather, this requires arguments that are grounded in philosophical or ethical
considerations, or indeed in ‘common sense’.

Let us now review a few well-known examples for axioms used frequently throughout
the literature on social choice theory. We are not going to attempt to retrace their
origins here, which in any case are somewhat unclear for several of them, but these
definitions, or alternative definitions of the same axioms, can be found in most

4While we shall stick with the terminology of referring to the inputs to mechanisms F as
“profiles”, in other areas of collective decision making the inputs a mechanism is defined on might
include additional information. For instance, when modelling a claims problem (Thomson, 2003),
we might want to reason about how a mechanism is to respond when a given agent’s endowment
changes but her preferences stay the same. And in the context of voting with a variable agenda, the
input to a mechanism will consist of both a profile of preferences and a set of available alternatives.



textbooks on the topic as well as in the introductory chapter by Zwicker (2016). We
stress that none of these axioms necessarily need to be accepted by everyone or in
all conceivable circumstances. Rather, this should be understood as a catalogue of
properties that will be relevant in many circumstances and that as system designers
we should give serious consideration to.

Some axioms encode basic symmetry requirements. Anonymity requires that all
voters be treated the same and Neutrality does the same for alternatives. Observe
that for any permutation ¢ : N — N and any profile R € PROF, the function Ro o
is the profile we obtain if we swap the preferences in R according to o.

Axiom 1. A voting rule F' : PROF — OUT satisfies Anonymity if F(R) = F(Roo)
for any profile R € PROF and any permutation o : N — N.

To define Neutrality we instead require a permutation ¢ : X — X defined on
the alternatives. While for Anonymity, the outcome should not change when we
permute the voters, for Neutrality, the outcome should change in line with the
chosen permutation of the alternatives. To formulate the axiom, we extend o to
both profiles and outcomes in the natural manner.’

Axiom 2. A woting rule F' : PROF — OUT satisfies Neutrality if F(o(R)) =
o(F(R)) for any profile R € PROF and any permutation o : X — X.

Anonymity asks for all voters to have equal power. A very weak form of this re-
quirement would be to say that, at the very least, no single voter should have all
the power. This is known as Nondictatorship.®

Axiom 3. A wvoting rule F : PROF — OUT satisfies Nondictatorship if there is
no voter i* € N such that F(R) = {top;«(R)} for all profiles R € PROF.

Another group consists of axioms that determine the outcome, either fully or partly,
for certain special cases of profiles. The simplest such axiom is Unanimity, saying
that unanimously held preferences should be respected by the voting rule.

Axiom 4. A voting rule F' : PROF — OUT satisfies Unanimity if F(R) = {z*}
whenever top,(R) = x* for all votersi € N.

A more demanding variant of this principle is Pareto Efficiency, saying that the
outcome set must not include any dominated alternatives.

Axiom 5. A woting rule F' : PROF — OUT satisfies Pareto Efficiency if y ¢
F(R) whenever there exists an x € X such that x =%y for all votersi € N.

5That is, for any profile R € PROF, we have o(z) =7 ¢(y) if and only if 2 =F y; and for any
set S € OuT, we have o(z) € o(5) if and only if z € S.

6Axiom 3 is sometimes called Weak Nondictatorship, as this variant of the axiom only rules
out any would-be dictator fully determining the outcome. Strong Dictatorship also rules out the
possibility of there being a nominator, i.e., a voter who has the power to always place their top-
ranked alternative into the outcome set, albeit possibly alongside other alternatives.



Observe that, indeed, Pareto Efficiency implies Unanimity: for any profile in which
there is unanimous agreement on the top-ranked alternative, Pareto Efficiency will
rule out all other alternatives; as the outcome must not be empty, the voting rule
then must respect Unanimity:.

The axiom of Condorcet Consistency postulates that an alternative x* should be
the sole election winner in any profile where it would beat any other alternative in
a one-to-one majority contest. In such a profile, x* is called the Condorcet winner.

Axiom 6. A voting rule F : PROF — OUT satisfies Condorcet Consistency if
F(R) = {«*} whenever #{i | 2* =Fy} > 2 for ally € X \ {z*}.

A further group of axioms includes principles that specify how the outcome for a
given profile should—or should not—be altered when certain small changes are made
to that profile. This includes well-known axioms such as Strategyproofness and In-
dependence of Irrelevant Alternatives, as well as a number of different monotonicity
requirements. Here we shall formally define only one such monotonicity requirement,
namely Positive Responsiveness. It expresses the idea that when an alternative z*
is winning in a given profile R, either alone or tied with other alternatives, then x*
should become the sole winner if one of the voters moves that alternative up in their
own preference (and there are no other changes).”

Axiom 7. A voting rule F' : PROF — OUT satisfies Positive Responsiveness if
F(R') = {z*} whenever z* € F(R) and R’ is the result of moving x* upwards in the
preference of one of the voters in profile R.

A final group of axioms covers requirements regarding basic characteristics of the
outcomes returned by voting rules. The first one is Resoluteness, which states that
the voting rule should return just a single alternative for every possible profile.

Axiom 8. A wvoting rule F' : PROF — OUT satisfies Resoluteness if |F(R)| = 1
for any profile R € PROF.

Finally, the axiom of Nonimposition encodes the requirement that the outcome
should not be imposed a priori—by postulating that, for every alternative z*, there
must exist at least one way of voting for everyone so that x* will be the sole winner.

Axiom 9. A voting rule F : PROF — OUT satisfies Nonimposition if, for every
alternative x* € X, there exists a profile R € PROF such that F(R) = {z*}.

In parts of the literature, starting with the seminal work of Arrow (1963), some
more fundamental conditions relating to the definition of voting rules F' : PROF —
OuT themselves are also considered ‘axioms’. One of them is the universal domain
condition, saying that F' must be defined on all profiles in PROF. We take this to
be implicit in the specification of the function F' : PROF — OUT and thus do not
treat this condition (or indeed variants of it, requiring, say, that F is defined on all

"So for the new profile R’ # R there is one i* € N such that {y | z* =% y} 2 {y|a* ~E y}
but z =% y if and only if =5 y for all z,y € X \ {z*}, while R'(i) = R(i) for all i € N \ {i*}.

8



profiles that belong to a certain subdomain) as ‘axioms’. We also do not want to
conflate axioms with collective rationality conditions, which express that outcomes
returned by a voting rule really must be elements of OUT. For our model, a natural
collective rationality condition would be that F(R) must not be the empty set.® We
do not talk about such conditions here, because, again, we take them to be implicit
in the definition of voting rules as functions of the type F' : PROF — OUT.

We conclude this section by introducing some additional terminology to talk about
axioms. First, we call an axiom trivial (or tautological) if it is satisfied by all voting
rules and we call it unsatisfiable if it is satisfied by none. Trivial and unsatisfiable
axioms are of no interest in and of themselves—they should never feature in a
characterisation or an impossibility result, for instance—but they might come up
when an analyst manipulating a number of axioms makes a mistake. So it is useful
to have the vocabulary in place to talk about such cases.

Second, the conjunction of two axioms A and A’, denoted by A A A, is the require-
ment on a voting rule to respect both A and A’.° For example, one might want to
introduce a general Symmetry axiom as the conjunction of Anonymity and Neutral-
ity. We use calligraphic letters, as in A, to denote sets of axioms. A voting rule
satisfies A exactly if it satisfies all of the axioms in A. For any given axiom set A,
we often treat A and the conjunction of the axioms in A interchangeably.

3 The Meaning of Axioms

In the previous section we saw several examples for definitions of axioms, each of
them a carefully crafted attempt to find an adequate compromise between readabil-
ity and rigour. This certainly is the right mode of communication to adopt in a
paper such as this. But if we wanted to provide a truly unambiguous specification
of an axiom, one that cannot be misunderstood by even the most pedantic of mathe-
maticians and one that could be parsed correctly by a machine, then our definitions
would fall short—as would any of those one can find in even the most exemplary of
instances of mathematical writing in economic theory literature.

In this section, we want to review possible approaches to formally specifying an
axiom in social choice theory. We are going to argue that thinking about an axiom
in terms of its extensional semantics can offer a helpful additional perspective, on
top of the familiar intensional approach to defining the meaning of axioms.

The differentiation between intensional and extensional definitions of an object or
a concept has a long history in philosophical logic and the philosophy of language.
Intensional meaning is what Gottlob Frege (1892) calls Sinn, while extensional mean-
ing is what he refers to as Bedeutung (usually translated as sense and reference in
English). While the former is a characterisation of a concept in terms of its essential

8For other models of collective decision making, such as the model of Arrovian social welfare
functions mapping profiles in X!V to linear orders in X! (Arrow, 1963), one can formulate more
interesting collective rationality conditions, such as the requirement that the outcome returned
should be transitive—which of course is guaranteed if indeed that outcome is an element of X!.
9n Section 7, we are also going to discuss disjunctions of axioms.



attributes, the latter determines meaning on the grounds of what entities in the
world the concept refers to. In the case of axioms, the intensional meaning thus is
given by the idea that the axiom in question expresses, i.e., the normative principle
that it is supposed to capture. This meaning can be expressed by describing the
axiom in a suitable (formal) language. The extensional meaning of an axiom, on
the other hand, is the set of entities it characterises, i.e., the set of all those voting
rules that satisfy the normative principle encoded by the axiom.

Taking a formal approach to providing an intensional definition for an axiom means
encoding that axiom in a logical language with formally defined syntax and seman-
tics. There are a wide range of logics to pick from. As this is not the focus of this
paper and as a good part of this literature is reviewed elsewhere (Endriss, 2011), we
are only going to briefly sketch a couple of examples here. Let us start with classical
first-order predicate logic, probably the best-known logical system and the one most
commonly used across a plethora of scholarly disciplines.

Example 1 (First-order logic). First-order logic is the familiar system in which
we can use not only the boolean connectives, i.e., ‘not’ (), ‘and’ (A), ‘or’ (V), and
‘implies’ (—), but also both universal and existential quantifiers (V and 3). We refer
to van Dalen (2013) for a textbook introduction to its syntax and semantics.

Grandi and Endriss (2013) explore to what extent we can express the concepts
required to state some of the seminal impossibility theorems in social choice theory
in this logic. To provide an impression how one might go about this, but omitting
most technical details, here is how to define Pareto Efficiency in first-order logic:

VrNa Ny [R(r) A X(2) A X(y)] — [(Vi.NG) — r(r i, z,y) = —w(r,y)]

Here all underlined letters are predicate symbols in the logical language. The above
formula can be parsed as follows: for all r, x, and y, if r is a profile, x is an
alternative, and y also is an alternative, then it must be the case that, if for all ¢
such that 7 is a voter it is the case that in profile r voter i ranks x above y, then it
must not be the case that in profile r alternative y wins. A

Other logics that that have been used to model axioms (and other concepts) in
social choice theory include various modal logics (see, e.g., Troquard et al., 2011),
dependence logic (Pacuit and Yang, 2016), and various higher-order logics (see, e.g.,
Nipkow, 2009; Holliday et al., 2021). Of special interest, however, is classical propo-
sitional logic (which some readers may know as boolean logic), the simplest (and
least expressive) of any of the widely used logical systems.

Example 2 (Propositional logic). In propositional logic our expressive power is
limited to using the aforementioned boolean connectives (van Dalen, 2013). To
encode axioms of interest, we introduce one propositional variable pg, for every
profile R € PROF and every alternative x € X. The intended reading is that, in
profile R, alternative x is amongst the winning alternatives. Somewhat surprisingly,
we can still encode Pareto Efficiency in this logic:

ATANSN AW

ReProF z€X yeDoml(zx
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Here DoM*(z) is short for {y € X | 2 = y for all i € N}, the set of alternatives
dominated by x in profile R. So this formula is satisfied whenever, for all profiles R,'°
for all alternatives x, and for all alternatives y dominated by x in R, it is not the
case that y is amongst the winning alternatives.

