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Abstract

We study a model where a group of self-interested agents negotiate over a set of resources.

The agents believe that at the end of the negotiation phase a certain randomisation will

take place: either the bundles of resources the agents have accumulated will get reassigned

to other agents, or the valuation functions the agents use to assess the values of these

bundles will get reassigned, or both. The uncertainty as to which combination of valuation

function and bundle an agent will end up with will influence her negotiation strategy.

For certain types of uncertainty of this kind and for certain assumptions on the attitude

towards risk of the agents involved, it is possible to show that negotiation is guaranteed to

converge to an allocation with certain desirable properties, such as maximising egalitarian

or utilitarian social welfare. This model of distributed negotiation under uncertainty thus

provides a new perspective on theories of social welfare.

1 Introduction

A central idea in the study of distributive justice is that fair is what rational agents would

agree upon in the face of uncertainty (or ignorance) of their own identity. A first aspect of this

idea is that value judgments are “nonegoistic impersonal judgments of preference” (Harsanyi,

1953), and that ignorance of your particular position in society and of your particular personal

preferences “nullify the effects of specific contingencies which put men at odds and tempt
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them to exploit social and natural circumstances to their advantage” (Rawls, 1999, §24).

Therefore, such ignorance seems to provide sufficient conditions for the required nonegoistic

impersonal judgments. The second aspect of the idea is that agreement should come as

the outcome (as the equilibrium point) of a process in which “agreements [are] freely struck

between willing traders” who are “rational individuals with certain ends” and who are trying

to secure these ends “in view of their knowledge of the circumstances” (Rawls, 1999, §20).

Recent work in Computer Science, and more specifically in Multiagent Systems, has taken

up some of these ideas and tried to devise negotiation frameworks for autonomous software

agents that would allow such agents to reach socially desirable allocations of resources in

an interactive and distributed manner by means of negotiation, rather than by imposing

an optimal allocation computed by a benevolent dictator (Endriss et al., 2006; Chevaleyre

et al., 2010). This line of work has mostly been concerned with questions of a computational

nature: How can we design negotiation protocols that ensure convergence to an allocation

that is optimal according to our social welfare concept of choice? What can be said about

bounds on the length of negotiation processes before our objective is achieved? What is the

computational complexity of the reasoning tasks required from the agents along the way?

Here, instead, we propose to use this distributed negotiation framework to provide con-

crete “operational models” for thought experiments proposed to analyse what decisions ratio-

nal agents would make in an original position, under the veil of ignorance regarding their own

identities, similar to that put forward by Rawls or Harsanyi. Our aim is not to account for

some specific existing philosophical position, rather we would like to identify a simple negotia-

tion framework with uncertainty in which agents might or might not converge to allocation of

resources that can be deemed fair or efficient, according to standard welfare-theoretic notions.

Having a simple, concrete, and clearly defined procedure of negotiation allows us to study

the precise effect of a given set of assumptions regarding the model on the agreements the

agents will reach. The basic idea underlying our approach is this: assuming that the agents

believe that some randomisation of important parameters (such as the bundles of resources

they receive, or the valuation functions they use to assess those bundles) will take place, we

can say that some social welfare concept is grounded by a thought experiment based on some

theory of decision-making and some operational model, if in this model self-interested agents

acting according to the decision-making theory will converge to an allocation that maximises

this social welfare concept.

There are at least four basic ways of introducing uncertainty into negotiation:

(1) Agents are uncertain about the bundle of resources they will receive at the end of the

negotiation process.

(2) Agents are uncertain about the valuation function they will be assigned at the end
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of the negotiation process, and thus how much they will be able to benefit from the

resources they have accumulated.

(3) Agents are uncertain about the pair of bundle and valuation function that will be

assigned to them, but they do know that these are tied together, i.e., they will obtain

the pair held by one of the agents in the system at the end of the negotiation process.

In other words, agents are uncertain about their eventual identity.

(4) Agents are uncertain about both the bundle and the valuation function they will obtain,

and they expect these two parameters to be assigned independently from each other.

Conceptually speaking, these four options correspond to natural candidates for defining fair-

ness in terms of negotiation uncertainty. The first option corresponds to the idea that fair

is what agents would agree upon if they were to believe that you will randomise what they

eventually obtain. The second option corresponds to the idea that fair is what agents would

agree if they were uncertain about what their preferences would ultimately turn out to be.

The third and the fourth option are the two most basic forms of combining these two types

of uncertainty.

As we shall see, we get a tight connection between decision-making theories and theories

of social welfare when we randomise identities, i.e., pairs of bundles and valuation functions

tied together (the third option in our list above). In particular, we can account for the

intuition that agents that are interested in maximising their payoff in the worst case would

want to choose an allocation with maximal egalitarian social welfare (i.e., an allocation that

maximises the well-being of the worst-off agent). In our framework, we do not only see that

it will be in the interest of such agents to adopt an egalitarian solution, but we can show

that any sequence of deals in a process of rational negotiation will always converge to such

a solution. Similarly, we can account for an argument, similar to Harsanyi’s, that expected-

value maximisers should choose an allocation with maximal utilitarian social welfare (i.e.,

an allocation that maximises average utility), which in our framework also manifests itself

in a convergence result. This point does shed some light on the fact that the difference is

precisely located in the theory of decision-making that is being assumed.

