Logic and Social Choice Theory

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

Social Choice Theory

SCT studies collective decision making: how should we aggregate the preferences of the members of a group to obtain a "social preference"?

SCT is traditionally studied in Economics and Political Science, but now also by "us": *Computational Social Choice*.

Talk Outline

- Computational Social Choice: research area and community
- LogiCCC Project "Computational Foundations of Social Choice"
- Three examples of ongoing research in Amsterdam:
 - Logical Modelling of Social Choice Problems
 - Compact Representation of Preferences
 - Judgment Aggregation

Computational Social Choice

Social choice theory studies mechanisms for *collective decision making*, such as voting procedures or protocols for fair division.

Computational social choice adds a computational perspective to this, and also explores the use of concepts from social choice in computing. Examples:

- computational hardness as a barrier against strategic manipulation
- designing logics to model social mechanisms ("social software")
- coordination of multiagent systems through preference aggregation
- novel models of preference and aggregation (e.g., for AI)
- computational aspects of fair division

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. *A Short Introduction to Computational Social Choice*. Proc. SOFSEM-2007.

The COMSOC Research Community

- International Workshop on Computational Social Choice:
 - 1st edition: COMSOC-2006 in Amsterdam, December 2006
 48 paper submissions and 80 participants (14 countries)
 - 2nd edition; COMSOC-2008 in Liverpool, September 2008 55 paper submissions and \sim 80 participants (\sim 20 countries)
 - 3rd edition: COMSOC-2010 in Düsseldorf, September 2010
 Paper submission deadline will be in June 2010.
- Special issues in international journals:
 - Mathematical Logic Quarterly, vol. 55, no. 4, 2009
 - Journal of Autonomous Agents and Multiagent Systems, 2010
- Journals and conferences in AI, MAS, TCS, Logic, Econ, ...
- COMSOC website: http://www.illc.uva.nl/~ulle/COMSOC/ (workshop proceedings, related events, mailing list, etc.)

LogiCCC-CFSC: Aims and Objectives

Aim of the project:

• To develop sound foundations for the emerging field of *computational social choice*.

Key objectives:

- To deepen our understanding of complexity-theoretic and algorithmic issues arising in social choice theory. (social choice and *theoretical computer science*)
- To develop logic-based languages for modeling and reasoning about social choice problems and preference structures. (social choice and *logic*)
- To apply established techniques from AI, such as preference elicitation and learning, to problems of social choice. (social choice and *artificial intelligence*)

LogiCCC-CFSC: Principal Investigators

- Felix Brandt (LMU University Munich, Germany)
- Ulle Endriss (University of Amsterdam, The Netherlands)
- Jeff Rosenschein (Hebrew University of Jerusalem, Israel)
- Jörg Rothe (University of Düsseldorf, Germany)
- Remzi Sanver (Istanbul Bilgi University, Turkey)

LogiCCC-CFSC: Associate Partners

- Vincent Conitzer (Duke University, USA)
- Edith Elkind (Nanyang Technological University, Singapore)
- Edith and Lane Hemaspaandra (RIT/Univ. of Rochester, USA)
- Jérôme Lang and Nicolas Maudet (University of Paris 9, France)
- Jean-François Laslier (Ecole Politechnique, France)

Arrow's Impossibility Theorem

It seems reasonable to require a *social welfare function* (SWF), mapping profiles of individual preference orderings to a social preference ordering, to satisfy the following axioms:

- Unanimity (UN): if every individual prefers alternative x over alternative y, then so should society
- Independence of Irrelevant Alternatives (IIA): social preference of x over y should only depend on individual pref's over x and y
- *Non-Dictatorship* (ND): no single individual should be able to impose a social preference ordering

Theorem 1 (Arrow, 1951) For three or more alternatives, there exists no SWF that satisfies all of (UN), (IIA) and (ND).

K.J. Arrow. Social Choice and Individual Values. 2nd edition, Wiley, 1963.

Full Formalisation of Arrow's Theorem

Logic has long been used to *formally specify* computer systems, facilitating formal or even *automatic verification* of various properties. Can we apply this methodology also to *social choice* mechanisms?

Tang and Lin (2009) show that the *"base case"* of Arrow's Theorem with 2 agents and 3 alternatives can be fully modelled in *propositional logic*:

- Automated theorem provers can verify $A{\tt RROW}(2,3)$ to be correct in <1 second that's $(3!)^{3!\times 3!}\approx 10^{28}$ SWFs to check
- Opens up opportunities for quick sanity checks of hypotheses regarding new possibility and impossibility theorems.

Our ongoing work using *first-order logic* tries to go beyond such base cases.

