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Social Choice and the Condorcet Paradox

Social Choice Theory asks: how should we aggregate the preferences

of the members of a group to obtain a “social preference”?

Expert 1: � �

Expert 2: � �

Expert 3: � �

Expert 4: � �

Expert 5: � �

Marie Jean Antoine Nicolas de Caritat (1743–1794), bet-

ter known as the Marquis de Condorcet: Highly influen-

tial Mathematician, Philosopher, Political Scientist, Politi-

cal Activist. Observed that the majority rule may produce

inconsistent outcomes (“Condorcet Paradox”).
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Arrow’s Impossibility Theorem

In 1951, K.J. Arrow published his famous Impossibility Theorem:

Any preference aggregation mechanism for three or more alternatives

that satisfies the axioms of Pareto and IIA must be dictatorial .

• (Weak) Pareto: if everyone says A � B, then so should society.

• Independence of Irrelevant Alternatives (IIA): if society says

A � B and someone changes their ranking of C, then society

should still say A � B.

Kenneth J. Arrow (born 1921): American Economist; Pro-

fessor Emeritus of Economics at Stanford; Nobel Prize in

Economics 1972 (youngest recipient ever). His 1951 PhD

thesis started modern Social Choice Theory. Google Scholar

lists 13,580 citations of the thesis.
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Logic and Social Choice Theory

This talk will not be about logic. Just a few words:

Logic is relevant to social choice theory:

• Formal minimalism (Pauly, Synthese 2008)

• Verification of proofs (e.g., Nipkow, JAR 2009)

• Automation of tasks (Tang & Lin, AIJ 2009; Geist & E., JAIR 2011)

Much of classical social choice theory has been modelled in logic:

• Classical first-order logic (Grandi & E., JPL 2013)

• Tailor-made modal logics (e.g., Ågotnes et al., JAAMAS 2010)

But all of these approaches have some shortcomings:

• modelling of universal domain assumption not elegant

• set of individuals fixed to specific size (or at least not to any finite set)

• gap between logical modelling and suitability for automated reasoning

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.
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Talk Outline

• Graph Aggregation

• Collective Rationality

• A General Impossibility Result
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Graph Aggregation

Fix a finite set of vertices V . A (directed) graph G = 〈V,E〉 based on

V is defined by a set of edges E ⊆ V ×V .

Each member of a finite set of individuals N = {1, . . . , n} provides

such a graph, giving rise to a profile E = (E1, . . . , En).

An aggregator is a function mapping profiles to collective graphs:

F : (2V×V )n → 2V×V

Example: majority rule (accept an edge iff > n
2 of the individuals do)
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Axioms

We may want to impose certain axioms on F : (2V×V )n → 2V×V, e.g.:

• Anonymous: F (E1, . . . , En) = F (Eσ(1), . . . , Eσ(n))

• Nondictatorial : for no i? ∈ N you always get F (E) = Ei?

• Unanimous: E ⊇ E1 ∩ · · · ∩ En

• Grounded: E ⊆ E1 ∪ · · · ∪ En

• Neutral : NE
e = NE

e′ implies e ∈ F (E)⇔ e′ ∈ F (E)

• Independent: NE
e = NE′

e implies e ∈ F (E)⇔ e ∈ F (E′)

For technical reasons, we’ll restrict some axioms to nonreflexive edges

(x, y) ∈ V ×V with x 6= y (NR-neutral, NR-nondictatorial).

Notation: NE
e = {i ∈ N | e ∈ Ei} = coalition accepting edge e in E
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Collective Rationality

Aggregator F is collectively rational (CR) for graph property P if,

whenever all individual graphs Ei satisfy P, so does the outcome F (E).

Examples for graph properties: reflexivity, transitivity, seriality, . . .
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Example

Three agents each provide a graph on the same set of four vertices:

•
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If we aggregate using the majority rule, we obtain this graph:

•
��
•
��
•
��

•

Observations:

• Majority rule not collectively rational for seriality .

• But symmetry is preserved.

• So is reflexivity (easy: individuals violate it).
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A Simple Possibility Result

The fact that the example worked for reflexivity is no coincidence:

Proposition 1 Any unanimous aggregator is CR for reflexivity.

Proof: If every individual graph includes edge (x, x), then unanimity

ensures the same for the collective outcome graph. X
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Arrow’s Theorem

Our formulation in graph aggregation:

For |V | > 3, there exists no NR-nondictatorial, unanimous,

grounded, and independent aggregator that is CR for

reflexivity, transitivity, and completeness.

This implies the standard formulation, because:

• weak preference orders = reflexive, transitive, complete graphs

• nondictatorial = NR-nondictatorial for reflexive graphs

• unanimous + grounded ⇒ (weak) Pareto

• CR for reflexivity is vacuous (implied by unanimity)

Main question for this talk:

I For what other classes of graphs does this go through?
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Winning Coalitions

If an aggregator F is independent, then for every edge e there exists a

set of winning coalitions We ⊆ 2N such that e ∈ F (E) ⇔ NE
e ∈ We.