As for the other three types of reassignment, namely to randomise only the bundles, only

the valuation functions, or to randomise both parameters, albeit independently from each

other, some of these scenarios turn out to lead to immediate termination of the negotiation

process, while others can lead to infinite sequences of deals. Also such “negative” results are

interesting. They show, for instance, that some notions that may appear to make intuitive

sense can turn out not to be helpful in practice. For instance, the idea of terminal allocation

(“what agents would agree upon”) might not even be well-defined, namely when we can

prove that negotiation will continue indefinietly. In other cases, when we can prove that
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no negotiation will take place at all, the content of the idea of terminal allocation will be

well-defined but also uninformative.

Some sceanrios, finally, do provide guarantees for convergence to allocations with at-

tractive properties, but only under somewhat restrictive assumptions, concerning either the

number of agents or the class of valuation functions that agents may hold. Results of this

kind suggest that a discussion of fairness in terms of uncertainty must pay close attention to

the precise parameters of the domain in which we are operating.

Our model of distributed negotiation under uncertainty is chiefly intended as a simple

“implementation” of the kinds of thought experiments in the spirit of those originally put

forward by Harsanyi and Rawls. Rather than showing that a certain theory of social welfare

would suit agents best under certain assumptions, we show how negotiation amongst rational

and self-interested agents does, under similar such assumptions, lead to an adoption of the

theory of social welfare in question. Beyond its interest as a pure thought experiment,

the specific case where only the bundles of resources get randomised also has some practical

interest, given that this kind of randomisation can actually be implemented in practice (while

randomising the agents’ valuation functions is hardly possible in the real world).

Paper overview. The remainder of the paper is organised as follows. Section 2 defines the

model we shall be working with. In particular, this involves defining the notion of rational

negotiation for different types of decision-makers. Section 3 recalls a number of results for

the perfect information case. We then present our results for a number of different settings.

Section 4 considers the case where only the resource bundles get randomised, but each agent

will keep her own valuation function. This kind of randomisation (unlike randomisation

involving valuations) can also be implemented in practice. Section 5 then briefly discusses

the (somewhat less interesting) case where only valuations get reassigned. Section 6 analyses

the case where agents are uncertain about what their final identity will be, but they do know

that bundles and valuation functions will stay paired the way they are, and that they will

each receive one of the identities (bundle/valuation-pair) present in society at the end of

the negotiation process. This turns out to be the scenario leading to the clearest alignment

between attitudes towards risk of individual decision makers and theories of social welfare.

Before concluding, Section 7 discusses the remaining case, where we announce to the agents

that we will reassign both valuations and bundles, but that we will perform each assignment

independently from the other.

The proofs of all the formal results stated in the text may be found in the appendix.
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2 The Model

In this section we define the model we shall be working with. It is based on a negotiation

framework that has been used to study the dynamics of resource allocation in multiagent

systems in the Artificial Intelligence literature (Endriss et al., 2006; Chevaleyre et al., 2010);

we enrich it here by introducing a notion of uncertainty over possible reassignments of resource

bundles and valuation functions.

2.1 Multiagent Resource Allocation

Let N be a finite set of agents and letR be a finite set of (indivisible) resources. An allocation

if a function α : R → N mapping each resource to an agent. The bundle (set of resources)

held by agent i ∈ N under allocation α is α−1(i) = {x ∈ R | α(x) = i}.
From an initial allocation, our agents can negotiate a sequence of deals regarding the

exchange of some of the resources in their position. A single deal may involve any number of

agents and any number of resources; formally, a deal δ = (α, α′) is simply a pair of (distinct)

allocations, describing the situation before and after the deal has taken place. We denote

the set of agents involved in the deal δ = (α, α′), i.e., the set of agents whose bundle changes

when we move from α to α′, as N δ = {i ∈ N | α−1(i) 6= α′−1(i)}.

2.2 Valuation Functions

Each agent i ∈ N is equipped with a valuation function vi : 2R → R mapping the bundles

she might receive to the reals. The preferences of agents will be based on these valuation

functions. Of special interest is the simple case in which valuation functions are additive,

i.e., in which there are no synergies between resources and agents can compute the value of

a bundle of resources simply by adding up the values of the individual items in that bundle.

Definition 1 (Additive valuations). A valuation function v : 2R → R is said to be additive

if v(B) =
∑

x∈B v({x}) for all bundles B ⊆ R.

Valuations declared over bundles of resources naturally extend to valuations over allocations:

we write vi(α) := vi(α
−1(i)) for the value agent i attaches to the bundle she would receive

under allocation α. That is, we make the assumption that there are no externalities; the

value an agent assigns to an allocation only depends on the set of resources she receives under

that allocation.

2.3 Social Welfare Criteria

To measure the quality of an allocation, we can employ a number of criteria from the welfare

economics and distributive justice literature. We focus on two criteria that can be formulated
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in terms of collective utility functions, egalitarianism and classical utilitarianism (Moulin,

1988; Sen, 1970).

