
Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Weighted Propositional Formulas for Cardinal
Preference Modelling

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

 joint work with Jérôme Lang (IRIT, Toulouse) and

Yann Chevaleyre (LAMSADE, Paris-Dauphine)

Ulle Endriss (ulle@illc.uva.nl) 1

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

(My) Background

I’m interested in Multiagent Resource Allocation (MARA) scenarios:

• A finite number of agents negotiate over a finite number of

indivisible resources. Allocations evolve as agents agree on a

sequence of deals. Agents act locally and are driven by their own

interests. As system designers, we are interested in the quality of

allocations from a social point of view.

There are a number of interesting questions that arise in this context:

• What are appropriate measures of social welfare? Under what

circumstances can we guarantee convergence to a social optimum?

• What is the computational complexity of negotiation? How about

communication complexity?

• What are appropriate languages for representing the preferences of

agents over alternative bundles of resources?

Ulle Endriss (ulle@illc.uva.nl) 2

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

This Talk

What are appropriate languages for representing preferences in

combinatorial domains? Can logic help?

Talk Overview

• Problem: Utility Functions in Combinatorial Domains

• Languages for Representing Utility Functions:

– “Classical” Utility Functions

– Weighted Propositional Formulas

• Expressive Power and Correspondence Results

• Comparative Succinctness

• Complexity Issues

• Conclusion and Future Work

Ulle Endriss (ulle@illc.uva.nl) 3

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Utility Functions in Combinatorial Domains

Let X be a finite set. A utility function over the domain X is a

mapping from X to the reals:

u : X → R

Simply listing the utilities for every element of X is only feasible if X

is reasonably small.

This is not the case if X has a combinatorial structure, as in resource

allocation, multi-criteria decision making, elections of committees, . . .

• Resource allocation: set R of resources ⇒ set 2R of bundles

• General: set PS of propositional symbols ⇒ set 2PS of models

Fortunately, actual utility functions often exhibit some sort of

structure, and a suitable preference representation language might be

able to capture that structure in a concise manner.

Ulle Endriss (ulle@illc.uva.nl) 4

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Classes of Utility Functions

A utility function is a mapping u : 2PS → R.

• u is normalised iff u({ }) = 0.

• u is non-negative iff u(X) ≥ 0.

• u is monotonic iff u(X) ≤ u(Y) whenever X ⊆ Y .

• u is modular iff u(X ∪ Y) = u(X) + u(Y)− u(X ∩ Y).

• u is concave iff u(X ∪ Y)− u(Y) ≤ u(X ∪ Z)− u(Z) for Y ⊇ Z.

• Let PS (k) = {S ⊆ PS |#S ≤ k}. u is k-additive iff there exists

another mapping u′ : PS (k) → R such that (for all X):

u(X) =
∑

{u′(Y) | Y ⊆ X and Y ∈ PS (k)}

Also of interest: subadditive, superadditive, convex, . . .

Ulle Endriss (ulle@illc.uva.nl) 5

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Why k-additive Functions?

The idea comes from fuzzy measure theory (Grabisch and others).

Now also used in negotiation and combinatorial auctions.

Again, u is k-additive iff there exists a u′ : PS (k) → R such that:

u(X) =
∑

{u′(Y) | Y ⊆ X and Y ∈ PS (k)}

In the context of resource allocation, the value u′(Y) can be seen as

the additional benefit incurred from owning the items in Y together ,

i.e. beyond the benefit of owning all proper subsets.

Example: u = 4.p+ 7.q − 2.p.q + 2.q.r is a 2-additive function

The k-additive form allows for a parametrisation of synergetic effects:

• 1-additive = modular (no synergies)

• |PS |-additive = general (any kind of synergies)

• . . . and everything in between

Ulle Endriss (ulle@illc.uva.nl) 6

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Weighted Propositional Formulas

An alternative approach to preference representation is based on

weighted propositional formulas . . .

A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a

consistent propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all M ∈ 2PS . G is called the generator of uG.

