Complexity of Judgment Aggregation

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

joint work with Umberto Grandi and Daniele Porello

The Paradox of Judgment Aggregation

Story: three judges have to decide whether the defendant is guilty

	p	$p \to q$	q
Judge 1:	Yes	Yes	Yes
Judge 2:	No	Yes	No
Judge 3:	Yes	No	No
Majority:	Yes	Yes	No

<u>Paradox</u>: each *individual* judgment set is *consistent*, but the *collective* judgment arrived at using the *majority rule* is not

L.A. Kornhauser and L.G. Sager. The One and the Many: Adjudication in Collegial Courts. *California Law Review*, 81(1):1–59, 1993.

C. List and C. Puppe. Judgment Aggregation: A Survey. *Handbook of Rational and Social Choice*. Oxford University Press, 2009.

Talk Outline

- Introduction to Judgment Aggregation
- Decision Problems in JA and their Complexity:
 - Winner Determination
 - Strategic Manipulation
 - Safety of the Agenda
- More on Computational Social Choice

Formal Framework

An agenda Φ is a finite nonempty set of propositional formulas (w/o double negation) closed under complementation: $\varphi \in \Phi \Rightarrow \sim \varphi \in \Phi$.

A judgment set J on an agenda Φ is a subset of Φ . We call J:

- complete if $\varphi \in J$ or $\sim \varphi \in J$ for all $\varphi \in \Phi$
- complement-free if $\varphi \notin J$ or $\sim \varphi \notin J$ for all $\varphi \in \Phi$
- consistent if there exists an assignment satisfying all $\varphi \in J$

Let $\mathcal{J}(\Phi)$ be the set of all complete and consistent subsets of Φ .

Now a finite set of *individuals* $\mathcal{N} = \{1, \ldots, n\}$ express judgments on the formulas in Φ , giving rise to a *profile* $\mathbf{J} = (J_1, \ldots, J_n)$.

An aggregation procedure for agenda Φ and a set of n individuals is a function mapping a profile of complete and consistent individual judgment sets to a single collective judgment set: $F : \mathcal{J}(\Phi)^n \to 2^{\Phi}$.

Basic Aggregation Procedures

Under the *majority rule*, we accept φ if the number of individuals accepting φ is greater than the number of individuals accepting $\sim \varphi$.

	p	$p \rightarrow q$	q
Judge 1:	Yes	Yes	Yes
Judge 2:	No	Yes	No
Judge 3:	Yes	No	No

Under the *conclusion-based procedure*, we ignore the information on "premises" and decide on "conclusions" by majority.

Under the *premise-based procedure*, we decide on "premises" by majority and use logical inference for the "conclusions".

Problems with these approaches:

- What's a principled way of deciding what's a "premise" and what's a "conclusion"? (though this might be clear for concrete applications)
- Paradox will only go away for *some* examples.
- CBP: decisions cannot be explained in terms of premises anymore.

Premise-Based Procedure

Suppose we can divide the agenda into premises and conclusions:

$$\Phi = \Phi_p \uplus \Phi_c$$

The premise-based procedure PBP for Φ_p and Φ_c is this function:

$$\begin{split} \operatorname{PBP}(\mathbf{J}) &= \Delta \cup \{ \varphi \in \Phi_c \mid \Delta \models \varphi \}, \\ & \text{where } \Delta = \{ \varphi \in \Phi_p \mid \#\{i \mid \varphi \in J_i\} > \frac{n}{2} \} \end{split}$$

If we assume (as we shall) that

- the set of premises is the set of literals in the agenda,
- $\bullet\,$ the agenda Φ is is closed under propositional letters, and
- the number n of individuals is odd,

then $PBP(\mathbf{J})$ will always be *consistent* and *complete*.

Winner Determination

The winner determination problem for a judgment aggregation procedure F is defined as follows:

WINDET(F) Instance: Agenda Φ , profile $\mathbf{J} \in \mathcal{J}(\Phi)^n$, formula $\varphi \in \Phi$. Question: Is φ an element of $F(\mathbf{J})$?

This is easy under the (simplified) premise-based procedure:

Proposition 1 WINDET(PBP) is in P.

<u>Proof:</u> some counting + model checking. \checkmark

Example: Strategic Manipulation

Suppose we use the (simplified) premise-based procedure:

	p	q	$p \lor q$
Agent 1:	No	No	No
Agent 2:	Yes	No	Yes
Agent 3:	No	Yes	Yes

If agent 3 only cares about the conclusion, then she has an incentive to *manipulate* and pretend she accepts p.

Strategic Manipulation

Let us fix a notion of *preference* over outcomes:

- The Hamming distance H(J, J') between judgment sets J and J' is the number of positive agenda formulas on which they differ.
- We say that individual *i* prefers J to J' if $H(J_i, J) < H(J_i, J')$.