In fact, we can encode every one of the axioms defined in the previous section—and
indeed every conceivable property of voting rules. To see this, observe that a long
conjunction of literals of the form pg, and —pr, can be used to fully specify the
behaviour of a single voting rule, which means that a disjunction of such conjunctions
can be used to fully specify any arbitrary axiom of interest. A

The significance of the observation that propositional logic is fully expressive with
respect to our model of voting (as well as many other models of collective decision
making) is that this has enabled researchers to use satisfiability solvers—highly
optimised tools to determine whether a given formula is satisfiable—to automatically
derive impossibility theorems.!! Having said this, the fine print here is important.
Recall that we formulated our model with respect to (arbitrary but) fized sets N
and X. So we can express axioms (and prove theorems) for any given choice of
N and X, but we cannot express that, say, Pareto Efficiency should be respected
independently of the size of the electorate. If we want to be able to express this, we
need to switch to a more expressive logic, such as first-order logic.'? Of course, the
disadvantage of switching to a more expressive logic is that reasoning in that logic
becomes harder (and full automation almost impossible).

Let us now move on to the idea of defining axioms in extensional rather than inten-
sional terms. In fact, the idea is very simple: we define an axiom A as the set of all
the voting rules that meet the conditions imposed by the axiom.

Definition 1. The interpretation (or extension) of an axiom A, denoted byI(A),
1s the set of voting rules that satisfy A:

I(A) = {F:PrOF— OUT | F satisfies A}

This definition and use of notation go back to the work of Boixel and Endriss (2020).
Recall that, for our model, the set of all voting rules—those that satisfy A and those
that do not—is finite. This is helpful, but in fact not critical.

Having this notation available makes it possible, at least in principle, to unambigu-
ously define the meaning of any conceivable axiom A by ‘simply’ enumerating the
voting rules we think of as meeting the conditions prescribed by A. Of course, an in-
tensional definition—be it rigorous but informal or entirely formal—is a much more
manageable object to construct. In fact, we do not propose that those wishing to
define a new axiom really start enumerating voting rules explicitly. Rather, we claim

10Here the—very long—conjunction over all profiles has the effect of a universal quantification.

"This opportunity was first noted by Tang and Lin (2009). For expository discussions of this
approach, we refer the reader to Geist and Peters (2017) and Endriss (2023).

12First-order logic also has its limitations. For instance, we cannot express that a given set is of
finite (but otherwise arbitrary) size (Grandi and Endriss, 2013), which is an important detail, e.g.,
for Arrow’s Theorem. If we need to express this feature, we can move up to higher-order logics.
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and shall demonstrate throughout this paper that knowing that—in principle—it
is possible to give an unambiguous definition and having available clear and simple
notation to refer to that unambiguous definition is very useful when working with
the axiomatic method in social choice theory.

Observe that I(AA A") =1(A)NI(A’) for any two axioms A and A’. We extend our
notation from axioms to axiom sets in the natural manner. The interpretation of
an axiom set A is the intersection of the interpretations of the axioms in A:

I(4) = (I

AcA

Our notation is useful for expressing relevant relationships between axioms. For
instance, [(A) = I(A’) means that A and A’ are logically equivalent, in the sense of
imposing the same conditions on voting rules.!® T(A) C I(A’) means that A implies
A’ while I{(AAN A" AN A”) = @ means that it is impossible to construct a voting rule
that would satisfy all three of those axioms. Finally, I(A A A’ A A”) = {F} means
that those three axioms fully characterise the voting rule F'.

One reading of an equation such as I(A A A" A A”) = {F} is that axioms and
the voting rules they characterise are interchangeable ways of describing the same
mathematical objects. Interestingly, we can find an expression of this idea also in
Philippe Mongin’s critical essay on the use of the axiomatic method in economics:

“From a formal point of view, the distinction between ‘axioms’ (which
specify conditions) and ‘solutions’ (which specify [voting] rules) is arbi-

trary. In social choice theory [...] those conditions bear directly on the
function F' representing the rule. They therefore are of the exact same
type!* as the ‘solution’.” — Mongin (2003, p. 132, our translation)

But Mongin also points out that having established the mathematical equivalence
between A A A’ A A” and F' does not make these two objects interchangeable in all
respects. A characterisation of F' in terms of A A A" A A” is interesting precisely
because we can attach normative principles to those axioms that are not—at least
not in an obvious or immediate way—incorporated by F' as well.

On a related note, in certain ‘small’ instances of our model, such when there are
just two voters and two alternatives (or when there is just a single voter, with any
number of alternatives), the extensions of Pareto Efficiency and Condorcet Consis-
tency coincide. Yet, their intensional meanings—the reasons for possibly wanting
to accept these axioms—differ significantly.

To take yet another example,'® from an extensional point of view, we should re-
ject (the combination of) the axioms featuring in an impossibility result such as
Arrow’s Theorem (1963) or the Gibbard-Satterthwaite Theorem (Gibbard, 1973;

13In particular, if we have given intensional definitions for A and A’ by encoding them using the
same logic (say, classical first-order logic), then I(A) = I(A’) means that the two formulas must
entail one another according to the formal semantics of that logic.

4 Here we use the word ‘type’ to translate Mongin’s expression ‘nature syntazique’.

5This example was suggested to us by Franz Dietrich.
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Satterthwaite, 1975), because they reduce to the empty set, while from an inten-
sional perspective these axioms are worth contemplating.

These dilemmas are not unique to the semantics of axioms but commonplace in the
study of the philosophy of language. Maybe the most famous example is Gottlob
Frege’s puzzle regarding the ‘Morning Star’ and the ‘Fvening Star’. Intensionally,
these two terms refer to different concepts, while extensionally they both denote the
same celestial object (namely the one we nowadays tend to refer to as ‘ Venus’).

It also is worth pointing out that, sometimes, there will be more than one inten-
sional definition of a given normative principle that suggests itself. Take the case
of Anonymity. Recall how in Section 2 we defined Anonymity in terms of permuta-
tions 0 : N — N defined on the set of voters (see Axiom 1). So the intuitive idea of
wanting to treat all voters the same here has been operationalised by requiring that
permuting the voters should not change the outcome. But how do we know that
this is ‘the right’ way of operationalising this idea? We instead could have imposed
this requirement for a special family of permutations o : N — N only, namely those
that swap around exactly two voters. The extension of both of these variants of the
axiom is the same—but seeing this is not entirely trivial; it technically involves a
proof by induction over the number of pairwise swaps needed to reconstruct a given
arbitrary permutation. So, when moving from the informal expression of an idea to
a formal intensional definition, we might encounter similar issues as when moving
from a precise intensional definition to an extensional definition. In both cases, we
may end up grouping together certain axioms as being ‘the same’, when at the other
level of description we would rather keep them apart.

In conclusion, the intensional approach to defining axioms and the extensional ap-
proach to defining axioms provide complementary views that, together, allow for a
deeper analysis than restricting oneself to just one approach.

4 The Strength of Axioms

In economic theory, when trying to formally capture a normative principle to be
encoded in the shape of an axiom, we generally look for axioms that are especially
weak. There are two reasons for this mantra of logical weakness. First, weakening
a first formulation of an axiom will necessarily make that axiom less controversial.
Anyone who accepts the stronger formulation of the axiom must also accept the
weaker ones—Ilest they wish to quarrel with the rules of logic themselves. Sec-
ond, the weaker the axioms involved in the formulation of a specific result, be it
an impossibility result or a characterisation result, the more surprising—and thus
interesting—that result will be judged to be. William Thomson puts it like this:

“[T}f you encounter an impossibility theorem, you’ll need to explore how
serious it is, and one way to do that is to substitute weaker versions of
the axioms [...] If the impossibility persists [...] [y]Jou’d have a much
deeper understanding of the situation.” — Thomson (2023, p. 117)
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It therefore is not surprising that, throughout the literature, one can find frequent
claims regarding the logical weakness of the axioms being proposed.

But what does it actually mean to weaken an axiom? This raises a more general
question: What is the strength of an axiom? In this section, we want to give a
possible answer to this latter question (and thereby also to the former), and we
want to illustrate some possible applications of such a definition. One will be to
quantify the contribution of individual axioms to a result of interest. Another will
be an attempt to quantify how surprising a given result should be taken to be.

For certain pairs of axioms A and A’, it is entirely unambiguous what we mean by
saying that one is stronger (or weaker) than the other:

If every voting rule that satisfies axiom A also satisfies axiom A’, but the
converse is not true, then we say that A is stronger than A’.

Observe that we can neatly express this using our set-theoretical notation for the
extensional semantics of an axiom: A is stronger than A’ in case I(A) C I(A’).

But when there is no such logical entailment relation between our axioms of interest,
then this approach does not allow us to compare their strengths. Yet, certainly at
an intuitive level, we frequently make appeals to the perceived strength of differ-
ent axioms. For example, when considering the axioms involved in the Gibbard-
Satterthwaite Theorem (usually formulated in a model for resolute voting rules), it
seems very natural to refer to two of them, Nonimposition and Nondictatorship, as
being very weak (and thus entirely uncontroversial), while the third, Strategyproof-
ness, looks much stronger (and thus, conceivably, could be the subject of scholarly
criticism). So, can we provide a definition of strength of an axiom that is absolute
rather than relative (to that of a closely related axiom)?

Next, we propose such a definition of the strength of an axiom. The basic idea is
that, the stronger an axiom, the fewer voting rules will satisfy that axiom. Recall
that a voting rule is a function F : PROF — OUT. Note that OUT *" is the set of
all functions from PROF to OUT, and thus the set of all voting rules.

Definition 2. The strength of axiom A is the proportion of the voting rules—
relative to the set of all voting rules—that are excluded by that axiom:

strength(A) = QU NN _ KA

‘OUTPROF‘ - ‘OUTPROF‘

We extend the definition of strength from individual axioms A to sets of axioms A
by defining strength(A) as the strength of the conjunction of the axioms in A (al-
ternatively, we could simply replace A with A everywhere in the definition above).

Example 3 (Strength of Neutrality and Condorcet Consistency). To exemplify our
definition of axiom strength, let us calculate the strength of the axiom of Neutrality
and let us then compare that strength to that of Condorcet Consistency. Intuition
suggests that Condorcet Consistency is the stronger axiom: it seems to constrain our
choice of voting rule much more than the seemingly mild requirement of respecting
Neutrality. Indeed, essentially every common voting satisfies Neutrality, while asking
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for Condorcet Consistency means pushing for a fairly specific type of rule. But let
us see whether this intuition also is borne out by our calculations.

Recall that n is size of the electorate and that m is the number of alternatives. There
are m! many preferences an individual might report, and thus m!™ many profiles we
might encounter. A voting rule needs to map each profile to one of the 2™ — 1
possible outcomes (the nonempty subsets of X). So there are a total of (2™ — 1)™"
many voting rules to consider.

To count how many of these voting rules satisfy Neutrality, let us fix one specific
preference and call it the ‘canonical’ preference. For a neutral voting rule, it is
sufficient to specify the outcome returned for those profiles in which the first voter
reports this canonical preference; all other outcomes are then determined by the
need to satisfy Neutrality. So there are (2™ — 1)™""" neutral voting rules, meaning
that the strength of Neutrality (N) is given by the following formula:
om _q min—1
strength(N) = 1— W
_ 1 1
=1 (2m— 1)1 ) m!”
For instance, for n = 3 and m = 2, we get a strength of 0.9375. For larger choices
of parameters, this number grows further (and it does so fast). This reflects the
fact that even a single axiom such as Neutrality will exclude the vast majority of all
conceivable voting rules.