We shall be interested in the following question:

• Are there simple restrictions on goal bases such that the utility

functions they generate enjoy simple structural properties?

Ulle Endriss (ulle@illc.uva.nl) 7

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Restrictions

Let H ⊆ LPS be a restriction on the set of propositional formulas and

let H ′ ⊆ R be a restriction on the set of weights allowed.

Regarding formulas, we consider the following restrictions:

• A positive formula is a formula with no occurrence of ¬; a strictly

positive formula is a positive formula that is not a tautology.

• A clause is a (possibly empty) disjunction of literals; a k-clause is

a clause of length ≤ k.

• A cube is a (possibly empty) conjunction of literals; a k-cube is a

cube of length ≤ k.

• A k-formula is a formula ϕ with at most k propositional symbols.

Regarding weights, we consider only the restriction to positive reals.

Given two restrictions H and H ′, let U(H,H’) be the class of utility

functions that can be generated from goal bases conforming to the

restrictions H and H ′.

Ulle Endriss (ulle@illc.uva.nl) 8

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Basic Results

Proposition 1 U(positive k-cubes, all) is equal to the class of

k-additive utility functions.

Proof: Goals (p1 ∧ · · · ∧ pk, α) directly correspond to the auxiliary

utility function u′ : {p1, . . . , pk} 7→ α . . . 2

Proposition 2 The following are also all equal to the class of

k-additive utility functions: U(k-cubes, all), U(k-clauses, all),
U(positive k-formulas, all) and U(k-formulas, all).

Proof: Use equivalence-preserving transformations of goal bases such

as G ∪ {(ϕ ∧ ¬ψ, α)} ≡ G ∪ {(ϕ, α), (ϕ ∧ ψ,−α)}. 2

Proposition 3 U(positive k-clauses, all) is equal to the class of

normalised k-additive utility functions.

Proof: (>, α) cannot be rewritten as a positive clause . . . 2

Ulle Endriss (ulle@illc.uva.nl) 9

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Monotonic Utility

Proposition 4 U(strictly positive, positive) is equal to the class of

normalised monotonic utility functions.

Proof: A bit complicated. The easy part is to show that any function

generated by positive formulas with positive weights is monotonic and

that strictly positive formulas generate normalised functions.

For the converse, we need to show that we can construct a goal base

belonging to U(strictly positive, positive) for any given normalised

monotonic utility function . . . 2

Example: Take the normalised monotonic function u with u({p1}) = 2,

u({p2}) = 5 and u({p1, p2}) = 6. We obtain the following goal base:

G = {(p1 ∨ p2, 2), (p2, 3), (p1 ∧ p2, 1)}

Ulle Endriss (ulle@illc.uva.nl) 10

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Overview of Correspondence Results

Formulas Weights Utility Functions

cubes/clauses/all general = all

positive cubes/formulas general = all

positive clauses general = normalised

strictly positive formulas general = normalised

k-cubes/clauses/formulas general = k-additive

positive k-cubes/formulas general = k-additive

positive k-clauses general = normalised k-additive

literals general = modular

atoms general = normalised modular

cubes/formulas positive = non-negative

clauses positive ⊂ non-negative

strictly positive formulas positive = normalised monotonic

positive clauses positive ⊆ normalised concave monotonic

Ulle Endriss (ulle@illc.uva.nl) 11

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Comparative Succinctness

If two languages can express the same class of utility functions, which

should we use? An important criterion is succinctness.

Let L and L′ be two sets of goal bases. We say that L′ is at least as

succinct as L, denoted by L � L′, iff there exist a mapping

f : L→ L′ and a polynomial function p such that:

• G ≡ f(G) for all G ∈ L (they generate the same functions); and

• size(f(G)) ≤ p(size(G)) for all G ∈ L (polysize reduction).

Write L ≺ L′ (strictly less succinct) iff L � L′ but not L′ � L.

Two languages can also be incomparable with respect to succinctness.

