Arguing about Voting Rules

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

[joint work with Olivier Cailloux]
Talk Outline

Paper and talk focus on the problem of *justifying an election outcome* by means of a sequence of simple arguments:

- example of what a future system might be able to do
- logic for expressing arbitrary arguments about voting rules
- algorithm for justifying Borda outcomes
Example

Not always obvious who should win. For example, for the profile below the *Veto* rule recommends b, while the *Borda* rule recommends a:

| Voter 1: $a \succ b \succ c$ |
| Voter 2: $a \succ b \succ c$ |
| Voter 3: $c \succ b \succ a$ |

Suppose you want to convince a user that a should win . . .
Voter 1: $a \succ b \succ c$
Voter 2: $a \succ b \succ c$
Voter 3: $c \succ b \succ a$

System: Take the *red subprofile*. Here, *a should win*, right? [unanimity]

User: Obviously!

System: Now consider the *green subprofile*. For symmetry reasons, there should be a *three-way tie*, right? [cancellation]

User: Sounds reasonable.

System: So, as there was a three-way tie for the green part, the red part should decide the overall winner, right? [reinforcement]

User: Yes.

System: To summarise, you agree that *a should win*. }

Ulle Endriss
Voting Theory for Variable Electorates

Basic ingredients:

- \mathcal{A}: finite set of *alternatives*
- $\mathcal{L}(\mathcal{A})$: linear orders (*preferences*) on \mathcal{A}
- \mathcal{N}: infinite set of potential *voters*

A *profile* is a partial function $\mathcal{R} : \mathcal{N} \rightarrow \mathcal{L}(\mathcal{A})$ (pref’s of some voters).

A *voting rule* f maps any given profile \mathcal{R} to a nonempty set $\mathcal{A} \subseteq \mathcal{A}$.
The Logic

Propositional language over atoms \([R \mapsto A]\), one for each profile \(R\) and each nonempty set \(A\) of alternatives, interpreted on voting rules \(f\):

\[f \models [R \mapsto A] \iff f(R) = A \]

Can express anything about voting rules, albeit in a brute force fashion.

For example, the reinforcement axiom can be written as the set of all the following formulas with \(\text{dom}(R) \cap \text{dom}(R') = \emptyset\) and \(A \cap A' \neq \emptyset\):

\[[R \mapsto A] \land [R' \mapsto A'] \rightarrow [R \oplus R' \mapsto A \cap A'] \]
Justifying Election Outcomes

Write $\Delta \models \varphi$ to say that every voting rule f that satisfies all the formulas in Δ also satisfies φ. For example:

- Δ might be a set of intuitively appealing properties (axioms)
- φ might be a claim about a specific outcome, such as $[R \mapsto f(R)]$

Theorem 1 (Completeness) $\Delta \models \varphi$ in our logic iff $\Delta \cup \text{FUNC} \vdash \varphi$ in classical propositional logic, where:

$$\text{FUNC} = \bigcup_{R} \left\{ \bigvee_{A} [R \mapsto A] \right\} \cup \bigcup_{R} \bigcup_{A \neq A'} \left\{ [R \mapsto A] \land [R \mapsto A'] \rightarrow \bot \right\}$$

Thus, we can prove claims φ about voting rules given assumptions Δ using, say, natural deduction. At least in theory.

In practice, Δ will usually be huge and deciding \vdash is coNP-complete.
Justifying Borda Outcomes in Practice

Main technical contribution of the paper is an algorithm to compute, for any profile R, a proof for $[R \mapsto \text{Borda}(R)]$ from some axioms.

Main axioms used are:

- **Reinforcement**: $[R \mapsto A] \land [R' \mapsto A'] \rightarrow [R \oplus R' \mapsto A \cap A']$
- **Cancellation**: if all majority contests are tied, everyone wins

Main trick is to build a profile R' with (i) “obvious” winners $f(R)$ and (ii) same weighted majority graph as kR. Claim then follows:

$$kR \oplus \overline{kR} \oplus R'$$

Profile R' is built using Reinforcement on basic profiles such as:

\[
\begin{align*}
\left[\begin{array}{c}
a \succ b \succ c \succ d \\
b \succ a \succ d \succ c
\end{array} \right] & \mapsto \{a, b\} \\
\left[\begin{array}{c}
a \succ b \succ c \succ d \\
d \succ a \succ b \succ c \\
c \succ d \succ a \succ b \\
b \succ c \succ d \succ a
\end{array} \right] & \mapsto \{a, b, c, d\}
\end{align*}
\]
Last Slide

We have seen:

- logic for describing example-based properties of voting rules
- can be used to justify outcomes (in theory very general)
- concrete algorithm to compute short justifications for Borda

Long-term agenda: arguing about voting rules, beyond justification