The axiom of Condorcet Consistency fully determines the outcome for those profiles
for which there is a Condorcet winner and it has no impact at all for any of the
other profiles. Let p,, € [0,1] be the proportion of profiles with a Condorcet
winner amongst all profiles for n voters and m alternatives. The value of p,, ,,, has
been computed (or at least approximated) for several choices of the parameters n
and m. For instance, we know that p33 = 0.94 and that Pn,3 > 0.91 for any odd
number n (Gehrlein and Fishburn, 1976).

Given py, ,m, we can computer the strength of Condorcet Consistency (CC) as follows:
om_1 (lfpn’m)-m!n
strength(CC) = 1— ¢ (22,_1)mm
= 11— 1

(2m_1)Pn,m‘m!n

Comparing the formulas for the strengths of Neutrality and Condorcet Consistency,
we find that Condorcet Consistency is the stronger axiom if and only if p,, , > 1— %
For m = 3 this is indeed the case for any odd value of n (as 0.91 > 0.83). So this
seems to confirm our intuitions about the relative strengths of these two axioms.
But for m = 4, in fact the opposite is true, given that 1 — % > 0.95 and p, 4 < 0.8
for any odd number n (Gehrlein and Fishburn, 1976).

So for larger numbers of alternatives, Neutrality in fact is the stronger axiom. Upon
reflection, this is not entirely at odds with intuition either, given that the impact of
Neutrality, which is defined in terms of permutations of the set of alternatives, might
be expected to increase as the number of alternatives increases, while the likelihood
of encountering a Condorcet paradox!® is known to grow as the number of alterna-

16 A Condorcet paradox is said to occur for a profile R if R does not have a Condorcet winner.
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tives increases, meaning that the strength of the axiom of Condorcet Consistency
reduces at the same time. So, as we increase m, there must be a turning point
where the strength of Neutrality tops that of Condorcet Consistency. What still is
surprising is that this turning point occurs between m = 3 and m = 4 already. A

We note that for typical choices of n, m, and A, the value of strength(A) will be
very close to 1, which conceivably could present practical difficulties when organis-
ing and comparing data points regarding the strengths of several different axioms.
Unfortunately, this kind of difficulty seems unavoidable. Given the huge number of
voting rules for any typical choice of n and m, we cannot but work either with very
large numbers or with numbers that lie very close to one another.

Let us now take stock of some basic facts regarding our notion of axiom strength.
According to our definition, an unsatisfiable ariom—or an axiom set that gives rise
to an impossibility result—has strength 1, while a trivial axiom that is satisfied by
all voting rules has strength 0. We say that a satisfiable axiom (or axiom set) has
maximal strength in case it is satisfied by only a single voting rule. Any such axiom
has strength 10UT™|=1/|ourPror|. If axiom A implies axiom A’ i.e., if I(A) C I(A’),
then strength(A) > strength(A’), but the converse need not be true. The following
fact, the proof of which is immediate given the relevant definitions, captures what
we can say about the strength of a conjunction of two axioms of known strengths.

Fact 1. For any two axioms A and A’, the strength of their conjunction is bounded
from above by the sum of their individual strengths:

strength(AN A") < strength(A) + strength(A”)

Now let us move on to a first application of the concept of axiom strength. Suppose
A is the set of axioms involved in an impossibility result or a characterisation result.
How can we quantify the contribution each of the individual axioms make to the
overall result? The absolute strength strength(A) of each axiom A € A gives a first
indication, but it does not quite capture what we are interested in here, namely the
strength of A in the specific context of A. To capture this notion of an individual
axiom’s contribution to achieving a given result, let us think of the axioms in A as
the players in a transferable-utility game,'” where the worth achieved by any subset
A is the combined strength of that subset. With this metaphor in place, it makes
sense to measure an axiom’s contribution to the result as the Shapley value of that
axiom (Shapley, 1953), i.e., as the average marginal increase in strength across all
possible ways of constructing A from the empty set by adding axioms one by one.

To formally state the definition, we require some additional notation. Observe that
the set of all possible sequences of axioms in A is isomorphic to the set of all linear
orders on A. In view of this fact, we are going to slightly overload notation and use
Al to denote the set of all such sequences. Then, for any sequence > € A!, we write
A A’ to express that A precedes A’ in [>.

ITReaders not familiar with the theory of transferable-utility games will find a helpful introduc-
tion in the textbook by Peters (2008).
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Definition 3. The degree of contribution (or the Shapley value) of axiom A*
within the set of axioms A is defined as follows:

deon(A*, A) = ﬁ-Zstr’ength({A | A AT} u{A*})

>eAl

— strength({A | A> A*})

Thus, to compute the Shapley value of A*, we cycle through all possible orderings >
of the axioms in A. For each of them, we compute the marginal increase in strength
of A* as the difference between the combined strength of the axioms preceding A*
in > together with A* and the combined strength of the axioms preceding A* in
> without A*. We add up all these marginal increases in strength, one for each
sequence, and in the end divide by the number of sequences considered (which
is |A!]). When clear from context, we omit .4 from our notation.

Appendix A consists of a case study regarding the degree of contribution of each of
the axioms involved in a simple impossibility result stating that there are no resolute
voting rules for two alternatives and two voters that satisfy both Anonymity and
Neutrality. This is a specific instance of a more general result due to Moulin (1983).

As a second application of our notion of axiom strength we want to suggest a possible
route of quantifying the degree of ‘surprise’ one might want to associate with a
given result of interest. Intuitively speaking, when comparing, say, two different
impossibility results, we might find the one that involves the weaker axioms more
surprising. In both cases, the combined strength of the axioms involved must be
exactly 1, as in both cases the voting rules that are being excluded are the exact
same ones—namely all of them. So, for each of the two results, the sum of the
strengths of the individual axioms involved must be at least 1, but it typically will
be more than that. This additional strength contributed by the axioms is, in some
sense, redundant. If there is a lot of this redundancy, so if several of the axioms
involved are fairly strong on their own, then the fact that together they achieve an
impossibility seems less surprising or interesting.

Definition 4. Let A be a set of two or more axioms, at least one of which is
nontrivial. The degree of complementarity of A is defined as follows:

strength(A)

deom(A) = > aca Strength(A)

The assumption of there being at least one nontrivial axiom in the set ensures that
we do not divide by 0.

Observe that the maximal value dcom(A) can take for any set 4 is 1. This happens
when no single voting rule that is excluded by one axiom in A is also excluded by
one of the other axioms in the set. That is, the degree of complementarity of A is
equal to 1 precisely when the axioms in A are perfectly complementary—when there
are no redundancies whatsoever. At the other end of the spectrum, while dcom(.A)
cannot reach or drop below 0, it can get arbitrarily close to 0, namely when A
includes multiple axioms that all impose the exact same constraint on voting rules
(i.e., multiple axioms with the same interpretation).
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If A is the set of axioms involved in a result of interest, such as an impossibility
theorem, we may interpret dcom(A) as the degree of surprisingness of the result.'®
A high degree of complementarity means that the individual axioms involved are
relatively weak in view of the result achieved by their conjunction.

Appendix B discusses a small case study regarding the complementarity of the ax-
ioms involved in two well-known results for the special case of scenarios with two
voters and two alternatives. The first is the aforementioned impossibility of find-
ing voting rules that satisfy Anonymity, Neutrality, and Resoluteness. The second
is May’s Theorem on the characterisation of the simple majority rule in terms of
Anonymity, Neutrality, and Positive Responsiveness (May, 1952).

We had previously mentioned that in the literature we often find statements about
how weakening axioms just enough without affecting the validity of a given result
will make that result more interesting and surprising. Our notion of surprisingness-
as-complementarity can capture this effect, as the following simple result shows.

Proposition 2. Let A; be a set of (at least two) nontrivial axioms giving rise to
some result of interest, such as an impossibility result (meaning 1(A;) = &) or
the characterisation of some wvoting rule F' (meaning 1(A;) = {F}). Let Ay =
(A1 \ {A1}) U{As} be the result of replacing axiom Ay in Ay by another aziom As.
If Ay is a weakening of Ay in the narrow sense (meaning 1(Ay) C 1(Az)) and if our
result of interest is not affected by this change (meaning 1(A;) = 1(Ay)), then the
new result is more surprising than the original one in the sense of having a higher
degree of complementarity: dcom(A;) < decom(Ay).

Proof. Let A= A; \ {A1} = Ay \ {A2} be the set of axioms shared by A; and Aj.
We now rewrite the degree of complementarity for each of our two axiom sets:

B strength(Ay)
dcom(A;) = strength(A;) + ZAGA strength(A)
deom(Ay) — strength(As)

strength(Az) + ) 4c 4 Strength(A)

The claim now follows from the observation that, by Definition 2, our assumption
I(Ay) = [(Ay) entails strength(Ay) = strength(Asz), while our assumption I(A4;) C
[(As) entails strength(Ay) > strength(As). O

Proposition 2 remains true if we generalise from the narrow sense of axiom weakening
to weakening with respect to axiom strength in the sense of Definition 2. We have
chosen to state the more narrow variant of this basic insight here to emphasise the
link between our proposed notion of ‘surprise’ and the broadly accepted and widely
used sense of axiom weakening.

181f A is a singleton, this interpretation of the degree of complementarity as a degree of surpris-
ingness breaks down, which is why this case is excluded in the formulation of Definition 4.
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5 The Scope of Axioms

When discussing the impact a given axiom has in a variety of different situations of
interest, an economic theorist will often refer to the concept of that axiom talking
about a given profile, or equivalently, the concept of a given profile being in the
scope of that axiom. When the axiom in question is spelt out in plain (yet precise)
English or when it is defined in a formal language, then it is intuitively clear what
we mean by this: the set of profile(s) being talked about will show up explicitly in
such a definition. But does that mean that when we switch from one definition of
the axiom in one language to an equivalent definition in a different language, that
the set of profiles it talks about might change? That would seem unsatisfactory.

Our objective for this section is to provide a general definition of the concept of
scope of an axiom that is independent of the (formal) language used to express that
axiom. In other words, we are looking for a definition of scope that can be stated in
terms of the extensional semantics of the axiom of interest. But first, to illustrate
the idea of scope, let us consider a simple example.

Example 4 (Scope of Pareto Efficiency). The axiom of Pareto Efficiency asks us to
not select an alternative in case that alternative is dominated by another alternative
in the profile under consideration. Intuitively, this axioms talks about certain profiles,
while it has nothing to say about others. Take the following two profiles:

Voter 1: a>=0b>c Voter1: a>=b>c
Voter 2: b>=c>a Voter 2: b>=c>=a
Voter 3: b>=a>=c Voter 3: ¢>=a>=b

In the first profile, alternative ¢ is dominated (by alternative b, given that all three
individuals rank b above ¢). So the axiom of Pareto Efficiency talks about that
profile: to satisfy the axiom, we must make sure that our voting rule does not
select ¢ in this particular profile. But the axiom does not talk about the second
profile (where none of the three alternatives is dominated): under no circumstances
does the question of whether a given voting rule satisfies the axiom depend on the
outcome returned by that rule when applied to the second profile. So the second
profile is not in the scope of the axiom of Pareto Efficiency. A

Whether or not a given axiom talks about a given profile will often be clear from
the (intensional) definition of the axiom. Especially when a formal definition of the
axiom is given, we should expect the profiles it talks about to show up explicitly
in the scope of a quantifier—unlike those profiles it does not talk about. For the
definition of Pareto Efficiency in Section 2 this is indeed the case.

But what if the formulation of an axiom might include redundancies? What if it
seems to talk about a certain profile but actually has nothing to say about it—in
the sense of not imposing any constraints on what outcome should be returned for
that profile? The next example illustrates a subtlety of this kind.

Example 5 (Scope of Anonymity). Recall the axiom of Anonymity, as defined in
Section 2. What profiles does this axiom talk about? Intuition clearly suggests that
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it talks about all profiles. While it does not fix the outcome for any one profile, it
seemingly imposes constraints on all profiles—by requiring that pairs of profiles in
which the exact same preferences are being reported must be treated the same.