Definition 2 (Utilitarianism). The utilitarian social welfare of an allocation α is defined as:

swu(α) =
∑
i∈N

vi(α)

Definition 3 (Egalitarianism). The egalitarian social welfare of an allocation α is defined as:

swe(α) = min
i∈N

vi(α)

Furthermore, we shall make use of the well-known criterion of Pareto efficiency.

Definition 4 (Pareto efficiency). An allocation α is Pareto efficient if there exists no other

allocation α′ such that vi(α
′) ≥ vi(α) for all i ∈ N and vi(α

′) > vi(α) for some i ∈ N .

2.4 Types of Decision-Makers

In this paper, we consider situations where both the bundles agents hold and the valuation

functions they use to rate these bundles may be randomised at the end of negotiation. That is,

each agent will receive a valuation function and a bundle from a finite set X ⊆ (2R → R)×2R

of “identities”, according to a lottery that is dependent on the final allocation of resources.

For example, in case we uniformly randomise bundles (but leave valuation functions intact),

the possible outcomes X for agent i will be the set of of all pairs, where the first element is

vi and the second element is a bundle allocated to one of the agents in the current allocation.

Definition 5 (Lotteries and allocation-dependent lotteries). Let X ⊆ (2R → R) × 2R be

a finite set of pairs of valuation functions and bundles. An 〈N , X〉-lottery ` ∈ ∆(XN ) is

a probability distributions over the set XN of all functions from the set of agents N to the

set of outcomes X. An allocation-dependent 〈N , X〉-lottery L : NR → ∆(XN ) is a mapping

from allocations to 〈N , X〉-lotteries.

That is, an allocation-dependent lottery L together with an allocation α determines a lottery

(probability distribution) over XN . We write Lα as a shorthand for L(α).

Given an agent’s valuation function, we cannot infer what that agent will prefer when it

comes to choosing between lotteries. Depending on their attitude towards risk, two agents

with the same valuation function may not pick the same lottery. In this paper, we will

always assume that agents are aware of the current allocation and thus of the probability

distribution that would be used if randomisation were to take place now. This assumption

will simplify the following definitions.

Given an 〈N , X〉-lottery `, we write `(i, v, B) :=
∑

f∈XN :f(i)=(v,B) `(f) for the probability

that agent i will be assigned valuation v and bundle B under `. We also write suppi(`) :=

{(v,B) ∈ X | `(i, v, B) > 0} for the set of support of ` from the point of view of agent i.
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Definition 6 (Expected valuation). Let ` be an 〈N , X〉-lottery. Then the expected valuation

of ` for agent i ∈ N is defined as follows:

vi(`) =
∑

(v,B)∈X

`(i, v, B) · v(B)

Definition 7 (Safety level). Let ` be an 〈N , X〉-lottery. Then the safety level of ` for

agent i ∈ N is defined as follows:

SLi(`) = min
(v,B)∈suppi(`)

v(B)

We are now ready to define the types of decision makers we shall consider. Fixing the type

of an agent amounts to fixing her preferences over alternative lotteries.

Definition 8 (Types of decision makers). The type of an agent determines her preferences

over alternative 〈N , X〉-lotteries:

(i) An agent i is called a minmaximiser (an MM-agent) if she weakly prefers lottery ` ∈
∆(XN ) to lottery `′ ∈ ∆(XN ) if and only if SLi(`) ≥ SLi(`

′).

(ii) An agent i is called a expected-valuation maximiser (an EVM-agent) if she weakly

prefers lottery ` ∈ ∆(XN ) to lottery `′ ∈ ∆(XN ) if and only if vi(`) ≥ vi(`′).

We furthermore say that an agent strictly prefers ` to `′ if she weakly prefers ` to `′, and not

vice versa.

2.5 Rational Negotiation

Negotiation takes place against the backdrop of an allocation-dependent lottery L. Whether

or not an agent is willing to propose a particular deal δ = (α, α′) and whether or not other

agents are willing to accept that deal depends on their preferences over Lα and Lα′ , the

lotteries induced by L and the allocations before and after δ. We say that such a deal is

rational if all of the agents involved weakly prefer the new lottery Lα′ over the old lottery

Lα and if at least one of them (say, the proposer) prefers it strictly.

Definition 9 (Rational deals). Given an allocation-dependent 〈N , X〉-lottery L, a deal δ =

(α, α′) is called rational if all involved agents i ∈ N δ weakly prefer Lα′ over Lα and some

involved agent j ∈ N δ strictly prefers Lα′ over Lα.

We assume that agents will only agree on deals that are rational in this sense. Therefore,

which deals are possible depends on L and on the types of the agents involved. It is important

to note that we are here assuming that agents are not strategising. The same kind of

analysis could in theory be carried out for agents that do strategise, but this would call for a
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drastically different (and more complex) game-theoretical framework, that would lead beyond

our original goal of devising a simple and intuitive implementation of thought experiments

that have been used to back up concepts of social welfare.

