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Preference Aggregation

Individual 1: 4 � # � �
Individual 2: � � 4 � #

Individual 3: # � � � 4

?
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Judgment Aggregation

p p→ q q

Judge 1: True True True

Judge 2: True False False

Judge 3: False True False

?
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Multiple Referenda

fund museum? fund school? fund metro?

Voter 1: Yes Yes No

Voter 2: Yes No Yes

Voter 3: No Yes Yes

?[
Constraint: we have money for at most two projects

]
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General Perspective

The last example is arguably the clearest. We can rephrase many

aggregation problems as problems of binary aggregation:

• Do you rank option 4 above option #? Yes/No

• Do you believe formula “p→ q” is true? Yes/No

• Do you want the new school to get funded? Yes/No

Each problem domain comes with its own integrity constraints:

• Rankings should be transitive and not have any cycles.

• The accepted set of formulas should be logically consistent.

• We should fund at most two projects.

The paradoxes we have seen show that the majority rule does not lift

our integrity constraints from the individual to the collective level.
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Talk Outline

• Framework: binary aggregation with integrity constraints

• Focus on language used to express IC (; feasible outcomes)

• Idea: characterise aggregators via langauge of IC’s it can lift

• Applications of that idea
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The Model

Basic terminology and notation:

• Finite set of issues I = {1, . . . ,m}, defining a boolean

combinatorial domain D = D1 × · · · ×Dm, with Di = {0, 1}.

• Each of a finite set of individuals N = {1, . . . , n} votes by

supplying a ballot Bi ∈ D. ; profile B = (B1, . . . , Bn) ∈ DN

• A binary aggregator is a function F : DN → D.

We can define axioms in the usual manner, possibly restricting their

scope to some (feasible) subdomain X ⊆ D. Example:

• F is unanimous on X ⊆ D, if for any (B1, . . . , Bn) ∈ XN and any

x ∈ {0, 1}, if bi,j = x for all i ∈ N , then F (B1, . . . , Bn)j = x.
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Integrity Constraints

Rather than defining the subdomain X ⊆ D extensionally, we want to

give an intentional characterisation, by means of integrity constraints.

• Introduce a propositional variable pi for each issue i ∈ I and

consider the propositional language LPS over PS = {p1, . . . , pm}
(closed under ¬, ∧, ∨, →, ↔).

• Any given integrity constraint (formula) IC ∈ LPS defines a

domain of aggregation X = Mod(IC) := {B ∈ D | B |= IC}.

• Ballots are models (truth assignments) for formulas in LPS.

Call ballot B ∈ D rational wrt. IC ∈ LPS if B |= IC.

Recall the three-project example:

IC = ¬(p1 ∧ p2 ∧ p3) = “we cannot afford all three projects”

Voter 1: B1 = (1, 1, 0) ; B1 |= IC (rational)

Majority: M = (1, 1, 1) ; M 6|= IC (irrational)
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What’s a paradox?

As a first application, we can give a generic definition of “paradox”:

A paradox is a triple (F,B, IC) consisting of an aggre-

gator F , a profile B, and an integrity constraint IC such

that Bi |= IC for all i ∈ N but F (B) 6|= IC.

Examples:

• Preference aggregation:

– pab ↔ ¬pba for all a 6= b and ¬paa for all a

– pab ∧ pbc → pac for all a, b, c

• Judgment aggregation:

– pϕ ∨ pϕ̄ for all complementary ϕ, ϕ̄

– ¬
∧

ϕ∈S pϕ for all minimally inconsistent sets S ⊆ Agenda
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Collective Rationality wrt. a Language

Collective rationality wrt. an integrity constraint:

• An aggregator F is collectively rational wrt. IC ∈ LPS if Bi |= IC

for all i ∈ N implies F (B1, . . . , Bn) |= IC (F can “lift” IC).

• Thus: F is CR wrt. IC ⇔ 6 ∃B s.t. (F,B, IC) is a paradox

Now consider a language L ⊆ LPS of integrity constraints, e.g.,

• the language of cubes (conjunctions of literals),

• the language of clauses of length 6 2, etc.

Collective rationality wrt. a language:

• An aggregator F is collectively rational wrt. L ⊆ LPS if F is

collectively rational wrt. every IC ∈ L.
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Template for Results

Two ways of defining classes of aggregators:

• The class of aggregators that lift all integrity constraints in L:

CR[L] := {F : DN → D | F is collectively rational wrt. L}

• The class of aggregators defined by a given list of axioms AX:

FL[AX] := {F : DN → D | F satisfies AX on all L-domains}

What we want:

CR[L] = FL[AX]
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Example for a Characterisation Result

Cubes (= conjunctions of literals) are lifted by an aggregator iff that

aggregator satisfies unanimity :

CR[cubes] = Fcubes[Unanimity]
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More Results

Characterisation results:

• CR[p↔ q] = F↔[Issue-Neutrality]

• CR[p xor q] = Fxor[Domain-Neutrality]

Negative results:

• there exists no language L such that CR[L] = F [Anonymity]

• there exists no language L such that CR[L] = F [Independence]

Characterisation within a noncharacterisable class:

• CR[k-pclauses] ∩QR = QR[
∑

qi < n + k] ∪QR[
∏

qi = 0]

↑
quoata rules
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Application: Preference Aggregation

Call a preference aggregator imposed if there exist x and y such that

x is collectively preferred to y in every profile. A theorem:

Any anonymous, independent and monotonic preference

aggregator for > 3 alternatives and > 2 individuals is imposed.

Proof:

• Adapt Dietrich-List result on quota rules in JA to show that any

A-I-M aggregator must be a quota rule.

• IC’s for preference aggregation entail two 3-clauses:

pba ∨ pcb ∨ pac pab ∨ pbc ∨ pca

• Apply our lifting theorem to derive a constraint on the quotas:∑
qi < n + 3 or

∏
qi = 0 [⇔ imposed]

• Rewriting of LHS (and pxy + pyx = n + 1) yields contradiction. X
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Application: Good Binary Aggregators

Is there an aggregator that will lift every integrity constraint? Yes!

F will lift every IC ∈ LPS iff F is a generalised dictatorship,

i.e., iff there exists a function g : DN → N such that always

F (B1, . . . , Bn) = Bg(B1,...,Bn).

The class of generalised dictatorships includes:

• proper dictatorships Fi : (B1, . . . , Bn) 7→ Bi for each i ∈ N

• distance-based generalised dictatorships mapping (B1, . . . , Bn)

to that Bi that minimises the sum of the Hamming distances to

the others (+ tie-breaking). An attractive procedure!
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Last Slide

Binary aggregation with integrity constraints:

• language to express rationality assumptions in binary aggregation

• concept of collective rationality with respect to a language

• characterisation results, relating axioms and languages

• applications: preference + judgment aggregation, good procedures

U. Grandi and U. Endriss. Lifting Rationality Assumptions in Binary Aggregation.
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