But in fact Anonymity does not talk about any of the unanimous profiles—the
profiles where all voters report the same preference.’® Indeed, the axiom does not
constrain our voting rule on such profiles in any way; we are free to choose an
outcome for a given unanimous profile without acquiring any obligations regarding
the outcomes for other profiles. So the scope of Anonymity in fact is just the set of
all those profiles that are not unanimous.?° A

Now that we are aware of the potential pitfalls of relying too much on the particular
manner in which the definition of an axiom is presented to us when attempting to
determine its scope, let us formulate a definition of scope—i.e., of ‘talking about’—
that operates directly on the extensional semantics of the axiom of interest.

For two voting rules F' and F’, we write I =_g F’ in case the two voting rules agree
on all profiles, except possibly R.

Definition 5. Let A be a satisfiable axiom. We say that axiom A talks about
profile R € PROF if and only if there exist a voting rule F' € 1(A) satisfying A and
a voting rule F' € OuT ™" \ I(A) violating A such that F =_g F'. The set of all
profiles that A talks about is the scope of A.

In other words, axiom A talks about profile R if, whenever we wish to determine
whether a voting rule I satisfies A, we require access to information about F(R).
Here information about F(R) need not be of the form “the outcome is this and
that”. It might instead be something like “the outcome is not this and that” or
“the outcome is a singleton”. In the case of Pareto Efficiency, for example, it will
be of the form “the outcome does not include this and that alternative”.

We use scope(A) to denote the scope of axiom A and we extend the notion of scope
from axioms to axiom sets in the natural manner, i.e., scope(.A) is the scope of the
conjunction of the axioms in 4. When scope(A) = PROF, then we say that A has
full scope. This notion of full scope is closely related to what Thomson (2001, 2023)
calls full coverage and what Fishburn (1973) calls an axiom being passive—although
these authors restrict this kind of terminology to certain types of axioms only. We
are going to return to this point in Section 7.

Note that Definition 5 only applies to satisfiable axioms, i.e., axioms satisfied by at
least one voting rule. How to define an appropriate notion of scope for an unsatis-
fiable aziom is not at all obvious—but fortunately also of fairly limited interest in
practice; we briefly discuss this question in Appendix C. Observe that, according to

19We are grateful to Dominik Peters for sharing this observation with us.

20Interestingly, in a model of voting with variable electorates, where the set of voters reporting a
preference can change from profile to profile, the situation is different and the scope of Anonymity
really is the full set of profiles (because now the outcomes for unanimous profiles are constrained
by the outcomes for profiles where a different set of voters report the same preferences).
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Definition 5, the scope of a trivial axiom, i.e., an axiom satisfied by all voting rules,
is the empty set.?! This perfectly matches intuition.

While Definition 5 is a precise definition of the notion of scope, it arguably does
not provide us with clear instructions what exactly we need to check to identify the
scope of a given axiom. The next result provides us with such a recipe. (But we
stress that this still is not an efficient algorithm that can be executed in practice.)

To state this result, we require some further notation. First, for any function F' :
PrROF — OuvuT and any set S C PROF, we use F'[g to refer to the restriction of
F to S. In other words, this is the function F|g : S — OuT with F[g¢(R) =
F(R) for all R € S. Second, the union of two functions F' : S — OuUT and
F": PROF \ S — OUT is the function F' U F’ that behaves like F' on elements of
S and like F’ on elements of PROF \ S.?? Finally, the product of two families of
functions F ={F | F:S — Our}and F/ ={F' | F' : PROF \ S — OuUT } is the
family F F' = {FUF' | (F,F') € F x F'}, i.e., the set of all possible unions we
can construct.

For our alternative definition of scope of an axiom A, for a given subdomain S C
PrOF, we look at all rules F' that behave like a rule that satisfies A on profiles
in S, without imposing constraints for any of the other profiles. If those rules F'
still satisfy A, then S must have been chosen sufficiently large. So the smallest
such subdomain S, which we can obtain as the intersection of all sufficiently large
subdomains, must be the scope of A. We now state this formally.

Proposition 3. The scope of a satisfiable axiom A is equal to the intersection of
all sets S C PROF that satisfy the following constraint:

I(A) = {Fls|Fel(A)}{F | F :Pror\S — OuT}

Proof. Let AGR(A,S) ={Fls| Fel(A)}x{F'| F :Pror\S — OuT} for any
given set S C PROF. This is the set of voting rules that agree with axiom A (at
least) on all the profiles in S. It will be handy to take note of the fact that S C 5’
implies AGR(A, S) O AGR(A, 5’), and also of the fact that AGR(A, PROF) = I(A).

The claim we need to prove is that F' =_g F” holds for some pair (F, F’) € I(A) x
(OUT"™" \ I(A)) if and only if R € S for all S C PROF with AGR(A, S) = I(A).
We proceed by proving one direction at a time.

(=) We show the contrapositive. So assume there exists an S C PROF with
AGRr(A,S) = I(A) and R ¢ S. Now consider any F' € I(A) and thus also F' €
AGR(A,S). As R ¢ S, we can freely change the behaviour of F' on R without
affecting the fact that it belongs to AGR(A,S), and thus I(A). In other words,
F' € I(A) for any F’ with F' =_g F’, so we are done.

(<) We again show the contrapositive. So assume F’ € [(A) whenever F' =_g F’
and F' € I(A). We need to find a set S C PROF with AGR(A,S) =1(A) and R ¢ S.

21To see this, observe that when A is a trivial axiom, then there exists no voting rule F’ €
OuT ™F \ I(A) = @ to begin with, and thus certainly not one that meets the stated requirement.
22As we can think of a function as a set of input-output pairs, Flg is well-defined even when
S = @; in that case F'|g is simply the empty set of input-output pairs and F'|g Ll F’ is simply F”.
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But S = Pror \ {R} fits the bill: AGR(A,S) = [(A) by assumption (which says
that starting from a rule F' within I(A) we do not move outside of I(A) by changing
the rule’s behaviour on R),?® while R ¢ S holds by definition of S. O

What can we say about the scope of an axiom that is the conjunction of two other
axioms? First, the following basic fact is easy to verify.

Fact 4. Let A and A" be two axioms with the property that their conjunction AN A’
15 a satisfiable axiom. Then the following inclusion holds:

scope(ANA") C scope(A) U scope(A")

To see this, observe that we can decompose any check to see whether a voting rule F'
satisfies AA A’ into two separate checks, one for A and one for A’. So the conjunction
of the two axioms cannot possibly talk about profiles that neither one of the two
original axioms talks about. (We must exclude the case of AA A’ being unsatisfiable
simply because scope(A A A) is not well-defined in that case.)

It is tempting to believe that Fact 4 can be strengthened to say that we must have
scope(A N A') = scope(A) U scope(A’). But this would be a fallacy, as the next
example clearly illustrates.

Example 6 (Scope of Combined Axioms). Consider the following two axioms:

e Axiom 1: Respect the principle of Pareto Efficiency!
e Axiom 2: Either respect Pareto Efficiency or always return {a*}!

Clearly, Axiom 1 (i.e., Pareto Efficiency) does not have full scope, while Axiom 2
does (because, in those cases where the voting rule under consideration violates
Pareto Efficiency, we must go through all profiles to ensure only alternative a* is
being returned). But the conjunction of Axiom 1 and Axiom 2 is again equivalent
to Pareto Efficiency, so its scope indeed is only a proper subset of the union of the
scopes of Axiom 1 and Axiom 2. A

We conclude this section with a brief discussion on the relationship between axiom
scope and axiom strength. Intuition suggests that, the stronger an axiom (or an
axiom set), the larger the number of profiles it talks about. This intuition is certainly
correct when we consider the extremes. We already mentioned earlier that trivial
axioms, i.e., axioms without any logical strength, do not talk about any profiles.
And satisfiable axiom sets of mazimal strength, i.e., satisfiable axiom sets that are
so strong as to only admit a single voting rule, must talk about every single profile
in the domain. Otherwise such a set would not be able to fully specify that rule.
We record these two insights below.

Fact 5. Any satisfiable axiom or axiom set of maximal strength has full scope, while
any trivial axiom or axiom set has empty scope.

230bserve that this step is valid only in case we can be sure that I(A) is nonempty. So here we
are making use of the assumption that A is a satisfiable axiom.

22



The trivial axioms furthermore are the only axioms that do not talk about any
profiles. But the same is not true at the other end of the spectrum. There are many
axioms (e.g., Neutrality or Resoluteness) that do not have maximal strength but
that still talk about every possible profile.

Finally, the intuition, which some readers might share, that the strengthening of an
axiom should always go hand in hand with a (possibly just weak) broadening of the
axiom’s scope turns out to be ill-founded, as the following example shows.

Example 7 (Strength vs. Scope). We again focus on the case of two alternatives
and two voters. Let Ry be the profile in which both voters rank the first alternative
at the top, and let Ry the one in which both of them rank the second alternative at
the top. Consider the following two axioms:

e Axiom 1: If you respect unanimity in Ry, then do the same in Rs!
e Axiom 2: If you violate unanimity in Ry, then at least respect it in Ry!

Furthermore, let Axiom 3 be the conjunction of Axiom 1 and Axiom 2. Observe
that Axiom 3 is strictly stronger than Axiom 1. This must be so, because Axiom 1
and Axiom 2 are neither trivial nor identical to one another.

Now observe that we can simplify Axiom 3: As the antecedents of Axiom 1 and
Axiom 2 are complementary to one another, what Axiom 3 really is saying is that
we must always respect unanimity when we encounter profile Ry. So the scope of
Axiom 3 is {R»}, while the scope of Axiom 1 is its superset {R;, Rs}. In other
words, strengthening Axiom 1 to Axiom 3 results in a contraction rather than an
expansion of scope. A

6 The Dimensionality of Axioms

In the previous section we tried to quantify for how many profiles a given axiom has
some kind of impact. But this does not fully capture the structural complexity of
an axiom. Indeed, we saw that all sorts of different axioms have full scope, meaning
that they have some kind of impact on every possible profile. Yet, intuition suggests
that some of these axioms impose more complex constraints on voting rules than
others. Indeed, some axioms, such as Pareto Efficiency, only impose constraints
on one profile at a time, while others impose constraints on tuples of profiles. For
instance, Positive Responsiveness evidently impose constraints on pairs of profiles.
In this section, we are going to develop the machinery to measure this dimensionality
of the constraints imposed by different axioms.

We can use this new concept of the dimensionality of an axiom to construct a
hierarchy of axioms, and—partly here but especially in Section 7—we are going to
relate this hierarchy to earlier proposals in the literature to structure the space of all
axioms. This includes, in particular, the separation of what Fishburn (1973) calls
intraprofile and interprofile axioms, and what Thomson (2023) calls punctual and
relational axioms. In combination with our concept on an axiom’s scope, we will
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also be able to make precise some of the other proposals by Fishburn to classify
axioms, notably the active, passive, universal, and existential axioms.

To get started, let us go through a small thought experiment, by contemplating the
operation of ‘applying’ an axiom A to a profile R € PROF. The idea is to apply every
voting rule F' that satisfies A to R and to collect the resulting outcomes in a set:

A(R) = {F(R)|Fel(A)}

The set A(R) captures the range of outcomes we might encounter for profile R if
we commit to axiom A. Thus, if we observe an outcome that is not in A(R) for
profile R, then we can be sure that the voting rule that has been used to obtain that
outcome must violate A. Producing an outcome not in A(R) for R is a sufficient
condition for the voting rule in use violating A, but it is not a necessary condition.
For example, if A is the axiom of Neutrality, then we have A(R) = OuT for any
given profile R, so we will never observe a case where an outcome is not in A(R).
Yet, it of course is very much possible for a voting rule to violate Neutrality.