Ulle Endriss (ulle@illc.uva.nl) 12

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

An Incomparability Result

Let n-cubes ⊆ LPS be the restriction to cubes of length n = |PS |,
containing either p or ¬p for every p ∈ PS .

Fact: U(n-cubes, all) is equal to the class of all utility functions (and

corresponds to the standard “bundle form” of writing utility functions).

Proposition 5 U(n-cubes, all) and U(positive cubes, all) are

incomparable (in view of their succinctness).

Proof: The following two functions can be used to prove the mutual

lack of a polysize reduction:

• u1(M) = |M | can be generated by a goal base of just n positive

cubes of length 1, but we require 2n−1 n-cubes to generate u1.

• The function u2, with u2(M) = 1 for |M | = 1 and u2(M) = 0
otherwise, can be generated by a goal base of n n-cubes, but we

require 2n−1 positive cubes to generate u2. 2

Ulle Endriss (ulle@illc.uva.nl) 13

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

The Efficiency of Negation

Recall that both U(positive cubes, all) and U(cubes, all) are equal to

the class of all utility functions. So which should we use?

Proposition 6 U(positive cubes, all) ≺ U(cubes, all). [“less succinct”]

Proof: Clearly, U(positive cubes, all) � U(cubes, all), because any

positive cube is also a cube.

Now consider u with u({ }) = 1 and u(M) = 0 for all M 6= { }:

• G = {(¬p1 ∧ · · · ∧ ¬pn, 1)} ∈ U(cubes, all) has linear size and

generates u.

• G′ = {(
∧
X, (−1)|X|) | X ⊆ PS} ∈ U(positive cubes, all) has

exponential size and also generates u.

On the other hand, the generator of u must be unique if only

positive cubes are allowed (start with (>, 1) ∈ Gu . . .). 2

Ulle Endriss (ulle@illc.uva.nl) 14

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Complexity

Other interesting questions concern the complexity of reasoning about

preferences. Consider the following decision problem:

Max-Utility(H,H’)
Given: Goal base G ∈ U(H,H’) and K ∈ Z
Question: Is there an M ∈ 2PS such that uG(M) ≥ K?

Some basic results are straightforward:

• Max-Utility(H,H’) is in NP for any choice of H and H ′,

because we can always check uG(M) ≥ K in polynomial time.

• Max-Utility(all, all) is NP-complete (reduction from Sat).

More interesting questions would be whether there are either

(1) “large” sublanguages for which Max-Utility is still polynomial,

or (2) “small” sublanguages for which it is already NP-hard.

Ulle Endriss (ulle@illc.uva.nl) 15

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Three Complexity Results

Proposition 7 Max-Utility(k-clauses, positive) is NP-complete,

even for k = 2.

Proof: Reduction from Max2Sat (NP-complete): “Given a set of

2-clauses, is there a satisfiable subset with cardinality ≥ K?”. 2

Proposition 8 Max-Utility(literals, all) is in P.

Proof: Assuming that G contains every literal exactly once (possibly

with weight 0), making p true iff the weight of p is greater than the

weight of ¬p results in a model with maximal utility. 2

Proposition 9 Max-Utility(positive, positive) is in P.

Proof: Making all propositional symbols true yields maximal utility. 2

Ulle Endriss (ulle@illc.uva.nl) 16

Weighted Propositional Formulas for Cardinal Preference Modelling GLLC-11

Conclusion and Future Work

• Comparison of two ways of modelling utility functions, used in

different communities (expressive power/correspondence results).

• If two languages are equally expressive, we need to use other

criteria do decide which to use (simplicity versus succinctness).

• This is ongoing work; we want to collect more results of this type

to get a clearer picture of the general situation.

• The complexity results are still preliminary, but may lead

somewhere interesting.

• Investigate other aggregation functions (than sum-taking) for

weighted propositional formulas (such as max).

• Investigate connections to bidding languages for combinatorial

auctions (e.g. XOR-language = max of positive cubes).

Ulle Endriss (ulle@illc.uva.nl) 17

