Impossibility Theorems in Graph Aggregation

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

joint work with Umberto Grandi

Social Choice and the Condorcet Paradox

Social Choice Theory asks: how should we aggregate the preferences of the members of a group to obtain a "social preference"?

Expert 1: $\bigcirc \succ \bigcirc \succ \bigcirc$ Expert 2: $\bigcirc \succ \bigcirc \succ \bigcirc$ Expert 3: $\bigcirc \succ \bigcirc \succ \bigcirc$ Expert 4: $\bigcirc \succ \bigcirc \succ \bigcirc$ Expert 5: $\bigcirc \succ \bigcirc \succ \bigcirc$

Marie Jean Antoine Nicolas de Caritat (1743–1794), better known as the **Marquis de Condorcet**: Highly influential Mathematician, Philosopher, Political Scientist, Political Activist. Observed that the *majority rule* may produce inconsistent outcomes ("Condorcet Paradox").

Arrow's Impossibility Theorem

In 1951, K.J. Arrow published his famous *Impossibility Theorem:*

Any preference aggregation mechanism for *three* or more alternatives that satisfies the axioms of *Pareto* and *IIA* must be *dictatorial*.

- (Weak) Pareto: if everyone says $A \succ B$, then so should society.
- Independence of Irrelevant Alternatives (IIA): if society says
 A ≻ B and someone changes their ranking of C, then society should still say A ≻ B.

Kenneth J. Arrow (born 1921): American Economist; Professor Emeritus of Economics at Stanford; Nobel Prize in Economics 1972 (youngest recipient ever). His 1951 PhD thesis started modern Social Choice Theory. Google Scholar lists 13,580 citations of the thesis.

Logic and Social Choice Theory

This talk will not be about logic. Just a few words:

Logic is relevant to social choice theory:

- Formal minimalism (Pauly, Synthese 2008)
- Verification of proofs (e.g., Nipkow, JAR 2009)
- Automation of tasks (Tang & Lin, AIJ 2009; Geist & E., JAIR 2011)

Much of classical social choice theory has been modelled in logic:

- Classical first-order logic (Grandi & E., JPL 2013)
- Tailor-made modal logics (e.g., Ågotnes et al., JAAMAS 2010)

But all of these approaches have some shortcomings:

- modelling of *universal domain* assumption not elegant
- set of *individuals* fixed to *specific size* (or at least not to any *finite* set)
- gap between logical modelling and suitability for *automated reasoning*

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem (eds.), *Logic and Philosophy Today*, College Publications, 2011.

Talk Outline

- Graph Aggregation
- Collective Rationality
- A General Impossibility Result

Graph Aggregation

Fix a finite set of vertices V. A (directed) graph $G = \langle V, E \rangle$ based on V is defined by a set of edges $E \subseteq V \times V$.

Each member of a finite set of *individuals* $\mathcal{N} = \{1, \ldots, n\}$ provides such a graph, giving rise to a *profile* $\boldsymbol{E} = (E_1, \ldots, E_n)$.

An *aggregator* is a function mapping profiles to collective graphs:

$$F:(2^{V\times V})^n\to 2^{V\times V}$$

Example: *majority rule* (accept an edge *iff* $> \frac{n}{2}$ of the individuals do)

Axioms

We may want to impose certain axioms on $F:(2^{V\times V})^n\to 2^{V\times V}$, e.g.:

- Anonymous: $F(E_1, \ldots, E_n) = F(E_{\sigma(1)}, \ldots, E_{\sigma(n)})$
- Nondictatorial: for no $i^* \in \mathcal{N}$ you always get $F(\mathbf{E}) = E_{i^*}$
- Unanimous: $E \supseteq E_1 \cap \cdots \cap E_n$
- Grounded: $E \subseteq E_1 \cup \cdots \cup E_n$
- Neutral: $N_e^{\boldsymbol{E}} = N_{e'}^{\boldsymbol{E}}$ implies $e \in F(\boldsymbol{E}) \Leftrightarrow e' \in F(\boldsymbol{E})$
- Independent: $N_e^{\boldsymbol{E}} = N_e^{\boldsymbol{E'}}$ implies $e \in F(\boldsymbol{E}) \Leftrightarrow e \in F(\boldsymbol{E'})$

For technical reasons, we'll restrict some axioms to *nonreflexive edges* $(x, y) \in V \times V$ with $x \neq y$ (NR-neutral, NR-nondictatorial).

