# Elections with Many Candidates: From Politics to Artificial Intelligence (and back) 

Ulle Endriss<br>Institute for Logic, Language and Computation University of Amsterdam

## Talk Outline

- Elections: from Politics to Technological Applications
- The Problem of Voting in Combinatorial Domains
- The Bigger Picture: Computational Social Choice


## Elections

Many different scenarios, common structure:

- Big Politics: electing the president of a country
- Small Politics: electing the treasurer of your local bowling club
- Technology: agents often need to aggregate information
- robot teams agreeing on a joint plan
- recommender systems combining ratings of past users
- search engines aggregating their results


## Voting Theory

Abstractly speaking, an election has the following components:

- a (finite) set of voters $\mathcal{N}$
- a (finite) set of candidates $\mathcal{X}$
- a ballot for each voter, usually a strict ranking of the candidates, i.e., a linear order on $\mathcal{X}$ (might be identical to her true preferences)
- a voting procedure $F$ mapping ballot profiles to (sets of) winners

$$
F: \mathcal{L}(\mathcal{X})^{\mathcal{N}} \rightarrow 2^{\mathcal{X}} \backslash\{\emptyset\}
$$

Well-known voting procedures include Plurality, Borda, Copeland, ...

This simple model has been studied extensively in social choice theory, a highly successful branch of economic theory (witness Nobel Prizes to Kenneth Arrow and Amartya Sen).

## Voting in Combinatorial Domains

Many social choice problems have a combinatorial structure:

- Elect a committee of $k$ members from amongst $n$ candidates.
- During a referendum (in Switzerland, California, places like that), voters may be asked to vote on $n$ different propositions.

Seemingly small problems generate huge numbers of alternatives:

- Number of 3-member committees from 10 candidates: $\binom{10}{3}=120$ (i.e. $120!\approx 6.7 \times 10^{198}$ possible rankings)
- Number of distinct ways of voting in a referendum with 20 yes/no questions: $2^{20}=1048576$


## The Challenge

The challenge is to balance choice-theoretic and computational concerns.

- Example 1 (paradox): we have money for at most two projects

|  | fund museum? | fund school? | fund metro? |
| :--- | :---: | :---: | :---: |
| Voter 1: | Yes | Yes | No |
| Voter 2: | Yes | No | Yes |
| Voter 3: | No | Yes | Yes |

## ?

- Example 2 (combinatorial explosion): For a referendum with $n$ propositions we get $2^{n}$ meta-candidates. What do you do?
- Use Plurality? Chances are no option gets more than 1 vote.
- Use Borda? Very expensive to rank so many meta-candidates.

We need: good languages to model the problem + good algorithms!

## Computational Social Choice

Research can be broadly classified along two dimensions The kind of social choice problem studied, e.g.:

- electing a winner given individual preferences over candidates
- aggregating individual judgements into a collective verdict
- fairly dividing a cake given individual tastes

The kind of computational technique employed, e.g.:

- algorithm design to implement complex mechanisms
- complexity theory to understand limitations
- logical modelling to fully formalise intuitions
- knowledge representation techniques to compactly model problems
- deployment in a multiagent system


## The COMSOC Research Community

History of the field:

- a couple of (by now) seminal papers around 1990
- increased research activity since early 2000s
- name "COMSOC" + recognised community since 2006

Activities:

- Biannual workshop since 2006 (~100 participants in 2010)
- Dagstuhl Seminars in 2007, 2010, 2012 (planned)
- Spring School 2010 with ~50 participants (COST Action IC0602)

Visibility:

- highly represented at top AI conferences (IJCAI, AAAI, AAMAS)
- very successful young researchers (dissertation awards, etc.)
- expository articles in AI Magazine, Communications of the ACM
- (some) well-funded research groups (national funding)


## Last Slide

From politics to technology, and back again:

- Voting isn't just about politics: many technological applications
- Techniques from AI can help, with both technology and politics

An exciting new research area:

- Computational social choice $=$ study of social choice problems with the tools of computer science + integration of social choice concepts into computing


## http://www.illc.uva.nl/COMSOC/

- Example for work in COMSOC: voting in combinatorial domains (internal structure of the domain gives rise to many candidates)
Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Combinatorial Domains: From AI to Social Choice. AI Magazine, 29(4):37-46, 2008.