For axioms such as Pareto Efficiency or Condorcet Consistency the situation is rather
different. For axioms A of this kind, there being a profile R for which F'(R) ¢ A(R)
really is both a sufficient and a necessary condition for voting rule F' violating A.
So these axioms are of a different kind than Neutrality. They are what Fishburn
(1973) calls intraprofile axioms and what Thomson (2023) calls punctual axioms.?!

To formulate a condition for axiom satisfaction that works also for other kinds of
axioms, let us generalise the operation of ‘applying’ an axiom A from single profiles
to k-tuples (Ry, ..., Ry) € PROF® of profiles:

ARy, R) = {(F(R),...,F(R) | F €1(A)}

Thus, A(Ry, ..., Rx) is the range of k-tuples of outcomes we might encounter when
we apply voting rules that satisfy A to the profiles in the k-tuple (Ry, ..., Ry). Given
a voting rule F', the requirement for any k-tuple (F'(R;),...,F(Ry)) to belong to
A(Ry, ..., Ry) will never become less stringent as k increases, but there will be a k
above which this stringency does not increase any further.

Definition 6. The dimensionality of axiom A is the smallest integer k > 0 that
satisfies the following constraint:

I(A) = () {F:Pror — OUT | (F(Ry),...,F(Ry)) € A(Ry,..., Ry) }

(R1,...,R)) EPROFF

In other words, the dimensionality of A is the smallest integer £ > 0 such that any
given voting rule rule ¥ : PROF — OUT that violates A can be shown to do so
by inspecting some k-tuple (Ry, ..., Ry) € PROF® of profiles and the corresponding
outcomes under F. We write dim(A) for the dimensionality of axiom A.

24 As Thomson (2023) focuses on resource allocation problems rather than voting problems, it
would be more accurate to say that a punctual axiom, in the sense of Thomson, talks about one
situation at a time, rather than one profile at a time. But in view of our chosen model of voting,
such distinctions are beyond the focus of our discussion here.
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Example 8 (Dimensionality of Anonymity). The dimensionality of Anonymity is 2:
for every pair of profiles (R, R’) such that R’ can be obtained from R through
permutation, we must check that outcomes do not change.

But when inspecting our formulation of Anonymity in Section 2 (Axiom 1) one
could be forgiven for momentarily believing that its dimensionality might be 1 or
maybe even n!. Indeed, only a single profile, R, is being quantified over explicitly
(suggesting dimensionality 1). Once one has understood that the quantification over
permutations ¢ amounts to another quantification over profiles R o o, the fact that
there are n! — 1 permutations of R (besides the identity mapping R o o back to R),
suggests that the axiom is referring to n! profiles at a time. A

This illustrates our general point that even mathematically precise definitions of
axioms can sometimes be hard to interpret correctly,?® so having a formal apparatus
at hand that allows the social choice theorist to be more precise if and when needed
surely will be helpful.

The dimensionality of trivial axioms is 0, given that we do not need to inspect any
profiles to check satisfaction,?® and that of unsatisfiable axioms is also 0, for the
same reason.?” The dimensionality of any axiom A is at most k = |PROF|, as any
rule that is consistent with A on all profiles in PROF must satisfy A. We say that
an axiom has mazimal dimensionality in case it has dimensionality k = |PROF|.

Example 9 (Dimensionality of Nondictatorship). Nondictatorship is such an axiom
with dimensionality & = |PROF|. To see this, imagine a situation where you are
inspecting a voting rule F' and you are unsure whether it is the dictatorship of
voter 1 or whether it is a rule that returns voter 1’s top-ranked alternative in all
but one profile—but you do not yet know which profile that is. Then, in the worst
case, you need to check F'(R) for every single profile R € PROF. A

Let us now try to get a better understanding of how the dimensionalities of different
axioms relate to one another. When considering conjunctions of multiple axioms,
the following basic fact provides an upper bound on dimensionality.

Fact 6. For any two axioms A and A’, the dimensionality of their conjunction is
bounded from above by the dimensionalities of both of them:

dim(ANA") < max{dim(A), dim(A")}

25There are also situations where determining the exact dimensionality of an axiom is objectively
difficult, as illustrated by the following example from the domain of matching with contracts, com-
municated to us by Kenzo Imamura. An important axiom in this area is Path Independence, which
has the appearance of an axiom of dimensionality 3. But a result by Aizerman and Malishevski
(1981) shows that it is equivalent to the conjunction of two other axioms, Substitutability and Ir-
relevance of Rejected Contracts, that each have dimensionality 2, meaning that Path Independence
in fact must have (at most) dimensionality 2 as well (see also the forthcoming Fact 6).

26To understand how Definition 6 correctly captures the case of k = 0, it is helpful to think of
tuples of length 0 as some fixed symbol e. We then get A(e) = {e} and everything falls into place.

2TTo see that Definition 6 returns the correct dimensionality of 0 for any unsatisfiable axiom A,
observe that in this case A(Ry,...,R;) = @ for any choice of k.
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What can we say about the interplay between axiom strength and axiom dimen-
sionality? Let us first look at the extremes. Recall that a satisfiable axiom, which
might be the conjunction of several axioms, is said to have maximal strength in case
it is satisfied by just a single voting rule. Vice versa, let us say that a nontrivial
axiom has minimal strength in case it only rules out a singe voting rule.

Fact 7. Any satisfiable axiom of maximal strength has dimensionality k = 1, while
any nontrivial axiom of minimal strength has dimensionality k = |PROF]|.

The claim about maximally strong axioms follows from the fact that to verify that
the axiom is being respected we simply need to check in each profile that the single
rule being forced by the axiom indeed is being followed. The claim about minimally
strong axioms follows from the fact that differentiating between the one rule being
excluded by the axiom and a rule that agrees with it on all but one profile requires
us to inspect the outcome for all profiles.

But in between these two extremes, as we increase strength, dimensionality might
go up or down. The following example is an illustration of the latter possibility.

Example 10 (May’s Theorem and Dimensionality). May’s Theorem says that for
scenarios with two alternatives (and any number of alternatives), the axioms of
Anonymity, Neutrality, and Positive Responsiveness together characterise a single
voting rule, namely the simple majority rule, which returnss the alternative preferred
by the majority of voters—or the set of both alternatives in case of a tie (May, 1952).

Each of these three axioms clearly has dimensionality 2. Thus, by Fact 6, the dimen-
sionality of their conjunction can be at most 2. Now, in view of May’s Theorem—
stating that this conjunction characterises a single voting rule and thus is maximally
strong (yet satisfiable)—and Fact 7, this conjunction of axioms actually only has
dimensionality 1. So this is an example where the stronger axiom (the conjunction
of the three axioms) has lower dimensionality than any of the weaker axioms. A

The next question that presents itself is what we might be able to say about the
interplay between axiom scope and axiom dimensionality. Due to the fact that an
axiom can impose constraints only on those profiles it talks about, we immediately
obtain the following bound.

Fact 8. The dimensionality of any axiom A is bounded from above by the size of its
scope:

dim(A) < |scope(A)|

But beyond this basic insight, we cannot make any general statements about the rela-
tionship between dimensionality and scope. For some axioms, dim(A) and |scope(A)|
are the same (as for Nondictatorship), while for others they can come maximally
apart (as for Resoluteness).

To conclude our discussion of the dimensionality of axioms, let us briefly ponder
the question of what kind of dimensionality we should be looking for in an ax-
iom. Broadly speaking, all else being equal, axioms of low dimensionality seem to

26



be preferable and should be expected to be ‘better behaved’.?® This is not just a
philosophical matter but also a pragmatic one. The technique of automating the dis-
covery of proofs for impossibility theorems in social choice theory using satisfiability
solvers works better for some axioms than for others (Geist and Peters, 2017), and
the dimensionality of the axioms involved appears to be a relevant factor. Indeed,
the first step when using this approach is to encode the axioms involved in the con-
jectured theorem into propositional logic for the ‘base case’ of, say, two voters and
three alternatives, to then attempt to show their unsatisfiability using the solver,
and to eventually extract a human-readable proof from the proof trace produced.
An axiom of high dimensionality will not only result in a long formula, but that long
formula—in all likelihood—will also have to interact with many other formulas to
generate the impossibility we are looking for. For instance, for the base case of the
Gibbard-Satterthwaite Theorem, which involves two axioms of maximal dimension-
ality (Nondictatorship and Nonimposition), no short mechanical proof produced by
a satisfiability solver is known (Endriss, 2023).

7 Fishburn’s Classification of Axioms

Peter Fishburn in his 1973 treatise on social choice theory proposed a hierarchi-
cal classification of axioms according to which each axiom is either existential or
universal, each universal axiom is either an interprofile or an intraprofile axiom,
and each intraprofile axiom is either active or passive.’ This way of organising
the space of axioms has been fairly influential, and especially the distinction be-
tween intraprofile and interprofile axioms is frequently made in the literature. The
classification proposed is very natural; indeed, other authors, including Richelson
(1977) and Thomson (2001, 2023), have made similar proposals. However, Fishburn
describes his classes of axioms only at an intuitive level, without providing clear
definitions. In this section, we are going to suggest a way of rationalising Fishburn’s
classification by providing precise definitions. They will be formulated in terms of
our notions of dimensionality and scope.

Let us begin with the top-level division of axioms into those that are existential and

those that are universal in nature:

“The existential [axioms| are based primarily on existential qualifiers
(‘there exists ...") although they may also use universal qualifiers (‘for

280ne concrete example illustrating this view has been suggested to us by Koji Yokote. In the
area of transferable-utility games, the original axiomatisation by Shapley (1953) of the value now
bearing his name has at times been criticised for featuring an axiom, Additivity, that seems less
attractive than the other axioms involved. It not only has a less convincing normative justification
but, being of dimensionality 3, it also has higher dimensionality than the other axioms (which
all have dimensionality 1). But alternative axiomatisations of the Shapley value, such as the one
due to Young (1985) with core axiom Strong Monotonicity or the one due to Casajus and Yokote
(2017) with core axiom Weak Differential Marginality, show that characterising the Shapley value
in terms of axioms with dimensionality not exceeding 2 is possible as well.

29Fishburn also talks about “structural conditions”, such as there being at least three alternatives
or preferences being modelled as linear orders. But these conditions do not qualify as axioms, so
we do not include them in our discussion here.
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all ...7). The universal [axioms] either do not use existential qualifiers
in any way, or else they use such qualifiers in a secondary manner.”
— Fishburn (1973, p. 180)

Fishburn clearly acknowledges that these are not precise definitions (he says that
his formulation “allows some question about the appropriate classification of a few
[axioms]”). He therefore goes on to illustrate the intent of his definitions with
examples for specific axioms that belong to either one of the two classes. For the
existential axioms, the clearest examples are Nonimposition®® and Nondictatorship.
Both of these axioms postulate the existence of a certain kind of profile, be it one
where some alternative of interest wins (for Nonimposition) or be it one where
some voter of interest will not have their preference be respected in the outcome
(for Nondictatorship). Most other commonly used axioms are universal. Typical
examples including Condorcet Consistency and Anonymity. Both of them indeed
involve a condition that needs to be met by all (relevant) profiles.?!

The reason why it is difficult to give a precise definition of ‘existential axiom’ and
‘universal axiom’ is that, should we want such a definition to actually refer to quan-
tifiers used in the definition of an axiom, we would need to settle on a specific formal
language for expressing axioms, and we also would need to agree on some normal
form for stating axioms in that language, to ensure that there is a unique way of
stating any one axiom, allowing us to count and classify quantifiers in an unambigu-
ous manner. This seems rather daunting a task, and it might be more fruitful to
instead attempt to classify axioms on the basis of their extensional semantics.