Furthermore:

• If F is unanimous, then N ∈ We for all edges e.

• If F is grounded , then ∅ 6∈ We for all edges e.

• If F is neutral , then there is one W with W =We for all edges e.
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Proof Plan

Given: Arrovian aggregator F (unanimous, grounded , independent)

Want: Impossibility for collective rationality for graph property P

This will work if P is contagious, implicative, and disjunctive (TBD).

Lemma: CR for contagious P ⇒ F is NR-neutral .

⇒ F characterised by some W: (x, y) ∈ F (E) ⇔ NE
(x,y) ∈ W [x 6= y]

Lemma: CR for implicative & disjunctive P ⇒ W is an ultrafilter , i.e.:

(i) ∅ 6∈ W [this is immediate from groundedness]

(ii) C1, C2 ∈ W implies C1 ∩ C2 ∈ W (closure under intersections)

(iii) C or N \C is in W for all C ⊆ N (maximality)

N is finite ⇒ W is principal : ∃ i? ∈ N s.t. W = {C ∈ 2N | i? ∈ C}
But this just means that i? is a dictator: F is (NR-)dictatorial . X
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Neutrality Lemma

Consider any Arrovian aggregator (unanimous, grounded, independent).

Call a property P xy/zw-contagious if there exist sets S+, S− ⊆ V ×V s.t.

every graph E ∈ P satisfies [
∧

S+ ∧ ¬
∨

S−]→ [xEy → zEw].

CR for xy/zw-contagious P implies: coalition C ∈ W(x,y) ⇒ C ∈ W(z,w)

Call P contagious if it satisfies (at least) one of the three conditions below:

(i) P is xy/yz-contagious for all x, y, z ∈ V.

(ii) P is xy/zx-contagious for all x, y, z ∈ V.

(iii) P is xy/xz-contagious and xy/zy-contagious for all x, y, z ∈ V.

Example: Transitivity ([yEz]→ [xEy → xEz] and [zEx]→ [xEy → zEy])

Contagiousness allows us to reach every NR edge from every other NR edge.

Thus, CR for contagious P implies We =We′ for all NR edges e, e′.

So: Collective rationality for a contagious property implies NR-neutrality .
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Ultrafilter Lemma
Let F be unanimous, grounded , independent, NR-neutral , and CR for P .

So there exists a family of winning coalitions W s.t. e ∈ F (E) ⇔ NE
e ∈ W.

Show that W is an ultrafilter (under certain assumptions on P ):

(ii) Closure under intersections: C1, C2 ∈ W ⇒ C1 ∩ C2 ∈ W
Call P implicative if there exist S+, S− ⊆ V ×V and e1, e2, e3 ∈ V ×V
s.t. all graphs E ∈ P satisfy [

∧
S+ ∧ ¬

∨
S−]→ [e1 ∧ e2 → e3].

Example: transitivity

CR for implicative P ⇒ closure under intersections

Proof: consider profile where C1 accept e1, C2 acc. e2, C1 ∩C2 acc. e3

(iii) Maximality : C or N \C in W for all C ⊆ N
Call P disjunctive if there exist S+, S− ⊆ V ×V and e1, e2 ∈ V ×V
s.t. all graphs E ∈ P satisfy [

∧
S+ ∧ ¬

∨
S−]→ [e1 ∨ e2].

Example: completeness

CR for disjunctive P ⇒ maximality

Proof: consider profile where C accept e1, N \ C accept e2
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General Impossibility Theorem

We have sketched a proof for the following theorem:

Theorem 2 For |V | > 3, there exists no NR-nondictatorial,

unanimous, grounded, and independent aggregator that is CR for any

graph property that is contagious, implicative, and disjunctive.

Many combinations of properties have our meta-properties:
c/i/d

Transitivity ∀xyz.(xEy ∧ yEz → xEz) + +−
Right Euclidean ∀xyz.(xEy ∧ xEz → yEz) + +−
Left Euclidean ∀xyz.(xEy ∧ zEy → zEx) + +−
Seriality ∀x.∃y.xEy −−+

Completeness ∀xy.[x 6= y → (xEy ∨ yEx)] −−+

Connectedness ∀xyz.[xEy ∧ xEz → (yEz ∨ zEy)] + + +

Negative Transitivity ∀xyz.[xEy → (xEz ∨ zEy)] +−+
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Last Slide

We have introduced graph aggregation as a generalisation of

preference aggregation and then considered collective rationality .

Why is this interesting?

• Potential for applications: abstract argumentation, social networks

• Deep insights into the structure of impossibilities: direct link

between CR requirements and neutrality/ultrafilter conditions
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