<u>Notation</u>: $N_e^E = \{i \in \mathcal{N} \mid e \in E_i\} = coalition \text{ accepting edge } e \text{ in } E$

Collective Rationality

Aggregator F is collectively rational (CR) for graph property P if, whenever all individual graphs E_i satisfy P, so does the outcome F(E). Examples for graph properties: reflexivity, transitivity, seriality, ...

Example

Three agents each provide a graph on the same set of four vertices:

If we aggregate using the *majority rule*, we obtain this graph:

Observations:

- Majority rule not collectively rational for *seriality*.
- But *symmetry* is preserved.
- So is *reflexivity* (easy: individuals violate it).

A Simple Possibility Result

The fact that the example worked for reflexivity is no coincidence:

Proposition 1 Any unanimous aggregator is CR for reflexivity.

<u>Proof:</u> If every individual graph includes edge (x, x), then unanimity ensures the same for the collective outcome graph. \checkmark

Arrow's Theorem

Our formulation in graph aggregation:

For $|V| \ge 3$, there exists <u>no</u> NR-nondictatorial, unanimous, grounded, and independent aggregator that is CR for reflexivity, transitivity, and completeness.

This implies the standard formulation, because:

- weak preference orders = reflexive, transitive, complete graphs
- nondictatorial = NR-nondictatorial for reflexive graphs
- unanimous + grounded \Rightarrow (weak) Pareto
- CR for reflexivity is vacuous (implied by unanimity)

Main question for this talk:

► For what other classes of graphs does this go through?

Winning Coalitions

If an aggregator F is *independent*, then for every edge e there exists a set of winning coalitions $\mathcal{W}_e \subseteq 2^{\mathcal{N}}$ such that $e \in F(\mathbf{E}) \Leftrightarrow N_e^{\mathbf{E}} \in \mathcal{W}_e$.

Furthermore:

- If F is *unanimous*, then $\mathcal{N} \in \mathcal{W}_e$ for all edges e.
- If F is grounded, then $\emptyset \notin \mathcal{W}_e$ for all edges e.
- If F is *neutral*, then there is one \mathcal{W} with $\mathcal{W} = \mathcal{W}_e$ for all edges e.

Proof Plan

<u>Given</u>: Arrovian aggregator F (unanimous, grounded, independent) <u>Want</u>: Impossibility for collective rationality for graph property PThis will work if P is contagious, implicative, and disjunctive (TBD). <u>Lemma</u>: CR for contagious $P \Rightarrow F$ is NR-neutral.

 \Rightarrow F characterised by some \mathcal{W} : $(x, y) \in F(\mathbf{E}) \Leftrightarrow N_{(x,y)}^{\mathbf{E}} \in \mathcal{W} \ [x \neq y]$

<u>Lemma:</u> CR for *implicative* & *disjunctive* $P \Rightarrow W$ is an *ultrafilter*, i.e.:

(i) $\emptyset \notin \mathcal{W}$ [this is immediate from groundedness] (ii) $C_1, C_2 \in \mathcal{W}$ implies $C_1 \cap C_2 \in \mathcal{W}$ (closure under intersections) (iii) C or $\mathcal{N} \setminus C$ is in \mathcal{W} for all $C \subseteq \mathcal{N}$ (maximality)

 \mathcal{N} is finite $\Rightarrow \mathcal{W}$ is principal: $\exists i^* \in \mathcal{N}$ s.t. $\mathcal{W} = \{C \in 2^{\mathcal{N}} \mid i^* \in C\}$ But this just means that i^* is a dictator: F is (NR-)dictatorial. \checkmark

Neutrality Lemma

Consider any Arrovian aggregator (unanimous, grounded, independent).