P. Tang and F. Lin. Computer-aided Proofs of Arrow's and other Impossibility Theorems. *Artificial Intelligence*, 173(11):1041–1053, 2009

U. Grandi and U. Endriss. *First-Order Logic Formalisation of Arrow's Theorem*. Proc. LORI-2009. [see talk on Thursday]

Social Choice in Combinatorial Domains

Many social choice problems have a *combinatorial structure*:

- Elect a *committee* of k members from amongst n candidates.
- Find a fair *allocation* of n indivisible goods to agents.

Seemingly small problems generate huge numbers of alternatives:

- Number of 3-member committees from 10 candidates: $\binom{10}{3} = 120$ (i.e., $120! \approx 6.7 \times 10^{198}$ possible rankings)
- Allocating 10 goods to 5 agents: $5^{10} = 9765625$ allocations and $2^{10} = 1024$ bundles for each agent to think about

<u>Conclusion</u>: We need good *languages* for representing preferences!

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Combinatorial Domains: From AI to Social Choice. *AI Magazine*, Winter 2008.

Weighted Goals

A compact representation language for modelling utility functions (cardinal preferences) over products of binary domains —

<u>Notation</u>: finite set of propositional letters PS; propositional language \mathcal{L}_{PS} over PS to describe requirements, e.g.:

$$p, \quad \neg p, \quad p \wedge q, \quad p \lor q$$

A goalbase is a set $G = \{(\varphi_i, \alpha_i)\}_i$ of pairs, each consisting of a (consistent) propositional formula $\varphi_i \in \mathcal{L}_{PS}$ and a real number α_i . The utility function u_G generated by G is defined by

$$u_G(M) = \sum \{ \alpha_i \mid (\varphi_i, \alpha_i) \in G \text{ and } M \models \varphi_i \}$$

for all models $M \in 2^{PS}$. G is called the *generator* of u_G .

Different syntactic restrictions give different representation languages.

Some Results

Examples for our research on weighted goals:

- *Expressivity*: If all formulas and weights are positive, then we can express all monotonic utility function, and only those.
- *Succinctness:* Conjunctions of literals can express the same functions as general formulas, but do so strictly less succinctly.
- Complexity: Finding the most preferred model is NP-hard in general, but in $O(n \log n)$ if all formulas are literals.
- Applications: combinatorial auctions and expressive voting

J. Uckelman. More than the Sum of its Parts: Compact Preference Representation over Combinatorial Domains. PhD thesis, ILLC, University of Amsterdam, 2009.

J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang. Representing Utility Functions via Weighted Goals. *Mathematical Logic Quarterly*, 55(4):341–361, 2009.

Finer Analysis via Linear Logic

Weighted goals *cannot* express statement such as this:

"getting p has value 5 to me, but getting p twice has value 8"

But this is important for *combinatorial auctions*:

- Bidders want to buy bundles of goods from an auctioneer.
- Bidders *bid* by reporting prices various bundles.
- *Winner determination:* find the *allocation* of goods to bidders that maximises the *revenue* for the auctioneer (sum of prices collected).
- Bidding is a form of *preference* representation: weighted goals can be used to encode bids, but only for *single-unit* CAs.

Resource-sensitive logics, in particular *linear logic*, can speak about the multiplicity of items. This idea is explored in our ongoing work.

D. Porello and U. Endriss. *Linear Logic for Bidding Languages*. Working Paper, ILLC, University of Amsterdam, 2009. [see poster later today]

Judgment Aggregation

Preferences are not the only structures that we may wish to aggregate. JA studies the aggregation of judgments on related propositions.

	p	$p \to q$	q
Agent 1:	Yes	Yes	Yes
Agent 2:	No	Yes	No
Agent 3:	Yes	No	No
Majority:	Yes	Yes	No

While each individual set of judgments is logically consistent, the collective judgment produced by the majority rule is not.

<u>Research issues:</u> impossibility theorems; characterisation of admissible agendas; proposals for "good" aggregation procedures; ...

C. List and C. Puppe. Judgment Aggregation: A Survey. *Handbook of Rational and Social Choice*. Oxford University Press, 2009.

Complexity of Judgment Aggregation

What about computational considerations in JA?

In ongoing work we address the following questions:

- Safety of the Agenda: Given an agenda Φ (set of propositions), can we guarantee that any aggregation procedure belonging to a given class of procedures (characterised via some axioms) will never "produce a paradox"?
- What is the computational complexity of deciding SoA?

U. Endriss, U. Grandi, and D. Porello. *Complexity of Judgment Aggregation*.Working Paper, ILLC, University of Amsterdam, 2009. [see talk later today]

Conclusion

- COMSOC is an exciting area of research bringing together ideas from mathematical economics (particularly social choice theory) and computer science (including logic).
- Three examples of ongoing research in Amsterdam:
 - Logical Modelling of Social Choice Problems
 - Compact Representation of Preferences
 - Judgment Aggregation
- COMSOC website: http://www.illc.uva.nl/~ulle/COMSOC/