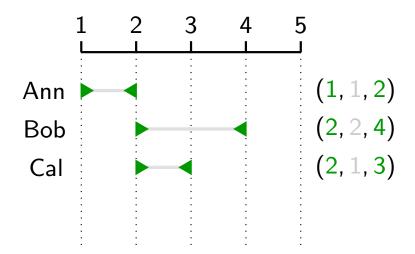
Representation Matters: Characterisation and Impossibility Results for Interval Aggregation

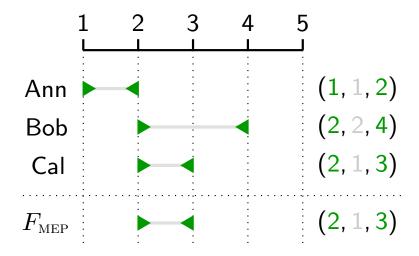
Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

joint work with Arianna Novaro and Zoi Terzopoulou

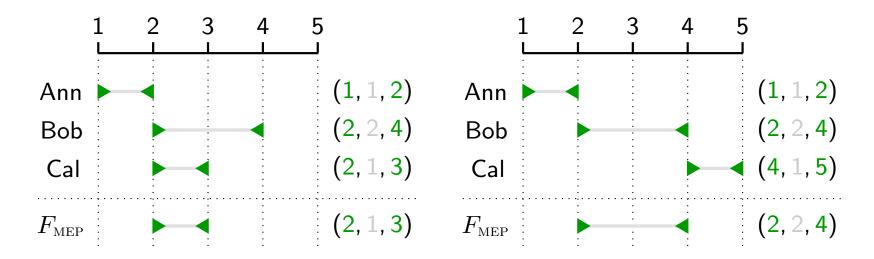
Key Message

The *choice of components* we use to *represent intervals* heavily constrains the *range of aggregation rules* we can design.

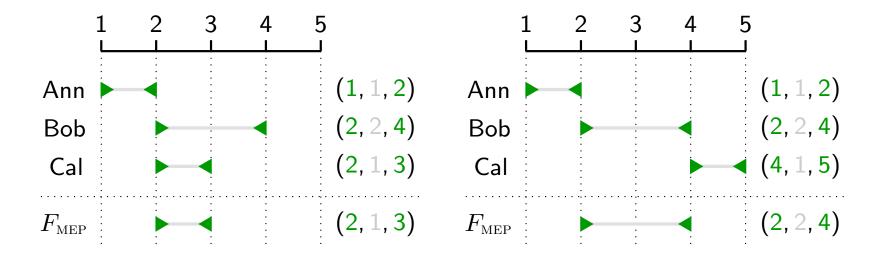




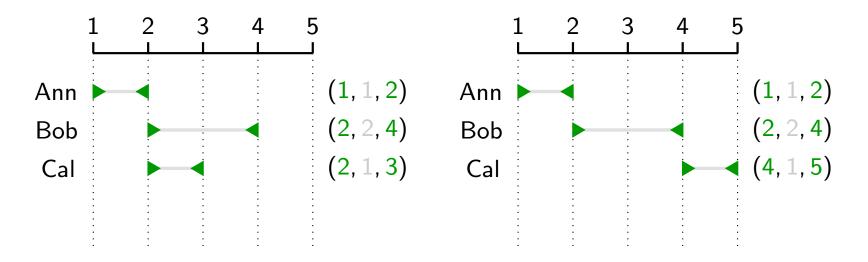
Let's use the median-endpoint rule to aggregate!



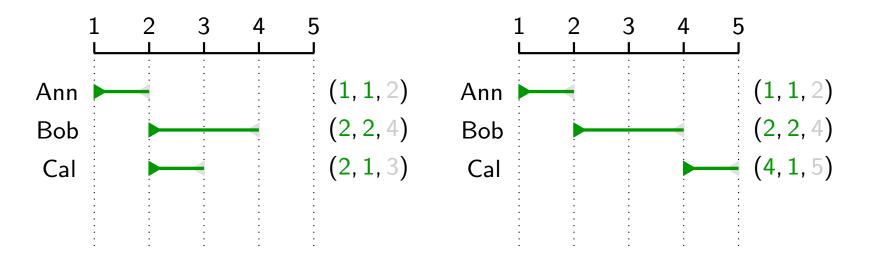
Let's use the median-endpoint rule to aggregate! (now for both scenarios)