The following observation is an attempt to relate Fishburn’s top-level division of the
space of axioms to unambiguously measurable features of axioms.??

Observation 9. All standard axioms naturally classified as ‘existential’ axioms ac-
cording to Fishburn have mazimal dimensionality, while all those naturally classified
as ‘universal’ axioms according to Fishburn have small constant dimensionality.

Here, an axiom having constant dimensionality means that its dimensionality does
not depend on n (the number of voterss) or m (the number of alternatives). Indeed,
most universal axioms have a dimensionality of either 1 or 2. We only know of a
single case of a commonly used axiom with dimensionality 3, namely the axiom of

30Tn fact, what Fishburn calls ‘Nonimposition’ is a weaker axiom than the one we have defined in
Section 2 (which arguably is the most prevalent definition in use today). Fishburn’s axiom is what
we might want to call Weak Nonimposition, merely requiring the voting rule to not be constant,
i.e., to admit at least two distinct outcomes.

31Thomson (2023) uses the term ‘universal axiom’ in an entirely different sense, namely to refer
to axioms that “express universal ideas, ideas that are applicable to all domains of problems”
(p. 78). For instance, both Anonymity and Pareto Efficiency are principles that are meaningful
across a wide range of different models of, amongst others, voting and resource allocation.

32We state this and several subsequent findings as Observations rather than as Propositions
or Facts, because they are—at least partly—of an empirical rather than a purely analytical na-
ture. They are attempts to link incompletely or informally defined concepts from the literature to
concepts formally defined in this paper.
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Reinforcement, also known as Consistency (Young, 1974; Zwicker, 2016).33 We are
not aware of any cases of commonly used universal axioms in the theory of voting
with a dimensionality higher than that.

As for the existential axioms, recall that having mazimal dimensionality means
that these axioms have dimensionality & = |PROF|. Besides the aforementioned
Nonimposition and Nondictatorship, other examples for existential axioms include
those requiring each voter i to be essential (or not a dummy) in the sense of there
being a pair of profiles with distinct outcomes between which only ¢ changed their
reported preference. These also have maximal dimensionality. We are not aware
of any commonly used axioms with a dimensionality that is neither constant nor
maximal. But it is possible to construct such axioms, as we shall see next.

Example 11 (Restricted Nondictatorship). Consider the following weak variant of
the Nondictatorship axiom, which limits the power of one specific voter ¢* regarding
one specific alternative z*, by postulating that x* should not be the sole winner in
all profiles in which ¢* places x* at the top of their reported preference:

A wvoting rule F : PROF — OUT satisfies the axiom of Restricted Non-

dictatorship for voter i* € N and alternative x* € X if there exists a
profile R € PROF with top;«(R) = {z*} but F(R) # {z*}.

This axiom is existential in nature and we expect that Fishburn would have classified
it as such. Its dimensionality (and also its scope) is 1/m - |PROF|, because in 1 out
of every m profiles will +* rank z* in the top position. So this is an example for an
axiom where the dimensionality is neither constant nor maximal. A

Another (also somewhat artificial) example for an existential axiom that does not
have maximal dimensionality would be the requirement to respect unanimously held
preferences for at least one unanimous profile (but not necessarily all of them). This
axiom has dimensionality m!, given that there are m! unanimous profiles, all of
which one would need to inspect. Interestingly, here the dimensionality, while not
constant, does not depend on n.

The aforementioned difficulty of classifying axioms as either existential or universal
on the basis of the quantifiers featuring in their description is nicely illustrated by
the following example—which is not artificial. This may serve as an argument for
relying on a classification in terms of axiom dimensionality instead.

Example 12 (Classifying Liberalism). Amartya Sen proposed a simple axiom, Lib-
eralism, that encodes the idea that when choosing between several alternatives (rep-
resenting different social states), for every voter there should be a pair of social states
such that she can block one of them from being adopted by society (Sen, 1970). The
idea is that certain aspects of a social state will be some voter’s ‘private business’
(e.g., between two social states that are identical except that in one of them you
paint the walls of your bedroom in white and in the other in pink, you should be
free to block either one of them). We can define the axiom as follows:

33Reinforcement is an axiom for models of voting with variable electorates. It states that, if two
disjoint electorates elect overlapping sets of alternatives, then the intersection of those two sets
should be returned when everyone in the union of the two electorates votes.
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A woting rule F' : PROF — OUT satisfies the axiom of Liberalism if

for every voter 1 € N there exist two alternatives x,y € X such that
(i) y ¢ F(R) whenever x =%y and (ii) x ¢ F(R) whenever y =F x.

The axiom, on its own, is satisfiable as long as the number of alternatives is large
enough so as to be able to find alternatives to be controlled by each individual.?*
But what kind of axiom is it? Is it an existential axiom or is it a universal axiom?

We find both existential universal quantifiers in our formulation of the axiom. The
quantification over voters is universal, while that over alternatives is existential.
The quantification over profiles is left implicit, but it clearly is universal (the stated
conditions must hold for all profiles R). Thus, the axiom has the following form:

Vi.3x.3y.VR.Condition (i, x,y, R)

The leading universal quantification over voters seems least important. Indeed,
we can think of Liberalism as a conjunction of smaller axioms, each postulating
Liberalism with respect to one specific voter. The conjunction presumably should
belong to the same class as each of the individual axioms, so it is sufficient to analyse
Liberalism with respect to one fixed voter (with quantification Jz.3y.VR).

One intuition might be that the quantification over profiles should be decisive when it
comes to classifying the axiom (suggesting that Liberalism is a universal axiom). But
another, conflicting, intuition would be that the leading quantifier should be decisive
(suggesting that Liberalism is an existential axiom). So inspecting quantifiers alone
does not lead to a clear-cut classification.

If instead we check the dimensionality of Liberalism, we find that it is an axiom of
maximal dimensionality: there are situations where we need to inspect how a given
voting rule performs on every single profile before we can say with certainty whether
it does or does not satisfy Liberalism. Thus, in view of Observation 9, we propose
to classify Liberalism as an existential axiom (but see Example 13 below). A

Another family of axioms where it is unclear whether they should be classified as
existential or universal are conditions that have the form of an implication (or,
equivalently, a disjunction). Consider the following type of condition, which we
would not want to claim to be a truly compelling normative desideratum, but which
one could at least imagine some mechanism designer out there contemplating:

If a voting rule returns the same outcome on all unanimous profiles, then
it also should return that same outcome on all other profiles.

That is, if we are to ignore voters’ wishes in those clearest of cases, then we should be
consistent and ignore their wishes in all cases. Observe that this axiom has maximal
dimensionality. Yet, to some readers, it might have a universal flavour, which seems
at odds with Observation 9. But, we would like to argue, it really is a disjunction
of two axioms, one of which is an existential axiom (of dimensionality m!) and one

34With the interpretation of alternatives as ‘social states’ in mind, we would expect | X| to be
several orders of magnitude larger than |N|, so this is not a significant limitation.
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of which is a universal axiom (of dimensionality 2).>> The existential sub-axiom
requires us to inspect all unanimous profiles and ensure that not all of them are
mapped to the same outcome. The universal sub-axiom requires us to inspect all
pairs of profiles and ensure that their outcomes coincide. The overall axiom is
satisfied if at least one of the two sub-axioms is.

Here is another example for a problematic (but, again, artificial) axiom:

If there exists a profile in which one of the alternatives you consider
returning as part of the outcome has not been top-ranked by any of the
voters, then the full set of alternatives should be returned for all profiles.

That is, if we are to ignore voters’ wishes (as expressed through their top choices)
in some cases, then we should do so systematically in all cases. This axiom also
has maximal dimensionality. On the face of it, it is an implication between one
existential and one universal statement. But things become clearer once we observe
that it also can be rewritten as a disjunction of two universal axioms (both of
which, remarkably, have dimensionality 1). The first sub-axiom asks us to only
return alternatives that are top-ranked in at least one preference. The second sub-
axiom asks us to always return the full set X. Thus, in terms of dimensionality,
a disjunction of two universal axioms (with small constant dimensionality) can be
indistinguishable from an existential axiom (with maximal dimensionality).

We conclude that Fishburn’s division into existential and universal axioms does not
adequately cover the space of all conceivable axioms—some ‘compound axioms’ such
as the last two we discussed here, arguably, are neither. Thus, if we want to also
cover such axioms, organising the space of all axioms in terms of their dimensionality
seems the better approach. Having said this, for all commonly used axioms one can
find in the literature—and indeed all truly natural axioms we are able to conjure
ourselves—Fishburn’s division is perfectly adequate and our Observation 9 allows
us to make that division precise.?¢

Let us now move on to the next level in Fishburn’s hierarchy:

“The main division of universal [axioms] depends on whether more than
one [profile] is actively involved in the statement of the [axiom]. Those
with only one [profile] are called intraprofile [axioms]; the others are
interprofile [axioms).” — Fishburn (1973, p. 181)

Examples for intraprofile axioms include Pareto Efficiency and Resoluteness, while
examples for interprofile axioms include Positive Responsiveness and Neutrality.
Thomson makes a very similar distinction:

35Recall from elementary logic that an implication between two universally quantified statements
is equivalent to a disjunction between an existentially quantified statement and a universally quan-
tified one. In general, rewriting implications as disjunctions tends to make it easier to grasp the
precise impact of a statement.

36We note that the division suggested by Observation 9 is not exhaustive, as it only covers
axioms of either maximal dimensionality or (small) constant dimensionality. One could define
further classes in between, such as the class of axioms with a dimensionality that is a function of
m but not of n, or the class of axioms with a dimensionality that is a function of both n and m
but that is not maximal.
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“A punctual axiom applies separately to each problem in the domain
under investigation, point by point. [...] On the other hand, a relational
axtom prescribes how a rule responds to certain changes in a parameter of
a problem, perhaps changes in several parameters at once, these changes
being possibly linked.” — Thomson (2023, p. 79)

So Fishburn’s intraprofile axioms correspond to Thomson’s punctual axioms, and
Fishburn’s interprofile axioms correspond to Thomson’s relational axioms. Richelson
(1977) also identifies the same two classes, calling them ethical and aggregation
axioms, respectively. So these indeed seem to be classes of some universal significance
and appeal. They are naturally captured by our notion of dimensionality as well.

Observation 10. All standard axioms naturally classified as ‘intraprofile’ axioms
according to Fishburn have dimensionality k = 1, while all those naturally classified
as ‘interprofile’ axioms according to Fishburn have dimensionality k > 1.

Example 13 (Classifying Liberalism, revisited). Recall Amartya Sen’s axiom of
Liberalism, defined in Example 12, which we had classified as an existential axiom
on the grounds that it has maximal dimensionality. But maybe our interpretation
of the axiom was too weak? Another natural reading would be the following:37

Suppose X includes, for each voter i € N, two alternatives x; and y;.
Then a voting rule F' : PROF — OUT satisfies the axiom of Liberalism™
if, for every voter i € N, it is the case that (i) y; ¢ F(R) whenever
z; =Ry, and (it) x; ¢ F(R) whenever y; =1 z;.

So here we are fixing from the outset who should be given control over which pair of
alternatives, while in our earlier formulation in Example 12 we were free to search
for a fitting assignment when trying to satisfy the axiom. In other words, this new
formulation is the normatively more demanding one. Note that every assignment of
labels to alternatives (every ‘rights system’) results in a new version of the axiom
(and this includes versions where some alternatives receive more than one label).

Now, it is straightforward to verify that Liberalism™ has dimensionality 1. Indeed,
this axiom clearly should be classified as a universal intraprofile axiom.3 A

Let us now turn to Fishburn’s final division:

“The intraprofile [axioms| further divide in a natural way into [axioms]
which assume certain specific properties for the components of [the pro-
file], and those that do not. We refer to the former as active intraprofile
[axioms]; the latter are passive intraprofile [axioms] since they say noth-
ing about the contents of [the profile].” — Fishburn (1973, p. 181)

3"Which of the two readings Sen had in mind when formulating the axiom of Liberalism is not
immediately clear. His impossibility theorem is true for both of them.

