Voting as Selection of the Most Representative Voter

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

∫ joint work with Umberto Grandi (Padova) ∫

Outline

- Examples
- Binary Aggregation with Integrity Constraints
- Representative-Voter Rules
- Approximation Results

Preference/Rank Aggregation

Expert 1: $\triangle \succ \bigcirc \succ \Box$ Expert 2: $\bigcirc \succ \Box \succ \bigtriangleup$ Expert 3: $\Box \succ \bigtriangleup \succ \circlearrowright$ Expert 4: $\Box \succ \bigtriangleup \succ \circlearrowright$ Expert 5: $\bigcirc \succ \Box \succ \bigtriangleup$

?

Judgment Aggregation

	p	$p \to q$	q
Judge 1:	True	True	True
Judge 2:	True	False	False
Judge 3:	False	True	False

?

Multiple Referenda

	fund museum?	fund school?	fund metro?	
Voter 1:	Yes	Yes	No	
Voter 2:	Yes	No	Yes	
Voter 3:	Νο	Yes	Yes	
?				
[Constraint: we have money for <i>at most two projects</i>]				

General Perspective

The last example is actually pretty general. We can rephrase many aggregation problems as problems of *binary aggregation*:

Do you rank option \triangle above option \bigcirc ?Yes/NoDo you believe formula " $p \rightarrow q$ " is true?Yes/NoDo you want the new school to get funded?Yes/NoEach problem domain comes with its own rationality constraints:

Rankings should be transitive and not have any cycles.

The accepted set of formulas should be logically consistent.

We should fund at most two projects.

The *paradoxes* we have seen show that the *majority rule* does not *lift* our rationality constraints from the *individual* to the *collective* level.

Binary Aggregation with Integrity Constraints

The model:

- Set of *individuals* $\mathcal{N} = \{1, \ldots, n\}$. Set of *issues* $\mathcal{I} = \{1, \ldots, m\}$.
- Integrity constraint IC: propositional formula over $\{p_1, \ldots, p_m\}$.
- Ballot $B \in \{0,1\}^m$ rational if $B \models IC$. Profile $B = (B_1, \ldots, B_n)$.
- Aggregator $F: (\{0,1\}^m)^n \to \{0,1\}^m$. Would like $F(\boldsymbol{B}) \models \text{IC}$.

Example:

- $\mathcal{N} = \{1, 2, 3\}$. $\mathcal{I} = \{\texttt{mus}, \texttt{sch}, \texttt{met}\}$. $\mathrm{IC} = \neg(\texttt{mus} \land \texttt{sch} \land \texttt{met})$.
- Profile: $\boldsymbol{B} = (B_1, B_2, B_3)$ with

 $B_1 = (1, 1, 0)$ $B_2 = (1, 0, 1)$ $B_3 = (0, 1, 1)$

 $B_i \models \text{IC} \text{ for all } i \in \mathcal{N}$, but $\text{Maj}(\boldsymbol{B}) = (1, 1, 1) \text{ and } (1, 1, 1) \not\models \text{IC}$.

Distance-based Aggregation

How to avoid paradoxes?

- $\rightarrow\,$ Only consider outcomes that respect the integrity constraint.
- $\rightarrow\,$ Which one to pick?—the one "closest" to the individual inputs.

These considerations suggest the following rule:

- The (Hamming) *distance* between an individual input and the outcome is the number of issues on which they differ.
- Elect the rational outcome that *minimises* the sum of distances to the individual inputs! (+ break ties if needed)

For rank aggregation (with issues being pairwise rankings), this is the *Kemeny rule* (widely considered a pretty good choice).

<u>But</u>: this is Θ_2^p -complete ("complete for parallel access to NP"). \odot

Taming the Complexity

Where does this complexity come from?

 \rightarrow We need to search through all candidate outcomes.

- there might be exponentially many of those
- for each of them, checking rationality might be nontrivial

An idea:

- restrict set of choices to a small set of candidate outcomes
- make sure you can be certain all candidate outcomes are rational

The easiest way of doing this:

candidate outcomes = choices made by individuals ("support")

Example

Find the outcome that minimises the sum of distances for this profile:

Issue:	1	2	3
20 voters:	0	1	1
10 voters:	1	0	1
11 voters:	1	1	0

<u>Solution</u>: (1,1,1). The distance is 41 (41 voters \times 1 disagreement).