3 No Uncertainty: Negotiation in Multiagent Systems

We first consider the perfect information case, where no randomisation takes place. Here, Lα

assigns to each agent i her valuation function vi and her bundle α−1(i) with certainty. This is

the case that has been treated in previous work on negotiation in multiagent systems (Endriss

et al., 2006; Chevaleyre et al., 2010). Note that in this case, the safety level and the expected

valuation of a lottery will always coincide, so MM-agents and EVM-agents will behave in the

same manner, and we do not need to make this distinction here.

Much of the work in the multiagent systems literature has addressed scenarios where

agents can use monetary side payments when making deals. One such result shows that

rational negotiation with side payments will always converge in an allocation with maximal

utilitarian social welfare when agents have quasi-linear utility functions, composed of a val-

uation function as in our model here and a linear component representing money (Endriss

et al., 2006). Other results show that when the range of valuation function is restricted (e.g.,

to additive functions), then structurally simple deals can be sufficient to obtain the same

kind of convergence result (Chevaleyre et al., 2010).

For scenarios without money, i.e., the case we are interested in here, the known results

are weaker. One basic observation is the fact that any sequence of rational deals will always

converge to a Pareto efficient allocation. To see this, note that in the perfect information

case allocation-dependent lotteries reduce to plain allocations, and in that case Definition 9

simply expresses that a deal δ = (α, α′) is rational if and only if α′ constitutes a Pareto-

improvement over α. Thus, if we let agents negotiate rational deals until no more such deals

are possible, they must have necessarily arrived at a Pareto efficient allocation.

The only known result regarding converge to an allocation that maximises egalitarian

social welfare (Endriss et al., 2006), relies on a different (and arguably much less convincing)

rationality criterion than the one given in Definition 9. That is, to obtain strong convergence

results to allocations that are optimal according to criteria that are more demanding that

Pareto efficiency we either need to introduce a monetary component into our model or we

need to design new rationality criteria, which may not always be fully satisfactory. In this

paper, instead, we will show that introducing a level of uncertainty into the model can also

help us achieve such convergence results.

8



4 Reassigning Bundles

In the first scenario involving uncertainty that we shall consider the case where agents are

told that the bundles they have assembled will get reassigned at the end of the negotiation

process (but each agent keeps her own valuation function). Note that the composition of

the bundles will remain intact; only the ownership of those bundles will change (or rather,

the agents are made to believe that the ownership of bundles will change, as dictated by

the allocation-dependent lottery in place). We then assume that the agents will evaluate the

attractiveness of deals, and behave accordingly, believing that negotiation could stop and

randomisation take place at the very next moment.

Besides the case in which no randomisation at all is taking place, this is the only case

that can be implemented with real agents. It is therefore not only of theoretical, but also of

some practical interest.

It turns out that for this scenario we cannot usually expect that agents will negotiate a

socially optimal allocation, except in some very specific cases. In a nutshell, the reason is

that, as agents do not know which bundle they will end up owning, they have no incentive to

try and direct goods to those agents that will benefit the most from obtaining them. Rather,

their interest is to achieve an optimal “spread” of the goods amongst the agents, making the

worst bundle (in the case of MM-agents) or the average bundle (in the case of EVM-agents)

attractive to themselves.

4.1 MM-Agents

We first consider MM-agents. If the resources have the same value for all agents, then as long

as they all believe that they could receive any of the current bundles with non-zero probability

the negotiation process will converge to an allocation maximising egalitarian social welfare.

Proposition 1. Negotiation between MM-agents with the same valuation function who be-

lieve that they could receive any bundle currently allocated with non-zero probability will

always converge to an allocation that maximises egalitarian social welfare.

Now, if we drop this very strong assumption and allow agents to have different valuation

functions, then we will not be able to show convergence to an egalitarian allocation anymore.

Even for the case of negotiation between just two agents we are only able to establish termi-

nation of the process, but the terminal allocation need not have maximal egalitarian social

welfare, nor does it need to be Pareto efficient.

Proposition 2. Negotiation between two MM-agents believing that they could receive any

bundle currently allocated with non-zero probability will always terminate, but the final allo-

cation need not be Pareto efficient or have maximal egalitarian social welfare.
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If there are three or more agents involved, then we cannot even guarantee termination any

longer. Instead, the negotiation process might loop, i.e., there might be an infinite sequence

of deals that are rational for MM-agents.

Proposition 3. Negotiation between three or more MM-agents believing that they could re-

ceive any bundle currently allocated with non-zero probability need not terminate.

4.2 EVM-Agents

Next, we consider the scenario in which EVM-agents negotiate and each of them believes she

may receive any of the currently allocated bundles with the same probability. First, observe

that, in analogy to Proposition 1, it is not hard to see that in case all agents share the same

valuation function, then we will observe convergence to an allocation with maximal utilitarian

social welfare. We do not spell out the details here. Instead, consider the case of agents with

additive valuation functions. Interestingly, in this case no rational negotiation is possible,

in the sense that negotiation will terminate immediately. The reason is that, whatever the

initial allocation, no deal will be rational for our agents under such circumstances.

Proposition 4. Negotiation between EVM-agents with additive valuation functions believing

that they could receive any bundle currently allocated with equal probability will terminate

immediately.