38Clemens Puppe shared with us an anecdote according to which Amartya Sen, already back
around 1970 when he published his paper on the impossibility of a Paretian liberal (Sen, 1970), felt
that an attractive feature of his result—especially when compared to Arrow’s Theorem (1963)—
was that his axioms (Liberalism and Pareto Efficiency) only talk about one profile at a time.
In contrast, Arrow’s Independence axiom is an interprofile axiom of dimensionality 2 and his
Nondictatorship requirement is an existential axiom of maximal dimensionality.

32



Thomson (2001) says that such passive axioms have full coverage. In his words, an
axiom has full coverage if it “applies to every problem in the domain” (p. 353).

For both active and passive axioms, all relevant conditions can be checked one profile
at a time (as all such axioms have dimensionality 1). One way of reformulating
Fishburn’s definition of passive axioms would be to say that a passive axiom imposes
a condition on outcomes that is the same for all profiles—the condition does not
depend on the profile. From amongst the common axioms defined in Section 2,
Resoluteness is the only such axiom.?® It imposes the same condition on outcomes,
regardless of the profile at hand. Clear examples for intraprofile axioms that are
active are Pareto Efficiency?® and Condorcet Consistency. Both of them impose
constraints on outcomes only for very specific profiles.

We can capture Fishburn’s division of the intraprofile axioms into active and passive
axioms using our notion of scope.!

Observation 11. All standard axioms with dimensionality 1 naturally classified
as ‘passive’ axioms according to Fishburn have full scope, while all those naturally
classified as ‘active’ axioms do not have full scope.

This completes our rationalisation of Fishburn’s classification of axioms.*?> We pro-
vide a schematic overview in Figure 1.

We conclude our discussion of Fishburn’s classification with a brief example illus-
trating once more that this classification is intended for natural axioms rather than
arbitrary properties of voting rules.

Example 14 (Classifying Surjectivity). Recall that Nonimposition requires that,
for every alternative x € X, there is a profile for which the outcome is {z}. A
more demanding variant of this axiom is Surjectivity, which requires that, for ev-
ery nonempty set S C X, there is a profile for which the outcome is S. Clearly,
Surjectivity is existential in nature.

Observe that Surjectivity is unsatisfiable when there are more nonempty subsets
of X than there are profiles, which is the case when there are m = 3 alternatives
and n = 1 voter, as then there are 23 — 1 = 7 such sets but only (3!)! = 6 profiles.
Recall from Section 6 that unsatisfiable axioms have dimensionality 0, in conflict

39We note that Fishburn (1973, p. 181) classifies Resoluteness (which he refers to as Decisiveness)
as an active axiom. The reason is that he assumes a slightly different model of voting, one where
abstention is possible, and his axiom requires the rule to not report a tie only in those cases where
at least one voter did not abstain. So for this variant of the axiom we indeed need to inspect the
profile before being able to decide whether the axiom has been respected for that profile.

40We note that Thomson (2023, p. 80) classifies Pareto Efficiency as an axiom with full coverage,
i.e., as a passive axiom. This is because Thomson is focusing on resource allocation problems, where
Pareto Efficiency indeed can potentially be violated in every situation rather than only situations
that meet certain conditions on preferences.

“Fishburn also includes collective rationality conditions in the class of passive axioms, but as
mentioned in Section 2 here we prefer drawing a clear terminological distinction between such
conditions and axioms in their pure sense.

420f course, further subdivisions would be conceivable, and Thomson (2023) indeed proposes
such a subdivision, although several of the distinguishing features he discusses are tailored to
resource allocation problems and seem less well suited to classifying axioms for voting rules.
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Figure 1: Rationalisation of Fishburn’s Classification of Axioms.

with Observation 9 and our classification of Surjectivity as an existential axiom. (For
other values of n and m, when Surjectivity is satisfiable, this anomaly vanishes.) A

8 Conclusion and Open Problems

We have discussed different approaches to specifying the meaning of an axiom,
as used in social choice theory, and we have developed a number of quantitative
criteria for comparing and classifying such axioms: the strength of an axiom, the
scope of an axiom, and the dimensionality of an axiom. We finally have illustrated
an application of the latter two criteria by showing how they can be employed to
rationalise a widely used but hitherto only informally defined classification scheme
for axioms. We believe that this approach of treating axioms as formal objects with
precisely measurable features offers a useful complement to the familiar approach of
evaluating axioms in terms of their normative relevance and appeal.
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We conclude with a brief discussion of promising directions for future work, stating
a few specific open problems we believe are worth addressing.

We have developed our formal machinery for one specific model of voting only,
namely the widely used model with a fixed set of voters and a fixed set of alterna-
tives, where preferences take the form of rankings of the alternatives, and where the
objective is to select a nonempty set of alternatives in response to the individual
preferences reported. We believe that much of this machinery can (and should) be
adapted to other models of collective decision making, be it in voting, matching
under preferences, coalition formation, fair division, or judgment aggregation. In
some cases this kind of adaptation might be a fairly simple technical exercise, while
in others it likely will bring up new and interesting research challenges.

One specific challenge we foresee is that our definition of axiom strength (and the
two definitions that build on it, namely those of degree of contribution of an axiom
to a result and degree of complementarity of the axioms within a set) requires the
set of mechanisms the axiom constrains to be finite. But in some other models of
interest this set is not finite. An example is the standard model of voting with
variable electorates (Young, 1974), where there are an infinite number of (finite)
electorates that might report a preference, so where the set of profiles is infinite. An
interesting open question thus is this: Is there a meaningful notion of axiom strength
that would extend to scenarios with an infinite number of conceivable mechanisms?

Another set of research challenges relates to making the abstract measures we de-
veloped easier to use for analysts, by developing simple techniques for computing
the strength, degree of contribution, degree of complementarity, scope, and dimen-
sionality for a given axiom (set). This is particularly challenging for the measures
related to axiom strength. In some cases, it may not be necessary to determine the
exact strength of an axiom, but we might still wish to determine whether one axiom
is stronger than another. Can we develop practical algorithms for such tasks?

The specific criteria for the analysis of axioms we developed likely are not the only
such criteria worth considering. Specifically, we believe that it would be interesting
to develop a theory of the granularity of axioms. Intuitively speaking, most common
axioms naturally decompose into several axiom instances. For example, every way of
permuting the alternatives corresponds to one instance of the axiom of Neutrality.
To understand why a given mechanism fails a given axiom, it is most helpful if
we are pointed to the specific axiom instance that is being violated. Indeed, axiom
instances play an important role in the emerging literature on ezplainability in social
choice (see, e.g., Boixel and Endriss, 2020). But, in fact, we are still lacking a
precise definition of ‘instance’, because it is a priori unclear how fine-grained the
decomposition of an axiom should be. The finest possible decomposition is always
to rewrite an axiom as a conjunction of statements that each exclude only a single
mechanism. But this rarely would be the right level of granularity. So, developing a
formal theory of axiom granularity and axiom instances that matches our intuitions
for how to interpret common axioms represents another important direction for
future work (for initial ideas we refer to Schmidtlein, 2022, Section 2.2.3).

Finally, there is significant scope for developing formal criteria for classifying ax-
ioms in a manner that also takes some of the normative intent of an axiom into
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account. For example, it is natural to think of Anonymity and Neutrality as sym-
metry conditions, and of Positive Responsiveness and its many variants discussed
in the literature as monotonicity conditions (see also Thomson, 2001). But is it
possible to provide formal definitions of these and similar categories? For instance,
a defining feature of a monotonicity condition seems to be that one agent moving
closer to the collective decision of the moment should not affect that collective de-
cision (or should only affect it in certain narrowly delimited ways). So making this
precise would require us to fix a suitable notion of ‘closeness’.

References

M. Aizerman and A. Malishevski. General theory of best variants choice: Some
aspects. IEEE Transactions on Automatic Control, 26(5):1030-1040, 1981.

K. J. Arrow. Social Choice and Individual Values. John Wiley and Sons, 2nd edition,
1963. 1st edition published in 1951.

K. J. Arrow, A. K. Sen, and K. Suzumura, editors. Handbook of Social Choice and
Welfare, volume 1. North-Holland, 2002.

A. Boixel and U. Endriss. Automated justification of collective decisions via con-
straint solving. In Proceedings of the 19th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 2020.

A. Casajus and K. Yokote. Weak differential marginality and the Shapley value.
Journal of Economic Theory, 167:274-284, 2017.

U. Endriss. Logic and social choice theory. In A. Gupta and J. van Benthem, editors,
Logic and Philosophy Today, volume 2, pages 333-377. College Publications, 2011.

U. Endriss. Tutorial on Automated Reasoning for Social Choice Theory. Zenodo,
2023. Available at https://doi.org/10.5281/zenodo.10444889.

P. C. Fishburn. The Theory of Social Choice. Princeton University Press, 1973.

G. Frege. Uber Sinn und Bedeutung. Zeitschrift fir Philosophie und Philosophische
Kritik, 100(1):25-50, 1892.

W. V. Gehrlein and P. C. Fishburn. The probability of the paradox of voting: A
computable solution. Journal of Economic Theory, 13(1):14-25, 1976.

C. Geist and D. Peters. Computer-aided methods for social choice theory. In U. En-
driss, editor, Trends in Computational Social Choice, chapter 13, pages 249-267.
AT Access, 2017.

A. Gibbard. Manipulation of voting schemes: A general result. FEconometrica, 41

(4):587-601, 1973.

U. Grandi and U. Endriss. First-order logic formalisation of impossibility theorems
in preference aggregation. Journal of Philosophical Logic, 42(4):595-618, 2013.

36



W. H. Holliday, C. Norman, and E. Pacuit. Voting theory in the Lean theorem
prover. In Proceedings of the 8th International Workshop on Logic, Rationality
and Interaction (LORI). Springer, 2021.

K. O. May. A set of independent necessary and sufficient conditions for simple
majority decision. Econometrica, 20(4):680-684, 1952.

P. Mongin. L’axiomatisation et les théories économiques. Revue E’conomz’que, 54(1):
99-138, 2003.

H. Moulin. The Strategy of Social Choice. Advanced Textbooks in Economics.
North-Holland, 1983.

T. Nipkow. Social choice theory in HOL: Arrow and Gibbard-Satterthwaite. Journal
of Automated Reasoning, 43(3):289-304, 2009.

E. Pacuit and F. Yang. Dependence and independence in social choice: Arrow’s
theorem. In S. Abramsky, J. Kontinen, J. Vadnanen, and H. Vollmer, editors,
Dependence Logic, pages 235-260. Birkhauser, 2016.

M. Pauly. On the role of language in social choice theory. Synthese, 163(2):227-243,
2008.

H. Peters. Game Theory: A Multi-Leveled Approach. Springer, 2008.

C. R. Plott. Axiomatic social choice theory: An overview and interpretation. Amer-
ican Journal of Political Science, 20(3):511-596, 1976.

J. Richelson. Conditions on social choice functions. Public Choice, 31(1):79-110,
1977.

M. A. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and cor-
respondence theorems for voting procedures and social welfare functions. Journal
of Economic Theory, 10(2):187-217, 1975.

M. C. Schmidtlein. Voting by axioms. Master’s thesis, ILLC, University of Amster-
dam, 2022.

A. K. Sen. The impossibility of a Paretian liberal. Journal of Political Economy, 78
(1):152-157, 1970.

A. K. Sen. Collective Choice and Social Welfare: Expanded Edition. Penguin, 2017.
1st edition published in 1970.

M. R. Sertel and A. Van der Bellen. Synopses in the theory of choice. Econometrica,
47(6):1367-1389, 1979.

L. S. Shapley. A value for n-person games. In H. W. Kuhn, , and A. W. Tucker, edi-
tors, Contributions to the Theory of Games, volume 28 of Annals of Mathematics
Studies, pages 307-318. Princeton University Press, 1953.