Now we can define the manipulability problem:

MANIPULABILITY(F) Instance: Agenda Φ , $J_i \in \mathcal{J}(\Phi)$, partial profile $\mathbf{J}_{-i} \in \mathcal{J}(\Phi)^{n-1}$. Question: Is there a $J'_i \in \mathcal{J}(\Phi)$ s.t. i prefers $F(J'_i, \mathbf{J}_{-i})$ to $F(J_i, \mathbf{J}_{-i})$?

Good news:

Theorem 2 MANIPULABILITY(PBP) is NP-complete.

Proof by reduction from SAT .

Distance-Based Procedure

A procedure that is more widely applicable than the premise-based procedure and that is intuitively appealing is *distance-based merging*:

DBP(**J**) =
$$\underset{J \in \mathcal{J}(\Phi)}{\operatorname{arg\,min}} \sum_{i=1}^{n} H(J, J_i)$$

<u>Remark:</u> The DBP may return a set of tied winners.

Regarding complexity, we have:

Theorem 3 Winner determination for the DBP is NP-complete.

Proof of hardness by reduction from a result in computational social choice (KEMENYSCORE). Membership via an integer program.

Conjecture 4 Manipulability for the DBP is Σ_2^p -complete.

Membership is clear. Hardness is open.

The Axiomatic Method

What makes for a "good" aggregation procedure? The standard approach in social choice theory is to formulate "*axioms*", e.g.:

Unanimity (U): If $\varphi \in J_i$ for all *i*, then $\varphi \in F(\mathbf{J})$.

Anonymity (A): For any profile **J** and any permutation $\sigma : \mathcal{N} \to \mathcal{N}$ we have $F(J_1, \ldots, J_n) = F(J_{\sigma(1)}, \ldots, J_{\sigma(n)})$.

Neutrality (N): For any φ , ψ in the agenda Φ and profile $\mathbf{J} \in \mathcal{J}(\Phi)$, if for all i we have $\varphi \in J_i \Leftrightarrow \psi \in J_i$, then $\varphi \in F(\mathbf{J}) \Leftrightarrow \psi \in F(\mathbf{J})$.

Independence (I): For any φ in the agenda Φ and profiles **J** and **J'** in $\mathcal{J}(\Phi)$, if $\varphi \in J_i \Leftrightarrow \varphi \in J'_i$ for all i, then $\varphi \in F(\mathbf{J}) \Leftrightarrow \varphi \in F(\mathbf{J}')$.

Impossibility Theorem

We have seen that the majority rule is not consistent.

Is there a reasonable procedure that is?

Theorem 5 (List and Pettit, 2002) If the agenda contains at least p, q and $p \land q$, then no aggregation procedure producing consistent and complete judgment sets satisfies all of (A), (N) and (I).

C. List and P. Pettit. Aggregating Sets of Judgments: An Impossibility Result. *Economics and Philosophy*, 18(1):89–110, 2002.

More Axioms

Two monotonicity axioms, one for independent rules (inter-profile) and one for neutral rules (intra-profile):

- **I-Monotonicity** (M^{I}): For any φ in the agenda Φ and profiles $\mathbf{J} = (J_1, \dots, J_i, \dots, J_n)$ and $\mathbf{J}' = (J_1, \dots, J'_i, \dots, J_n)$ in $\mathcal{J}(\Phi)$, if $\varphi \notin J_i$ and $\varphi \in J'_i$, then $\varphi \in F(\mathbf{J}) \Rightarrow \varphi \in F(\mathbf{J}')$.
- **N-Monotonicity** (M^N): For any φ, ψ in the agenda Φ and profile **J** in $\mathcal{J}(\Phi)$, if $\varphi \in J_i \Rightarrow \psi \in J_i$ for all i and $\varphi \notin J_k$ and $\psi \in J_k$ for some k, then $\varphi \in F(\mathbf{J}) \Rightarrow \psi \in F(\mathbf{J})$.

Ideally, we'd like consistent outcomes, but instead we just demand:

Weak Rationality (WR): $F(\mathbf{J})$ is complete and complement-free for all profiles \mathbf{J} [and $F(\mathbf{J})$ includes no contradictions for some \mathbf{J}]

<u>Remark</u>: the last condition ("non-nullity") is a minor technicality (always satisfied if Φ includes no tautologies) — please ignore

Safety of the Agenda (SoA)

Given an agenda Φ and a list of axioms AX, let $\mathcal{F}_{\Phi}[\mathsf{AX}]$ be the set of procedures $F: \mathcal{J}(\Phi)^n \to 2^{\Phi}$ that satisfy all axioms in AX.