5 Reassigning Valuations

The next option to consider would be to randomise the valuation function at the end of the

negotiation process, but to let the agents keep the resource bundles they have accumulated.

Like the remaining scenarios we shall consider later on, this scenario, clearly, is not one that

could actually be implemented in practice. While still potentially interesting as a thought

experiment from a conceptual point of view, it turns out that at the technical level not much

can be said about this particular scenario. Convergence to an allocation with attractive

properties will typically not be possible.

We only include one simple technical observation here. For EVM-agents with additive

valuations, we obtain a similar result as for the case in which we have only randomised bundles

(Proposition 4). In this case, the expected value of a resource is the same for each agent

(it is the average of the actual values each agent assigns to it), and thus, due to additivity,

all agents assign the same expected value to any given bundle. Therefore, negotiation must

terminate immediately, as for any deal, if one agent is strictly better off, at least one other

agent needs to be strictly worse off.
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Proposition 5. Negotiation between EVM-agents believing that they could receive any of the

valuation functions of the agents in society with equal probability will terminate immediately,

if those valuation functions are additive.

6 Reassigning Identities: Bundles and Valuations Together

In the setting we analyse next, agents are assumed to believe that their identities will be

randomised at the end of the negotiation process. By that we mean that they believe that

the current pairing of valuation functions and bundles will stay the same, but that they

might receive a different pair than the one they are currently holding. In short, bundles and

valuation functions are tied together. Naturally, this, again, has to be taken as a thought

experiment. One can randomise bundles, but the agents have to believe that their preferences

can also be randomised. If we do so, the connection works out in a mathematically neat way.

6.1 MM-Agents

Our first result for this setting shows that, if agents are in some sense maximally risk-averse

(in the sense that they care only about the worst possible outcome when evaluating a lottery)

and if they believe that their identities will be randomised (according to a lottery that is

positive everywhere), then the negotiation process will always end up with an allocation that

maximises egalitarian social welfare.

Proposition 6. Negotiation between MM-agents believing that they could receive any cur-

rent identity with non-zero probability will always converge to an allocation that maximises

egalitarian social welfare.

Proposition 6 establishes, for our specific mathematical framework, the kind of result we

would expect to see in view of Rawls’ veil-of-ignorance argument (Rawls, 1999). What our

result can offer on top of the well-understood link between risk averseness and egalitarianism

is a concrete implementation of this link, by providing a negotiation protocol that agents

can use to agree on a final allocation of resources in a sequence of small steps, each of which

could be initiated by anyone of them.

6.2 EVM-Agents

If agents that are only concerned with the expected value of the lottery engage in negotiation,

then they will eventually converge to an allocation that maximises utilitarian social welfare,

provided they think that the final randomisation will take place according to a uniform

probability distribution.
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Proposition 7. Negotiation between EVM-agents believing that they could receive any cur-

rent identity with equal probability will always converge to an allocation that maximises util-

itarian social welfare.

In the light of the work of Harsanyi (1953), this is the kind of link between expected-utility

maximisation and classical utilitarianism does not come as a surprise. What is interesting

about Proposition 7 is, again, that it offers a concrete implementation of this link in terms

of a simple negotiation framework.

Observe that if all valuations are additive, then Proposition 7 can be strengthened to show

that any sequence of rational deals involving only a single resource at a time will converge to

an allocation with maximal utilitarian social welfare. We omit a formal statement (and the

proof) of this simple result; technically it is closely related to analogous results on negotiation

in multiagent systems without uncertainty (Chevaleyre et al., 2010).

7 Reassigning Bundles and Valuations Independently

The last remaining case we shall discuss is the scenario where we randomise both valuations

and bundles, and where these two parameters are reassigned to the agents independently

from each other. This introduces so much uncertainty into the system that we cannot expect

agents to negotiate very attractive allocations. Indeed, for this scenario we have not been

able to obtain any results that would establish convergence to a socially optimal allocation,

even under strong restrictions on the valuation functions. However, it is possible to show, at

least, that the outcome of negotiation will not be worse than a randomly chosen allocation.

This is true for the utilitarian perspective and for EVM-agents.

Proposition 8. Negotiation between EVM-agents believing that bundles and valuation func-

tions will be reassigned independently according to uniform probability distributions will al-

ways converge to an allocation that has a utilitarian social welfare that is at least as high as

the expected utilitarian social welfare we obtain if we choose an allocation at random using a

uniform probability distribution over all possible allocations.

While this form of convergence is very weak, it still does show that negotiation will, at least

in expectation, have a positive effect.

8 Conclusion

We have argued that distributed negotiation under uncertainty can provide an attractive

model for analysing the connections between theories of individual decision making, on the

one hand, and theories of social welfare, on the other. We have borrowed a simple model of
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negotiation from the literature on multiagent systems in Computer Science, in which myopic

agents implement a series of exchanges of resources and accept an individual deal if and only

if it does not diminish their immediate payoff. The core of our proposal is to enrich this model

of negotiation with an element of uncertainty: the negotiating agents are made to believe

that negotiation could stop at any point in time, after which some relevant parameters will

get randomised, in a manner that is dependent on the allocation they have agreed upon. The

two parameters we have considered here are the bundle of resources held by each agent and

the valuation function used by each agent to evaluate those bundles. For each type of lottery,

which determines how the relevant parameters may change, we can analyse the incentives of

the agents in negotiation. If a particular set of assumptions on individual agent behaviour

(e.g., risk averseness) and on the nature of the lottery will cause agents to always negotiate an

allocation that is optimal according to a particular theory of social welfare, then, we argue,

this can serve as a justification for that theory of social welfare.