<u>Note:</u> same as majority outcome (as there's no integrity constraint).

Now suppose there's an IC that says that (1,1,1) is not ok.

Example (continued)

Find the outcome that minimises the sum of distances for this profile:

Issue:	1	2	3
20 voters:	0	1	1
10 voters:	1	0	1
11 voters:	1	1	0

"Average voter" says: (0, 1, 1).

The distance is 42 (20 with no disagreements + 21 with 2 each).

<u>So</u>: not much worse (42 *vs.* 41), but easier to find (choose from 3 rather than $2^3 = 8$ outcomes; all 3 known to be rational *a priori*)

Additional Notation and Terminology

- Hamming distance between ballots: $H(B, B') = |\{j \in \mathcal{I} \mid b_j \neq b'_j\}|$ and between a ballot and a profile: $\mathcal{H}(B, \mathbf{B}) = \sum_{i \in \mathcal{N}} H(B, B_i)$.
- Support of profile \boldsymbol{B} : SUPP $(\boldsymbol{B}) = \{B_1, \ldots, B_n\}$.

Rules Based on Representative Voters

<u>Idea:</u> Choose an outcome by first choosing a voter (based on the input profile) and then copying that voter's ballot.

Fix $g: (\{0,1\}^m)^n \to \mathcal{N}$. Then let $F: \mathbf{B} \mapsto B_{g(\mathbf{B})}$.

Good properties (of all these rules):

- No paradoxes ever, whatever the IC (not true for any other rule)
- Unanimity guaranteed [obvious]
- Neutrality guaranteed [maybe less obvious]
- Low complexity for natural choices of g

But:

• Includes some really bad rules, such as Arrovian *dictatorships*:

 $g \equiv i$, i.e., $F: (B_1, \ldots, B_n) \mapsto B_i$ with *i* being the dictator

Two Representative-Voter Rules

The *average-voter rule* selects those individual ballots that minimise the Hamming distance to the profile:

$$\operatorname{AVR}(\boldsymbol{B}) = \operatorname*{argmin}_{B \in \operatorname{Supp}(\boldsymbol{B})} \mathcal{H}(B, \boldsymbol{B})$$

<u>Remark:</u> if you replace the set SUPP(B) by Mod(IC), the set of *all* rational outcomes, you obtain the full distance-based rule.

The *majority-voter rule* selects those individual ballots that minimise the Hamming distance to one of the majority outcomes:

$$MVR(\boldsymbol{B}) = \underset{B \in SUPP(\boldsymbol{B})}{\operatorname{argmin}} \min\{H(B, B') \mid B' \in \operatorname{Maj}(\boldsymbol{B})\}$$

Connections:

- AVR related to *Kemeny* rule in voting / rank aggregation.
- MVR related to *Slater* rule in voting / rank aggregation.

Example

The $\ensuremath{\mathrm{AVR}}$ and the $\ensuremath{\mathrm{MVR}}$ really can give different outcomes:

Issue:	1	2	3	4	5	6
1 voter:	1	0	0	0	0	0
10 voters:	0	1	1	0	0	0
10 voters:	0	0	0	1	1	1
Maj:	0	0	0	0	0	0
MVR:	1	0	0	0	0	0
AVR:	0	1	1	0	0	0

Two More Representative-Voter Rules

We can also adapt *Tideman*'s ranked-pairs rule from voting theory. The *ranked-voter rule* (RVR) works as follows:

- order the issues by majority strength
- lock in issues in order of majority strength, whilst ensuring that the outcome remains within the support

The *plurality-voter rule* (PVR) selects the ballot chosen most often:

$$PVR(\boldsymbol{B}) = \operatorname{argmax}_{B \in SUPP(\boldsymbol{B})} |\{i \in \mathcal{N} \mid B = B_i\}|$$

The rank aggregation version of this rule has recently been proposed as a good maximum likelihood estimator by Caragiannis, Procaccia, and Shah ("modal ranking rule").