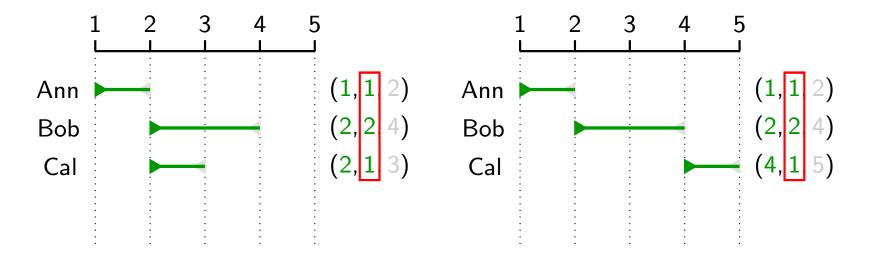
median-endpoint rule \rightarrow outcomes must have *different* widths



median-endpoint rule \rightarrow outcomes must have *different* widths



median-endpoint rule \rightarrow outcomes must have *different* widths



median-endpoint rule \rightarrow outcomes must have *different* widths width-based representation \rightarrow outcomes must have *same* widths

Talk Outline

So on our 5-point scale, the *median-endpoint rule* is *undefinable* when we represent intervals in terms of *left endpoints* and *widths*.

→ How general a problem is this?

To find out, we shall see:

- Simple Model: *Interval Aggregation*
- New Concept: Representation-Faithfulness
- Results: Impossibility Theorem and Characterisation Theorem

Interval Aggregation

Consider a scale $S \subseteq \mathbb{R}$ of points (with a min- and a max-element).

Examples:
$$S = \{-3, 0, 2, 4, 7, 10, 12\}$$
 or $S = [0, 1]$

Several agents $i \in N = \{1, ..., n\}$ each report an interval $I_i \in \mathcal{I}(S)$. We're interested in interval aggregation rules $F : \mathcal{I}(S)^n \to \mathcal{I}(S)$.

Examples: medians of endpoints or convex hull of union

Representation-Faithfulness

We can talk about intervals by referring to their *components*, such as left endpoint (ℓ) , right endpoint (r), midpoint (m), or width (w).

A representation formalism $\gamma = (\gamma_1, ..., \gamma_q)$ is a list of such components $\gamma_k: \mathcal{I}(S) \to D_k$ (for some domain D_k) with $[\gamma(I) = \gamma(I')] \Rightarrow [I = I']$.

A rule F is faithful to $(\gamma_1, \dots, \gamma_q)$ if we can define F via aggregators $f_k:D_k^n\to D_k$ that each operate locally on just one component γ_k :

$$F \triangleq (\gamma_1, \dots, \gamma_q) \circ (f_1, \dots, f_q)$$

Examples for natural rules:

- $F = (\ell, r) \circ (\text{med}, \text{med})$ $F = (m, w) \circ (\text{avg}, \text{null})$
- $F = (\ell, r) \circ (\min, \max)$ plurality (no natural representation!)

Technical Results

What rules can be defined by reference to left and right endpoints (ℓ, r) and <u>also</u> by reference to left endpoints and widths (ℓ, w) ?

A $(\gamma_1, ..., \gamma_q)$ -rule is an aggregation rule that is faithful to $(\gamma_1, ..., \gamma_q)$ via unanimous local aggregators f_k (so: satisfying $f_k(x, ..., x) = x$).

Impossibility Theorem: On discrete scales, every interval aggregation rule that is both an (ℓ, r) - and an (ℓ, w) -rule must a dictatorship.

Characterisation Theorem: On continuous scales, a continuous rule is both an (ℓ, r) - and an (ℓ, w) -rule <u>iff</u> it is a weighted averaging rule.

Proving the Characterisation Theorem

Let's understand this for scale S = [0, 1]! (Generalisation not hard.)