The insight that we can link theories of individual decision making and theories of social

welfare by introducing a certain degree of uncertainty is not new and goes back to the seminal

work of Harsanyi and Rawls. Our interest here has been in investigating to what extent we

can devise a concrete and simple implementation of this insight. Our model of negotiation

provides this implementation. Our model also allows us to precisely pinpoint which types of

uncertainty do and do not allow us to make the well-known connections between individual

decision making and social welfare.

We have considered four different scenarios, each making a different combination of pa-

rameters subject to uncertainty. In broad terms, our findings are as follows. If only bundles

get randomised, then negotiation will not usually converge to a socially attractive allocation;

the only exception is the case where risk-averse agents with identical valuation functions

engage in negotiation. If only valuation functions get randomised, then the situation is even

more bleak; we have not been able to identify positive results for this scenario. If, on the

other hand, bundles and valuations get reassigned in pairs, i.e., if we randomise identities,

then risk averse agents will negotiate allocations that are optimal in view of egalitarian social

welfare, while agents maximising their expected payoff will negotiate allocations that are op-

timal in view of utilitarian social welfare. Finally, if bundles and valuations get randomised

independently, then we can at least establish a weak form of convergence showing that under

these conditions, from an utilitarian point of view, negotiation between agents maximising

their expected payoff is superior to selecting an allocation at random.
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Appendix: Proofs

Proof of Proposition 1

We start by proving a lemma relating rationality and increases in social welfare:

Lemma 1. Suppose all agents have the same valuation function v? and let L be an allocation-

dependent 〈N , X〉-lottery with the property that, for any allocation α ∈ NR, Lα(i, v, B) > 0

if and only if v = v? and there exists an agent j ∈ N such that B = α−1(j). Then the

following two statements are equivalent:

(i) δ is a deal that is rational for MM-agents.

(ii) δ is a deal that increases egalitarian social welfare.

Proof. Under the assumptions stated in the lemma, the set of support of a lottery Lα from

the perspective of any agent i is suppi(Lα) = {(v?, α−1(j)) | j ∈ N}.
Now consider any rational deal δ = (α, α′). As all valuation functions are identical, this

is equivalent to saying that all agents strictly prefer the lottery Lα′ to the lottery Lα. This,

in turn is equivalent to min(v,B)∈suppi(Lα) v(B) < min(v,B)∈suppi(Lα′ ) v(B) for all i ∈ N . But

given our earlier remark about the set of support under the assumptions made here this is

the same as swe(α) < swe(α
′), so we are done.

Proposition 1 now follows easily:

14



Proof. By Lemma 1, every deal results in an increase in egalitarian social welfare. Thus,

after a finite number of rational deals, negotiation is bound to terminate.

Now, for the sake of contradiction, assume that the terminal allocation α does not max-

imise egalitarian social welfare. Then there is an allocation α′ such that swe(α
′) > swe(α).

But then Lemma 1 is again applicable and entails that the deal δ = (α, α′) must be rational

for MM-agents and thus possible, contradicting the assumption that α is terminal.

Proof of Proposition 2

Proof. We start by proving termination. For the sake of contradiction, assume the negotiation

process does not terminate. Since there are only finitely many allocations, this means that

there is a sequence of allocations α1 . . . αk . . . α1. But since there are only two agents, they

have to be involved in every deal and thus every new allocation has to be weakly preferable

to both of them and strictly preferable to one of them. This clearly is impossible.

A very simple example shows that the resulting allocation need not be either Pareto

efficient or have maximal egalitarian social welfare. Suppose agent 1 holds item a and agent 2

holds item b, agent 1 prefers b to a and agent 2 prefers a to b (and further suppose both

agents places no value on the empty bundle, so any allocation giving all items to just one

agent is clearly unattractive). Then the agents do not have an incentive to swap the items

they hold (since they believe that bundles will be randomised, they are indifferent between

the two allocations), but the actual allocation is neither Pareto efficient nor does it maximise

egalitarian social welfare.

Proof of Proposition 3

Proof. We give an example for a negotiation scenario with three MM-agents and four re-

sources {a, b, c, d} that permits an infinite sequence of rational deals. For simplicity we write

a for {a} and ab for {a, b} etc. Suppose that all agents have strictly monotonic valuation

functions (getting more resources is better) and that, as far as singletons are concerned, their

valuation functions satisfy the following constraints:

• v1(c) < v1(b) < v1(d)

• v2(d) < v2(c) < v2(b)

• v3(b) < v3(d) < v3(c)

Then the following sequence of deals will be rational:
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α1 α2 α3 α4 = α1 · · ·
Agent 1: ab b b ab · · ·
Agent 2: c ac c c · · ·
Agent 3: d d ad d · · ·

To see this, recall that only the (two) agents involved in a deal need to agree with that deal

and that for MM-agents who believe that bundles will get randomised only the value of the

least desirable bundle held by any agent is relevant. So, for instance, only agents 1 and 2 are

involved in the deal from allocation α1 to allocation α2, agent 2 is indifferent between the

two allocations (the worst bundle, d, does not change), and agent 1 believes that b is more

valuable than c, i.e., the worst bundle is improved by the deal.