Approximation

F is said to be an α -approximation of *F*' if for every profile **B**:

```
\max \mathcal{H}(F(\boldsymbol{B}), \boldsymbol{B}) \leqslant \alpha \cdot \min \mathcal{H}(F'(\boldsymbol{B}), \boldsymbol{B})
```

How well do our rules F approximate the distance-based rule F'?

- AVR: average-voter rule
- MVR: majority-voter rule
- RVR: ranked-voter rule
- PVR: plurality-voter rule
- Arrovian dictatorships $F_i : \mathbf{B} \mapsto B_i$

Good would be: α is a (small) *constant*

Bad would be: α depends on n or m, not bounded by any constant

Focus on $Maj = DBR^{\top}$: harder to approximate than any other DBR^{IC} .

Very bad: Dictatorships

What's the worst possible scenario?

- one voter says $111 \cdots 111$, all others (n-1) say $000 \cdots 000$
- majority rule would pick $000 \cdots 000$: distance m
- your rule picks $111 \cdots 111$: distance $m \cdot (n-1)$

<u>Thus</u>: worst approx. ratio for any rep-voter rule is $\frac{m \cdot (n-1)}{m} \in O(n)$ Arrovian dictatorships are maximally bad (unsurprisingly):

Proposition 1 Every Arrovian dictatorship $F_i : \mathbf{B} \mapsto B_i$ is a $\Theta(n)$ -approximation of the majority rule.

<u>Proof:</u> See above example, with dictator saying $111 \cdots 111$. \checkmark

Almost as bad (!): RVR and PVR

Recall two of our more sophisticated rules:

- RVR: fix issues by majority strength, staying within support
- PVR: return most frequent ballot

Bad news:

Theorem 2 RVR and PVR are $\Theta(n)$ -approximations of Maj.

Proof idea:		n-2 $m-(n-2)$
	Voter 1:	$01111\cdots111\cdots\cdots1$
	Voter 2:	$10111\cdots111\cdots\cdots1$
	:	÷ ÷
	Voter $n-2$:	$11111\cdots101\cdots\cdots\cdots1$
	Voter $n-1$:	$11111\cdots110\cdots\cdots\cdots0$
	Voter <i>n</i> :	$11111\cdots110\cdots\cdots\cdots0$

<u>Remark</u>: Similar result when assuming m < n, namely $\Omega(m)$.

Good: MVR and AVR

<u>Recall</u>: the MVR selects the ballot closest to the majority outcome.

Theorem 3 The MVR is a (strict) 2-approximations of Maj.

<u>Proof idea:</u> use triangle inequality! \checkmark

<u>Recall</u>: the AVR selects the ballot closest to the input profile. <u>Thus</u>:

Lemma 4 The AVR approximimates Maj at least as well as any other representative-voter rule (thus: also a strict 2-approximation).

Our most positive result:

Theorem 5 Suppose m (the number of issues) is constant. Then the AVR is a $2\frac{m-1}{m}$ -approximation of Maj. [not true for MVR] Recall that we can get better approximation ratios for IC $\neq \top$.

Other Criteria for Comparison

Complexity: Both ok, but the MVR can be computed more efficiently.

- Winner determination for the MVR is in O(mn).
- Winner determination for the AVR is in $O(mn \log n)$.

Axiomatics: AVR satisfies and MVR fails a form of *reinforcement*.

$$SUPP(\boldsymbol{B}) = SUPP(\boldsymbol{B}') \text{ and } F(\boldsymbol{B}) \cap F(\boldsymbol{B}') \neq \emptyset \quad \Rightarrow \\ F(\boldsymbol{B} \oplus \boldsymbol{B}') = F(\boldsymbol{B}) \cap F(\boldsymbol{B}')$$

Last Slide

This work is part of a larger effort to better understand the powerful framework of *binary aggregation with integrity constraints*. The focus today has been on identifying good and simple rules to use in practice.

- Simple (maybe simplistic) idea: pick a representative voter + copy
- Surprisingly, this *can* work very well; we *can* get good properties:
 - guarantee to never encounter a paradox
 - low complexity
 - good social choice-theoretic axioms (though not independence)
 - for some: good approximation ratios w.r.t. distance-based rule

U. Endriss and U. Grandi. Binary Aggregation by Selection of the Most Representative Voter. *Proc. AAAI-2014*.