Characterisation Theorem: On scale S = [0, 1], a continuous rule is both an (ℓ, r) - and an (ℓ, w) -rule <u>iff</u> it is a weighted averaging rule.

<u>So:</u> Trying to understand, for any rule of $F = (\ell, r, w) \circ (f_{\ell}, f_r, f_w)$, what options do we have for the local aggregators f_{ℓ} , f_r , f_w ?

First Insight: Just One Local Aggregator!

Inspecting specific scenarios unveils constraints:

- What if everyone submits intervals of width 0 (with $\ell = r$)? f_w is unanimous (so $\ell = r$ also for outcome) $\rightarrow f_\ell = f_r$
- What if everyone submits intervals that start at 0 (so w = r)? f_{ℓ} is unanimous (so w = r also for outcome) $\rightarrow f_w = f_r$

So we can focus on a single local aggregator:

$$f := f_{\ell} = f_r = f_w$$

Interlude: Cauchy's Functional Equation

Which functions $f: S \to S$ satisfy this for all $x, y \in S$ with $x + y \in S$?

$$f(x) + f(y) = f(x+y)$$

Cauchy answered this question for different choices of S. For S=[0,1], if f is continuous, then there must be some $a \in [0,1]$ such that:

$$f: x \mapsto a \cdot x$$

A.L. Cauchy. Cours d'Analyse de l'École Royale Polytechnique. I. re Partie: Analyse Algébrique. L'Imprimerie Royale, Paris, 1821.

Second Insight: Apply Cauchy!

If our agents choose *left endpoints* $x_1, ..., x_n$ and *widths* $y_1, ..., y_n$, then the *right endpoints* will be $x_1 + y_1, ..., x_n + y_n$. Thus:

$$f(x_1, \dots, x_n) + f(y_1, \dots, y_n) = f(x_1 + y_1, \dots, x_n + y_n)$$

Now consider the case where all but agent i submit the interval [0,0]:

$$f(\mathbf{0}_{-i}, x_i) + f(\mathbf{0}_{-i}, y_i) = f(\mathbf{0}_{-i}, x_i + y_i)$$

But this is an instance of Cauchy's functional equation! Thus:

$$f(\mathbf{0}_{-i}, z) = a_i \cdot z \text{ (for } a_i \in [0, 1])$$

But this fully determines f:

$$f(z_1, ..., z_n) = f(\mathbf{0}_{-1}, z_1) + \dots + f(\mathbf{0}_{-n}, z_n)$$

= $a_1 \cdot z_1 + \dots + a_n \cdot z_n$

Finally, due to *unanimity* of f, we must have $a_1 + \cdots + a_n = 1$. \checkmark

Characterisation Theorem

We just saw that, on scale S=[0,1] a continuous interval aggregation rule is both an (ℓ,r) - and an (ℓ,w) -rule iff each of the three interval components is aggregated by the same function f:

$$f:(x_1,\ldots,x_n)\mapsto a_1\cdot x_1+\cdots+a_n\cdot x_n,$$
 for some $a_1,\ldots,a_n\in[0,1]$ with $a_1+\cdots+a_n=1$

So these conditions characterise the *weighted averaging rules*. ✓

Back to the Impossibility Theorem

What is the connection between our two results?

- ullet Characterisation: continuous scale o only weighted averages work
- \bullet Impossibility: discrete scale \rightarrow only dictatorships work

<u>Intuition:</u> Dictatorships *are* weighted averages (dictator has weight 1), and they are the only ones that are well-defined on discrete scales.

<u>However:</u> Impossibility theorem *not* implied (due to restricted inputs).

Same proof technique works for the special case of "evenly-spaced" discrete scales. But for the full result, other techniques are needed.

Message

Representation matters: the manner in which we represent intervals heavily constrains the interval aggregation rules we can design.

Our technical results concern endpoints-only vs. left endpoint + width:

- ullet Characterisation: continuous scale o only weighted averages work
- Impossibility: discrete scale → only dictatorships work

U. Endriss, A. Novaro, and Z. Terzopoulou. Representation Matters: Characterisation and Impossibility Results for Interval Aggregation. IJCAI-2022.