Proof of Proposition 5

The idea of the proof is that, since agents are all evaluating according to the same “meta-

valuation” and since there are no complementarity effects, there can be no win-win trade.

Proof. Given our assumptions, the expected value an agent i places on an allocation α is
1
|N |
∑

j∈N vj(α
−1(i)). This is the average value (over the valuation functions of all the agents

in the system) given to the bundle she obtains in allocation α.

Now, let α be the initial allocation. For the sake of contradiction, assume there exists

another allocation β such that the deal δ = (α, β) is rational. That is, one agent strictly

prefers β over α and all others weakly prefer it. Thus:∑
i∈N

1

|N |
∑
j∈N

vj(α
−1(i)) <

∑
i∈N

1

|N |
∑
j∈N

vj(β
−1(i))

For a bundle of resources B and a resource r, let B(r) = 1 if r ∈ B and B(r) = 0 otherwise.

Now, by virtue of the additivity of the valuation functions, we can rewrite above inequality

as follows:∑
i∈N

1

|N |
∑
j∈N

∑
r∈R

α−1(i)(r) · vj({r}) <
∑
i∈N

1

|N |
∑
j∈N

∑
r∈R

β−1(i)(r) · vj({r})

This can be simplified to yield:∑
i∈N

∑
j∈N

∑
r∈R

[α−1(i)(r)− β−1(i)(r)] · vj({r}) < 0

∑
j∈N

∑
r∈R

(∑
i∈N

[α−1(i)(r)− β−1(i)(r)]

)
· vj({r}) < 0
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But the term in the large pair of parentheses must be equal to 0, because any resource r

will occur in exactly one bundle belonging to any given allocation α or β. Thus, we have

obtained a contradiction.

Proof of Proposition 6

We start by proving the following lemma:

Lemma 2. Suppose L is an allocation-dependent 〈N , X〉-lottery with the property that, for

any allocation α ∈ NR, Lα(i, v, B) > 0 if and only if there exists an agent j ∈ N such that

v = vj and B = α−1(j). Then the following two statements are equivalent:

(i) δ is a deal that is rational for MM-agents.

(ii) δ is a deal that increases egalitarian social welfare.

Proof. We first show that (i) implies (ii). Assume that δ = (α, α′) is rational for MM-agents.

Then, by Definitions 8 and 9, there exists an agent j ∈ N δ such that the following holds:

SLj(Lα′) > SLj(Lα)

By Definition 7, this entails:

min
(v,B)∈suppj(Lα′ )

v(B) > min
(v,B)∈suppj(Lα)

v(B)

By definition of set of support for a lottery, together with our assumption that precisely the

identities (v,B) that can be found amongst the agents under the current allocation are those

that have non-zero probability, this in turn entails:

min
i∈N

vi(α
′) > min

i∈N
vi(α)

Note that, due to the randomisation of identities, we were able to draw this conclusion

concerning all agents i ∈ N from the first inequality above concerning only one agent j. By

Definition 3, this last inequality is equivalent to swe(α
′) > swe(α), so we are done.

For the other direction, observe that all of the above steps can be reversed. That is, from

swe(α
′) > swe(α), we can infer SLj(Lα′) > SLj(Lα) for all agents j (including all involved

agents). Thus, δ = (α, α′) must be rational whenever α′ is an improvement over α in terms

of egalitarian social welfare.

We are now ready to prove Proposition 6:

Proof. The proof parallels that of Proposition 1, using Lemma 2 in place of Lemma 1.
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Proof of Proposition 7

We again start by proving a lemma relating rationality of deals to increases in social welfare:

Lemma 3. Suppose L is an allocation-dependent 〈N , X〉-lottery with the property that, for

any allocation α ∈ NR, Lα(i, v, B) =
|{j∈N | v=vj and B=α−1(j)}|

|N | . Then the following two

statements are equivalent:

(i) δ is a deal that is rational for EVM-agents.

(ii) δ is a deal that increases utilitarian social welfare.

Proof. We first show that (i) implies (ii). The proof is similar to the proof of Lemma 2.

Assume that δ = (α, α′) is rational for EVM-agents. Then there exists an agent j ∈ N δ such

that the following is true:

vj(Lα′) > vj(Lα)∑
(v,B)∈X

Lα′(j, v, B) · v(B) >
∑

(v,B)∈X

Lα(j, v, B) · v(B)

∑
(v,B)∈X

|{i∈N | v=vi and B=α′−1(i)}|
|N | · v(B) >

∑
(v,B)∈X

|{i∈N | v=vi and B=α−1(i)}|
|N | · v(B)

∑
i∈N

1
|N | · vi(α

′) >
∑
i∈N

1
|N | · vi(α)∑

i∈N
vi(α

′) >
∑
i∈N

vi(α)

swu(α′) > swu(α)

Note, again, that we are moving from a statement about an individual agent to a statement

about society as a whole. This is possible, because all agents evaluate the decision in the

exact same way. Note also how we have made use of the assumption that the probability

distribution over identities is uniform (leading to the term 1
|N | on both sides of the inequality,

which we were then able to eliminate).