We call an agenda Φ is *safe* wrt. a class of procedures $\mathcal{F}_{\Phi}[\mathsf{AX}]$, if $F(\mathbf{J})$ is consistent for every $F \in \mathcal{F}_{\Phi}[\mathsf{AX}]$ and every $\mathbf{J} \in \mathcal{J}(\Phi)$.

<u>Goal</u>: We want to be able to check the safety of a given agenda for a given class of procedures (characterised in terms of a set of axioms). We approach this by proving *characterisation results*:

all $F \in \mathcal{F}_{\Phi}[\mathsf{AX}]$ are consistent $\Leftrightarrow \Phi$ has such-and-such property This is similar to *possibility results* proven in the JA literature: some $F \in \mathcal{F}_{\Phi}[\mathsf{AX}]$ is consistent $\Leftrightarrow \Phi$ has such-and-such property

Majority Rule

It is known (Nehring and Puppe, 2007) that the *majority rule* is consistent on agendas that satisfy the *median property*.

 Φ satisfies the median property (MP), if every inconsistent subset of Φ has itself an inconsistent subset of size ≤ 2 .

It is also known (folk theorem?) that

 $\mathcal{F}_{\Phi}[WR,A,N,I,M^{I}] = \mathcal{F}_{\Phi}[WR,A,N,M^{N}] = \{\text{majority rule}\}$

We thus get our first characterisation theorem for free:

Theorem 6 Φ is safe for $\mathcal{F}_{\Phi}[WR,A,N,I,M^{I}]$ (and thus also for $\mathcal{F}_{\Phi}[WR,A,N,M^{N}]$) iff it satisfies the MP.

K. Nehring and C. Puppe. The Structure of Strategy-proof Social Choice. *Journal of Economic Theory*, 135(1):269–305, 2007.

Agenda Properties

Call a set of formulas *nontrivially inconsistent* if it is inconsistent but does not contain an inconsistent formula. An agenda Φ satisfies

- the *median property* (MP), if every nontrivially inconsistent subset of Φ has itself an inconsistent subset of size 2;
- the simplified MP (SMP), if every nontrivially inconsistent subset of Φ has itself an inconsistent subset $\{\varphi, \psi\}$ with $\models \varphi \leftrightarrow \neg \psi$;
- the syntactic SMP (SSMP), if every nontrivially inconsistent subset of Φ has itself an inconsistent subset {φ, ¬φ}.

$$\mathsf{SSMP} \Rightarrow \mathsf{SMP} \Rightarrow \mathsf{MP}$$

Characterisation Theorems

We have looked for characterisation theorems for sets of axioms that are a little weaker than those defining the majority rule.

Theorem 7 Φ is safe for $\mathcal{F}_{\Phi}[WR,A,N,I]$ iff it satisfies the SMP.

Theorem 8 Φ is safe for $\mathcal{F}_{\Phi}[WR,A,N]$ iff it satisfies the SMP and does not contain a contradictory formula.

Theorem 9 Φ is safe for $\mathcal{F}_{\Phi}[WR,A,I]$ iff it satisfies the SSMP.

Complexity Results

For a given agenda, how hard is it to check safety?

Theorem 10 Checking the safety of the agenda is Π_2^p -complete for any of the classes of aggregation procedures considered.

Approach:

• the typical Π_2^p -complete problem is SAT for QBFs of the form

$$\forall x_1 \cdots x_r \exists y_1 \cdots y_s \varphi(x_1, \dots, x_r, y_1, \dots, y_s)$$

- reduce that problem to the problem of checking the SSMP, to establish Π_2^p -hardness of the latter (similarly for SMP and MP)
- prove that checking the SSMP, SMP, MP are all in Π^p_2
- apply the characterisation theorems

Last Slide

- We have have seen several results in *judgment aggregation*:
 - Manipulation tends to be harder than winner determination (good)
 - SoA requires simplistic agendas and is hard to check (bad)
- This is an example for work in *Computational Social Choice*, combining ideas from economics (particularly social choice theory) and CS.
 - SCT: preference aggregation, voting, fair division, matching, ...
 - CS: algorithms, complexity, logic, knowledge representation, ...

For more information, see the COMSOC website:

http://www.illc.uva.nl/COMSOC/

U. Endriss, U. Grandi, and D. Porello. Complexity of Winner Determination and Strategic Manipulation in Judgment Aggregation. Proc. COMSOC-2010.

U. Endriss, U. Grandi, and D. Porello. Complexity of Judgment Aggregation: Safety of the Agenda. Proc. AAMAS-2010.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to Computational Social Choice. Proc. SOFSEM-2007.