Call a property P xy/zw-contagious if there exist sets $S^+, S^- \subseteq V \times V$ s.t. every graph $E \in P$ satisfies $[\bigwedge S^+ \land \neg \bigvee S^-] \rightarrow [xEy \rightarrow zEw]$.

CR for xy/zw-contagious *P* implies: coalition $C \in \mathcal{W}_{(x,y)} \Rightarrow C \in \mathcal{W}_{(z,w)}$

Call *P* contagious if it satisfies (at least) one of the three conditions below:

- (i) P is xy/yz-contagious for all $x, y, z \in V$.
- (*ii*) P is xy/zx-contagious for all $x, y, z \in V$.
- (*iii*) P is xy/xz-contagious and xy/zy-contagious for all $x, y, z \in V$.

Example: Transitivity $([yEz] \rightarrow [xEy \rightarrow xEz] \text{ and } [zEx] \rightarrow [xEy \rightarrow zEy])$

Contagiousness allows us to reach every NR edge from every other NR edge. Thus, *CR for contagious* P implies $W_e = W_{e'}$ for all NR edges e, e'.

<u>So:</u> Collective rationality for a contagious property implies NR-neutrality.

Ultrafilter Lemma

Let F be unanimous, grounded, independent, NR-neutral, and CR for P. So there exists a family of winning coalitions \mathcal{W} s.t. $e \in F(\mathbf{E}) \Leftrightarrow N_e^{\mathbf{E}} \in \mathcal{W}$. Show that \mathcal{W} is an ultrafilter (under certain assumptions on P):

(*ii*) Closure under intersections: $C_1, C_2 \in \mathcal{W} \Rightarrow C_1 \cap C_2 \in \mathcal{W}$

Call *P* implicative if there exist $S^+, S^- \subseteq V \times V$ and $e_1, e_2, e_3 \in V \times V$ s.t. all graphs $E \in P$ satisfy $[\bigwedge S^+ \land \neg \bigvee S^-] \rightarrow [e_1 \land e_2 \rightarrow e_3].$

Example: transitivity

CR for implicative $P \Rightarrow \mbox{closure}$ under intersections

<u>Proof:</u> consider profile where C_1 accept e_1 , C_2 acc. e_2 , $C_1 \cap C_2$ acc. e_3

(*iii*) Maximality: C or
$$\mathcal{N} \setminus C$$
 in \mathcal{W} for all $C \subseteq \mathcal{N}$

Call *P* disjunctive if there exist $S^+, S^- \subseteq V \times V$ and $e_1, e_2 \in V \times V$ s.t. all graphs $E \in P$ satisfy $[\bigwedge S^+ \land \neg \bigvee S^-] \rightarrow [e_1 \lor e_2]$.

Example: completeness

CR for disjunctive $P \Rightarrow$ maximality

<u>Proof</u>: consider profile where C accept e_1 , $\mathcal{N} \setminus C$ accept e_2

General Impossibility Theorem

We have sketched a proof for the following theorem:

Theorem 2 For $|V| \ge 3$, there exists <u>no</u> NR-nondictatorial, unanimous, grounded, and independent aggregator that is CR for any graph property that is contagious, implicative, and disjunctive.

Many combinations of properties have our meta-properties:

C/I/D

Transitivity	$\forall xyz.(xEy \land yEz \rightarrow xEz)$	+ + -
Right Euclidean	$\forall xyz.(xEy \land xEz \rightarrow yEz)$	+ + -
Left Euclidean	$\forall xyz.(xEy \land zEy \rightarrow zEx)$	+ + -
Seriality	$\forall x. \exists y. xEy$	+
Completeness	$\forall xy. [x \neq y \rightarrow (xEy \lor yEx)]$	+
Connectedness	$\forall xyz.[xEy \land xEz \rightarrow (yEz \lor zEy)]$	+ + +
Negative Transitivity	$\forall xyz.[xEy \rightarrow (xEz \lor zEy)]$	+ - +

Last Slide

We have introduced *graph aggregation* as a generalisation of preference aggregation and then considered *collective rationality*. Why is this interesting?

- Potential for *applications*: abstract argumentation, social networks
- Deep insights into the *structure of impossibilities*: direct link between CR requirements and neutrality/ultrafilter conditions