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The Paradox of Judgment Aggregation

Story: three judges have to decide whether the defendant is guilty . . .

p p→ q q

Judge 1: Yes Yes Yes

Judge 2: No Yes No

Judge 3: Yes No No

Majority: Yes Yes No

Paradox: each individual judgment set is consistent, but the collective

judgment arrived at using the majority rule is not

L.A. Kornhauser and L.G. Sager. The One and the Many: Adjudication in Collegial

Courts. California Law Review, 81(1):1–59, 1993.

C. List and C. Puppe. Judgment Aggregation: A Survey. Handbook of Rational

and Social Choice. Oxford University Press, 2009.
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Talk Outline

• Introduction to Judgment Aggregation

• Decision Problems in JA and their Complexity:

– Winner Determination

– Strategic Manipulation

– Safety of the Agenda

• More on Computational Social Choice

Ulle Endriss 3



Complexity of Judgment Aggregation LogiCCC meets India

Formal Framework

An agenda Φ is a finite nonempty set of propositional formulas (w/o

double negation) closed under complementation: ϕ ∈ Φ ⇒ ∼ϕ ∈ Φ.

A judgment set J on an agenda Φ is a subset of Φ. We call J :

• complete if ϕ ∈ J or ∼ϕ ∈ J for all ϕ ∈ Φ
• complement-free if ϕ 6∈ J or ∼ϕ 6∈ J for all ϕ ∈ Φ
• consistent if there exists an assignment satisfying all ϕ ∈ J

Let J (Φ) be the set of all complete and consistent subsets of Φ.

Now a finite set of individuals N = {1, . . . , n} express judgments on

the formulas in Φ, giving rise to a profile J = (J1, . . . , Jn).

An aggregation procedure for agenda Φ and a set of n individuals is a

function mapping a profile of complete and consistent individual

judgment sets to a single collective judgment set: F : J (Φ)n → 2Φ.
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Premise-Based Procedure

Suppose we can divide the agenda into premises and conclusions:

Φ = Φp ] Φc

The premise-based procedure PBP for Φp and Φc is this function:

PBP(J) = ∆ ∪ {ϕ ∈ Φc | ∆ |= ϕ},

where ∆ = {ϕ ∈ Φp | #{i | ϕ ∈ Ji} >
n

2
}

If we assume (as we shall) that

• the set of premises is the set of literals in the agenda,

• the agenda Φ is is closed under propositional letters, and

• the number n of individuals is odd,

then PBP(J) will always be consistent and complete.
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Winner Determination

The winner determination problem for a judgment aggregation

procedure F is defined as follows:

WinDet(F )

Instance: Agenda Φ, profile J ∈ J (Φ)n, formula ϕ ∈ Φ.

Question: Is ϕ an element of F (J)?

This is easy under the (simplified) premise-based procedure:

Proposition 1 WinDet(PBP) is in P.

Proof: some counting + model checking. X

Ulle Endriss 6



Complexity of Judgment Aggregation LogiCCC meets India

Example: Strategic Manipulation

Suppose we use the (simplified) premise-based procedure:

p q p ∨ q

Agent 1: No No No

Agent 2: Yes No Yes

Agent 3: No Yes Yes

If agent 3 only cares about the conclusion, then she has an incentive

to manipulate and pretend she accepts p.
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Strategic Manipulation

Let us fix a notion of preference over outcomes:

• The Hamming distance H(J, J ′) between judgment sets J and J ′

is the number of positive agenda formulas on which they differ.

• We say that individual i prefers J to J ′ if H(Ji, J) < H(Ji, J
′).

Now we can define the manipulability problem:

Manipulability(F )

Instance: Agenda Φ, Ji ∈ J (Φ), partial profile J−i ∈ J (Φ)n−1.

Question: Is there a J ′
i ∈ J (Φ) s.t. i prefers F (J ′

i ,J−i) to F (Ji,J−i)?

Good news:

Theorem 2 Manipulability(PBP) is NP-complete.

Proof by reduction from Sat.
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Distance-Based Procedure

A procedure that is more widely applicable than the premise-based

procedure and that is intuitively appealing is distance-based merging:

DBP(J) = argmin
J∈J (Φ)

n∑
i=1

H(J, Ji)

Remark: The DBP may return a set of tied winners.

Regarding complexity, we have:

Theorem 3 Winner determination for the DBP is NP-complete.

Proof of hardness by reduction from a result in computational social

choice (KemenyScore). Membership via an integer program.

Conjecture 4 Manipulability for the DBP is Σp
2-complete.

Membership is clear. Hardness is open.
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The Axiomatic Method

What makes for a “good” aggregation procedure? The standard

approach in social choice theory is to formulate “axioms”, e.g.:

Unanimity (U): If ϕ ∈ Ji for all i, then ϕ ∈ F (J).

Anonymity (A): For any profile J and any permutation σ : N → N
we have F (J1, . . . , Jn) = F (Jσ(1), . . . , Jσ(n)).

Neutrality (N): For any ϕ, ψ in the agenda Φ and profile J ∈ J (Φ),
if for all i we have ϕ ∈ Ji ⇔ ψ ∈ Ji, then ϕ ∈ F (J) ⇔ ψ ∈ F (J).