The other direction is similar: above transformation can be applied from the bottom to

the top; so from swu(α′) > swu(α) we can infer that vj(Lα′) > vj(Lα) for all agents, i.e.,

δ = (α, α′) will certainly be rational for a society of EVM-agents.

Proposition 7 now follows easily:

Proof. The proof parallels that of Proposition 1, using Lemma 3 in place of Lemma 1. (Note

that requiring Lα(i, v, B) =
|{j∈N | v=vj and B=α−1(j)}|

|N | is just another way of saying that all

agents assign equal probability to being assigned any of the current identities.)
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Proof of Proposition 8

Proof. We start by observing that negotiation will always terminate when agents believe that

bundles and valuation functions will be independently randomised using a uniform probability

distribution. The argument is as follows. As valuations are assume to be randomised, each

agent will evaluate any situation according to the same expected valuation function. And

as bundles are assumed to be randomised, each agent will be only be interested in the

partitioning of the goods into subsets, but not in who receives which bundle. Thus, with

each deal the partitioning must change and improve strictly according to all agents, which is

a process that is bound to terminate.

Hence, there exists a (at least one) terminal allocation. We want to prove that the

following inequality holds for any terminal allocation α?:

1

|N ||R|
·
∑
α∈NR

∑
i∈N

vi(α
−1(i)) ≤

∑
i∈N

vi(α
?−1(i))

The righthand side of this inequality is the utilitarian social welfare of allocation α?. The

lefthand side is the average utilitarian social welfare over all possible allocations α. in other

words, if we pick an allocation at random, using a uniform probability distribution, then this

will the the expected utilitarian social welfare.

Let Perm(N ) be the set of all permutations σ : N → N .

We shall derive above inequality starting from the following fact, which holds for any

terminal allocation α? and any arbitrary allocation α:

1

|N |!
·

∑
σ∈Perm(N )

1

|N |
·
∑
i∈N

vi(α
−1(σ(i))) ≤ 1

|N |!
·

∑
σ∈Perm(N )

1

|N |
·
∑
i∈N

vi(α
?−1(σ(i)))

To see that this is true, observe that the lefthand side of the inequality represents the expected

valuation for any one of the agents (recall that they all have the same expected valuation

function) for allocation α, given that they believe that any pair of valuation function and

bundle is equally likely to be matched up (averaging over |N |! possible matchings) and that

they are equally likely to receive any of the resulting identities (averaging over |N | identities).

The righthand side is the corresponding value for α?. By virtue of α? being terminal, the

agents do not want to move from α? to α, i.e., the righthand value must be at least as great

as the value on the left.

As above inequality holds for any allocation α, we can add up the corresponding |N ||R|

inequalities to obtain the following new inequality (after first having multiplied both sides

with |N | to eliminate the factor 1
|N |):∑

α∈NR

1

|N |!
·

∑
σ∈Perm(N )

∑
i∈N

vi(α
−1(σ(i))) ≤ |N ||R|

|N |!
·

∑
σ∈Perm(N )

·
∑
i∈N

vi(α
?−1(σ(i)))
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Next, observe that if we compose a permutation σ ∈ Perm(N ) and an allocation α−1, then

we obtain another allocation β−1 = σ ◦α−1. Furthermore, given an allocation β−1, for every

permutation σ there is a different allocation α−1 such that β−1 = σ ◦ α−1. Thus:

#{(σ, α) ∈ Perm(N )×NR | σ ◦ α−1 = β−1} = |N |!

That is, when in above inequality we are ranging over all allocations of the form σ ◦ α−1

for all allocations α−1 and all permutations σ, we are in fact ranging |N |! times over each

and every possible allocation. This insight allows us to eliminate σ from the lefthand side of

above inequality and to rewrite it as follows:

∑
α∈NR

∑
i∈N

vi(α
−1(i)) ≤ |N ||R|

|N |!
·

∑
σ∈Perm(N )

∑
i∈N

vi(α
?−1(σ(i)))

Now observe that the set of terminal allocations is closed under permutations. This is, again,

because agents are only interested in the partitioning of the goods, not how the resulting

bundles are assigned to agents. Therefore, relying on the fact that above inequality holds for

any terminal allocation α?, we can make the same kind of simplification also on the righthand

side, and we obtain the desired inequality (again for any terminal allocation α?):

1

|N ||R|
·
∑
α∈NR

∑
i∈N

vi(α
−1(i)) ≤

∑
i∈N

vi(α
?−1(i))

This concludes the proof. We have shown that the expected utilitarian social welfare of an

allocation chosen at random (using a uniform probability distribution over all allocations)

cannot be higher than the utilitarian social welfare of any allocation we might reach by

allowing agents to negotiate.
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