37



P. Tang and F. Lin. Computer-aided proofs of Arrow’s and other impossibility
theorems. Artificial Intelligence, 173(11):1041-1053, 2009.

W. Thomson. On the axiomatic method and its recent applications to game theory
and resource allocation. Social Choice and Welfare, 18(2):327-386, 2001.

W. Thomson. Axiomatic and game-theoretic analysis of bankruptcy and taxation
problems: A survey. Mathematical Social Sciences, 45(3):249-297, 2003.

W. Thomson. The Axiomatics of Economic Design: An Introduction to Theory and
Methods. Springer, 2023.

N. Troquard, W. van der Hoek, and M. Wooldridge. Reasoning about social choice
functions. Journal of Philosophical Logic, 40(4):473-498, 2011.

D. van Dalen. Logic and Structure. Springer, 5th edition, 2013.

H. P. Young. An axiomatization of Borda’s rule. Journal of Economic Theory, 9
(1):43-52, 1974.

H. P. Young. Monotonic solutions of cooperative games. International Journal of
Game Theory, 14(2):65-72, 1985.

W. S. Zwicker. Introduction to the theory of voting. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational
Social Choice, chapter 2, pages 23-56. Cambridge University Press, 2016.

A Case Study: Shapley Value

To illustrate the concept of the Shapley value of an axiom within a given set of
axioms, in this case study, we are going to calculate the degree of contribution (i.e.,
the Shapley value) for each of the axioms involved in a simple impossibility result.

As is well-known, for a fixed electorate of two voters and a set of two alternatives,
there exists no voting rule that is resolute, anonymous, and neutral. Indeed, the
symmetry requirements imposed by Anonymity and Neutrality entail that in case
the two voters disagree we need to declare a tie, which however would be at odds
with the requirement of Resoluteness. This is an instance of a more general result
due to Moulin (1983). So let us compute the Shapley value of each of the three
axioms for this simple setting.

In what follows, A denotes Anonymity, N denotes Neutrality, and R denotes Res-
oluteness. We first compute the strength for each of the 8 sets of axioms we can
construct. There are 3 possible outcomes (the first alternative can win, the second
can win, or there can be a tie). There are 2! = 2 possible preferences a voter can
report and thus 22 = 4 possible profiles to consider. Hence, the overall number of
voting rules is 3* = 81. For each combination of axioms, we now count how many of
those 81 rules satisfy those axioms. The results are shown in Table 1 and explained
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Axioms Strength #Rules Explanation

0/81 81 3 outcomes and 4 profiles, so 3* = 81 rules

A 54/81 27 3 voting situations, so 3% = 27 rules

N 72/81 9 2 relevant profiles, so 32 = 9 rules

R 65/81 16 2 outcomes, so 24 = 16 rules

AN 78/81 3 only design choice is for unanimous profiles
AXR 73/81 8 2 outcomes and 3 voting situations, so 2% = 8 rules

NR 77/81 4 2 outcomes and 2 relevant profiles, so 22 = 4 rules
ANR 81/81 0 impossibility result

Table 1: Strength of each of the eight subsets of the set of axioms consisting of
Anonymity (A), Neutrality (N), and Resoluteness (R) for scenarios with 2 alterna-
tives and fixed-electorates with 2 voters.

below. There are 32 = 27 anonymous rules, because there are 3 ‘voting situations’
(both voters prefer the first alternative, both prefer the second, or there is a split).
There are 32 = 9 neutral rules, as it is sufficient to count how many options there are
in case the first voter prefers the first alternative. There are 2* = 16 resolute rules,
as for such rules there are only 2 possible outcomes. There are just 3 rules that are
both anonymous and neutral: if the two voters disagree, such a rule must declare a
tie, so we only need to count the possibilities for what to do in case the profile is
unanimous (in which case the rule could agree with the voters, disagree with them,
or declare a tie). Thee are 23 resolute rules that are anonymous (2 outcomes and 3
voting situations). There are 22 = 4 resolute rules that are neutral (2 outcomes and
keeping the first voter’s preference fixed during counting). Finally, there are 0 rules
that satisfy all three axioms (that’s the statement of the impossibility result). Given
the number of rules satisfying a given set of axioms, we obtain the corresponding
strength by dividing by 81 and then subtracting the result from 1.

Considering the six possible sequences of axioms in the order [ANR], [ARN], [NAR],
[INRA], [RAN], [RNA], we obtain the following Shapley values for the three axioms:

1 (54-0 , 54-0 , 78-72 | 81-77 , 73-65 , 81-77\ __ 130
deon(A) = g ( st T st ts T s T s st ) = 186
1 (7854 , 81-73 | 72-0 , 72-0 , 81-73 , T7-65) __ 196
deon(N) = 6 ( st T st T st T st T s ta ) = 186
1 (81-78 , T3-54 | 81-78 |, T7T-T2 , 65-0 , 65-0) __ 160
deon(R) = 3 ( st T st T et st T st Tosr ) = 186

Observe that these three values add up to 1. This is a consequence of the fact that
the Shapley value is known to be efficient (Shapley, 1953).

A possible interpretation of these values is that Neutrality has the strongest impact
on the impossibility result and Anonymity has the least impact.

B Case Study: Axiom Complementarity

To illustrate the concept of complementarity of the axioms in an axiom set and the
idea that results based on axiom sets with higher levels of complementarity might
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be classified as being more ‘surprising’, in this case study we calculate the degree
of complementarity for the axiom sets involved in two well-known results, for the
special case of two voters and two alternatives. The first result is the impossibil-
ity of satisfying Anonymity, Neutrality, and Resoluteness together (Moulin, 1983).
The second result is May’s characterisation of the simple majority rule in terms
of Anonymity, Neutrality, and Positive Responsiveness (May, 1952). So these two
results differ in just one axiom.

Recall that in Appendix A we calculated the strengths of Anonymity (A), Neu-
trality (N), and Resoluteness (R), also for scenarios with two alternatives and two
voters. The figures are shown in Table 1. As they are impossible to satisfy together,
their combined strength must be 1 (rendered below as 81/s1). We now can compute
the degree of complementarity for this set of three axioms as follows:

] ANR B 81/81 81 424
COm({ ) 1N }) - 54/81+72/81+65/81 - 19_1 - 0

How should we interpret such a number? One thing it shows is that, from a purely
technical point of view, there would be significant room for weakening some or all of
the three axioms without giving up on the impossibility found. Of course, whether
there are such weakenings that are also natural is another question.

Now let us compare this to the degree of complementarity of the set of axioms
involved in May’s Theorem, for the same parameters (that is, two voters and two
alternatives). We still need to count how many of the 81 voting rules for this setting
satisfy Positive Responsiveness (PR). Suppose the alternatives are called a and b. To
indicate a voter’s preference it is sufficient to specify which of the two alternatives
they prefer. There are 4 possible profiles, which for simplicity we denote as aa,
ab, ba, and bb. There are 3 possible outcomes, namely {a}, {b}, and {a,b}. We
distinguish five cases:

e Suppose the outcome for profile bb is {a}. Then PR fully determines the
outcomes for all other profiles. So there is 1 rule for this case.

e Suppose the outcome for profile bb is {a,b}. Then PR fully determines the
outcomes for all other profiles. So there is 1 rule for this case.

e Suppose the outcome for profile aa is {b}. Then PR fully determines the
outcomes for all other profiles. So there is 1 rule for this case.

e Suppose the outcome for profile aa is {a,b}. Then PR fully determines the
outcomes for all other profiles. So there is 1 rule for this case.

e Suppose the outcome for profile aa is {a} and that for profile bb is {b}. Then
our axioms do not impose any restrictions for which outcome to return for the
other two profiles, ab and ba. So there are 3 - 3 =9 rules for this case.

So there are 1 + 1+ 1+ 1+ 9 = 13 voting rules overall. We are now calculate the
degree of complementarity of May’s axioms, keeping in mind that the full set has
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strength 80/s1, as it admits exactly one out of the 81 possible voting rules.

deom({A,N,PR}) = Yo = 5 o~ 0412
Com({ ) ) }> - 54/81 + 72/81 + 68/81 - & ~ O

Thus, we find that May’s Theorem is moderately less surprising than Moulin’s ob-
servation regarding the incompatibility of Anonymity and Neutrality for resolute
voting rules—once again, for the specific scenario of two voters and two alterna-
tives. Indeed, two out of three axioms are the same for the two results, while
(i) Resoluteness is—both intuitively and formally—a weaker axiom than Positive
Responsiveness and (ii) an impossibility is a stronger claim than a characterisation.
So in the case of May’s Theorem we are going from somewhat stronger assumptions
to a somewhat weaker conclusion.

C Scope of Unsatisfiable Axioms

Our definition of scope only covers satisfiable axioms. This has been a deliberate
choice. The question of what an appropriate definition of scope for an unsatisfiable
axiom might be is debatable. Arguably, a case could be made for saying that (i) an
unsatisfiable axiom talks about no profiles, that (i) an unsatisfiable axiom talks
about all profiles, and even that (iii) the concept of ‘talking about’ is not well-
defined for unsatisfiable axioms. Here we review each of these three options in turn.

(1) Empty scope: We might want to think of an axiom’s scope as an answer to
the following question: “For which profiles do we need to check the outcomes
returned by a voting rule to determine whether the rule satisfies the axiom?”
In this case, we would have to define the scope of an unsatisfiable axiom as the
empty set—meaning that such an axiom does not talk about any profiles—
as we can say with confidence before having inspected any outcomes that
whatever rule we are asked to check will not satisfy the axiom.

Observe that, if we extend Definition 5 in a mechanical way so as to cover also
unsatisfiable axioms, they will be declared as having empty scope, because
there exists no voting rule F' that satisfies axiom A when A is unsatisfiable.

(74) Full scope: But we might also want to think of an axioms’s scope as an
answer to this subtly different question: “For which profiles is the range of
acceptable outcomes returned by a voting rule (potentially) affected by the
need to satisfy the axiom?” Now we would have to define the scope of an
unsatisfiable axiom as the set of all profiles, as such an axiom rules out any
outcome for all profiles.

Observe that if we extend the alternative definition of scope provided by Propo-
sition 3 in a mechanical manner to also cover unsatisfiable axioms, then such
axioms will get declared as having full scope.

(17i) Ill-defined scope: The case for claiming that the concept of scope is ill-
defined for unsatisfiable axioms is grounded in the fact that all unsatisfiable
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axioms are logically equivalent to one another—and thus arguably should all
be talking about the same profiles. The argument goes as follows.

Consider what might be the simplest unsatisfiable axiom we can construct,
asking us to “select alternative a in profile R—and also not select a in R”.
When presented like this, the only natural choice for defining the axiom’s
scope seems to be to say that it talks about R and no other profiles. But
we can reformulate the axiom, without changing its extensional semantics,
to postulate that we should “select alternative a in profile R'—and also not
select a in R””. Now the only natural choice would be to say that the axiom
talks only about profile R, in direct contradiction to our earlier choice.

Of course, no axiom of practical interest will be unsatisfiable in its own right, so the
relevance of the question of how to settle the status of such axioms might not seem
relevant at first. But if we think of the conjunction of elementary axioms—such as
the conjunction of the axioms involved in the Gibbard-Satterthwaite Theorem—as
simply yet another axiom, then we sometimes will encounter unsatisfiable axioms
and thus might also want to discuss their scope.

We note that the other concepts introduced in this paper—extensional meaning,
strength, and dimensionality—are all well-defined for unsatisfiable axioms.
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