Independence (I): For any ϕ in the agenda Φ and profiles J and J′ in

J (Φ), if ϕ ∈ Ji ⇔ ϕ ∈ J ′i for all i, then ϕ ∈ F (J) ⇔ ϕ ∈ F (J′).
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Impossibility Theorem

We have seen that the majority rule is not consistent.

Is there a reasonable procedure that is?

Theorem 5 (List and Pettit, 2002) If the agenda contains at least

p, q and p ∧ q, then no aggregation procedure producing consistent

and complete judgment sets satisfies all of (A), (N) and (I).

C. List and P. Pettit. Aggregating Sets of Judgments: An Impossibility Result.

Economics and Philosophy, 18(1):89–110, 2002.
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More Axioms

Two monotonicity axioms, one for independent rules (inter-profile) and

one for neutral rules (intra-profile):

I-Monotonicity (MI): For any ϕ in the agenda Φ and profiles

J = (J1, . . . , Ji, . . . , Jn) and J′ = (J1, . . . , J
′
i , . . . , Jn) in J (Φ),

if ϕ 6∈ Ji and ϕ ∈ J ′i , then ϕ ∈ F (J) ⇒ ϕ ∈ F (J′).

N-Monotonicity (MN): For any ϕ,ψ in the agenda Φ and profile J
in J (Φ), if ϕ ∈ Ji ⇒ ψ ∈ Ji for all i and ϕ 6∈ Jk and ψ ∈ Jk for

some k, then ϕ ∈ F (J) ⇒ ψ ∈ F (J).

Ideally, we’d like consistent outcomes, but instead we just demand:

Weak Rationality (WR): F (J) is complete and complement-free for

all profiles J [and F (J) includes no contradictions for some J]

Remark: the last condition (“non-nullity”) is a minor technicality

(always satisfied if Φ includes no tautologies) — please ignore
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Safety of the Agenda (SoA)

Given an agenda Φ and a list of axioms AX, let FΦ[AX] be the set of

procedures F : J (Φ)n → 2Φ that satisfy all axioms in AX.

We call an agenda Φ is safe wrt. a class of procedures FΦ[AX], if

F (J) is consistent for every F ∈ FΦ[AX] and every J ∈ J (Φ).

Goal: We want to be able to check the safety of a given agenda for a

given class of procedures (characterised in terms of a set of axioms).

We approach this by proving characterisation results:

all F ∈ FΦ[AX] are consistent ⇔ Φ has such-and-such property

This is similar to possibility results proven in the JA literature:

some F ∈ FΦ[AX] is consistent ⇔ Φ has such-and-such property
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Majority Rule

It is known (Nehring and Puppe, 2007) that the majority rule is

consistent on agendas that satisfy the median property .

Φ satisfies the median property (MP), if every inconsistent

subset of Φ has itself an inconsistent subset of size 6 2.

It is also known (folk theorem?) that

FΦ[WR,A,N,I,MI] = FΦ[WR,A,N,MN] = {majority rule}

We thus get our first characterisation theorem for free:

Theorem 6 Φ is safe for FΦ[WR,A,N,I,MI] (and thus also for

FΦ[WR,A,N,MN]) iff it satisfies the MP.

K. Nehring and C. Puppe. The Structure of Strategy-proof Social Choice. Journal

of Economic Theory, 135(1):269–305, 2007.
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Agenda Properties

Call a set of formulas nontrivially inconsistent if it is inconsistent but

does not contain an inconsistent formula. An agenda Φ satisfies

• the median property (MP), if every nontrivially inconsistent subset

of Φ has itself an inconsistent subset of size 2;

• the simplified MP (SMP), if every nontrivially inconsistent subset

of Φ has itself an inconsistent subset {ϕ,ψ} with |= ϕ↔ ¬ψ;

• the syntactic SMP (SSMP), if every nontrivially inconsistent

subset of Φ has itself an inconsistent subset {ϕ,¬ϕ}.

SSMP ⇒ SMP ⇒ MP
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Characterisation Theorems

We have looked for characterisation theorems for sets of axioms that

are a little weaker than those defining the majority rule.

Theorem 7 Φ is safe for FΦ[WR,A,N,I] iff it satisfies the SMP.

Theorem 8 Φ is safe for FΦ[WR,A,N] iff it satisfies the SMP and

does not contain a contradictory formula.

Theorem 9 Φ is safe for FΦ[WR,A,I] iff it satisfies the SSMP.
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Complexity Results

For a given agenda, how hard is it to check safety?

Theorem 10 Checking the safety of the agenda is Πp
2-complete for

any of the classes of aggregation procedures considered.

Approach:

• the typical Πp
2-complete problem is Sat for QBFs of the form

∀x1 · · ·xr∃y1 · · · ys.ϕ(x1, . . . , xr, y1, . . . , ys)

• reduce that problem to the problem of checking the SSMP, to

establish Πp
2-hardness of the latter (similarly for SMP and MP)

• prove that checking the SSMP, SMP, MP are all in Πp
2

• apply the characterisation theorems
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Last Slide

• We have seen several results in judgment aggregation:

– Manipulation tends to be harder than winner determination (good)

– SoA requires simplistic agendas and is hard to check (bad)

• This is an example for work in Computational Social Choice, combining

ideas from economics (particularly social choice theory) and CS.

– SCT: preference aggregation, voting, fair division, matching, . . .

– CS: algorithms, complexity, logic, knowledge representation, . . .

For more information, see the COMSOC website:

http://www.illc.uva.nl/COMSOC/
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