An Extended Temporal Logic Based on Ordered Trees

Ulle Endriss

Department of Computing, Imperial College London Email: ue@doc.ic.ac.uk

Linear Temporal Logic

Syntax and semantics. Time is modelled as a sequence of states. We have the usual propositional connectives (like negation \neg and conjunction \land) and a number of temporal operators:

 $\begin{array}{l} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

Applications. Linear temporal logic has been very successful in the area of systems specification and verification.

But: If we want to *refine* a system (that is, add detail about a subsystem) we may have to revise the entire specification.

 \blacktriangleright We would like to be able to "zoom in" ...

Motivation: The Problem

- Propositional linear temporal logic has been found to be useful for the specification of reactive systems (Pnueli 1977, ...), <u>but</u> refining a system specification is problematic (we may have to refine the entire model).
- For many applications, time intervals seem more appropriate than time points, <u>but</u> modal interval logics (such as Halpern and Shoham's logic) tend to be undecidable.

Motivation: The Idea

- We propose to "add a zoom to linear temporal logic" and obtain a new logic that may be used to represent complex systems evolving over time in a modular fashion (which also facilitates the refinement of specifications).
- Primitive objects in the semantics of this extended temporal logic are "halfway" between *points* and *intervals:* they can be decomposed into smaller units (like time intervals) but they cannot overlap (like time points).
- From an abstract point of view, our logic is best characterised as a *modal logic of ordered trees* (which we call OTL).

Talk Overview

- Ordered Tree Logics definition of syntax and semantics
- OTL as a Temporal Representation Language time intervals, past and future, properties and events
- Decidability brief outline of the proof
- Conclusion

recap and discussion of future work

Ordered Tree Logics

Models are based on *ordered trees*. Besides the usual propositional connectives we have a number of modal operators, for example:

$\Theta \varphi$	" φ is true at the next righthand sibling (if any)"
$\Diamond \varphi$	" φ is true at some righthand sibling"
$\oplus \varphi$	" φ is true at the parent (if any)"
$\Phi \varphi$	" φ is true at some ancestor"
$\Diamond \varphi$	" φ is true at some child"
$\hat{\nabla}^+ \varphi$	" φ is true at some descendant"

We also have modalities $(\bigcirc$ and \diamondsuit) to refer to *lefthand siblings*. All corresponding *box-operators* are definable, for example:

 $\Box \varphi = \neg \diamond \neg \varphi \quad \text{``} \varphi \text{ is true at all righthand siblings''}$

Formal Definition of Trees

A tree is a pair $\mathcal{T} = (T, R)$, where T is a set and R is an irreflexive binary relation over T satisfying the following conditions:

(1) For every $t \in T$ there exists at most one $t' \in T$ with $(t', t) \in R$.

(2) There exists a unique $r \in T$ such that $\{t \in T \mid (r,t) \in R^*\} = T$.

The elements of T are called *nodes*. The element r from (2) is called the *root* of \mathcal{T} . R is called the *child* relation and also gives rise to the following: the *parent* relation R^{-1} , the *descendant* relation R^+ , the *ancestor* relation $(R^{-1})^+$, and the *sibling* relation $R^{-1} \circ R$.

We write $[t]_{R^{-1} \circ R} = \{t' \in T \mid (t, t') \in R^{-1} \circ R\}$ for the set of siblings of a node $t \in T$ (including t itself, unless t is the root).

Formal Definition of Ordered Trees

An ordered tree is a triple $\mathcal{T} = (T, R, S)$ where (T, R) is a tree, $S \subseteq R^{-1} \circ R$, and $([t]_{R^{-1} \circ R}, S)$ is a strict linear order for every $t \in T$. If $(t_1, t_2) \in S$ then t_1 is called a *left sibling* of t_2 , and t_2 is called a *right sibling* of t_1 . If furthermore $(t_1, t_2) \notin S \circ S$ then t_1 is called the *left neighbour* of t_2 , and t_2 is called the *right neighbour* of t_1 .

Formal Semantics of OTL

Models. A model is a pair $\mathcal{M} = (\mathcal{T}, V)$, where \mathcal{T} is an ordered tree and V is a valuation, i.e. a mapping from propositional letters to subsets of the set of nodes in \mathcal{T} .

Truth. We inductively define the notion of truth of a formula in a model $\mathcal{M} = (\mathcal{T}, V)$ with $\mathcal{T} = (T, R, S)$ at a node $t \in T$ as follows:

(1)
$$\mathcal{M}, t \models P$$
 iff $t \in V(P)$ for propositional letters P ;
(2) $\mathcal{M}, t \models \neg \varphi$ iff $\mathcal{M}, t \not\models \varphi$;
(3) $\mathcal{M}, t \models \varphi \land \psi$ iff $\mathcal{M}, t \models \varphi$ and $\mathcal{M}, t \models \psi$;
(4) $\mathcal{M}, t \models \bigcirc \varphi$ iff t is not the root and $\mathcal{M}, t' \models \varphi$ for the parent t' of t ;
(5) $\mathcal{M}, t \models \oslash \varphi$ iff t has got an ancestor t' with $\mathcal{M}, t' \models \varphi$;
(6) $\mathcal{M}, t \models \oslash \varphi$ iff t has got a left neighbour t' with $\mathcal{M}, t' \models \varphi$;
(7) $\mathcal{M}, t \models \oslash \varphi$ iff t has got a left sibling t' with $\mathcal{M}, t' \models \varphi$;
(8) $\mathcal{M}, t \models \ominus \varphi$ iff t has got a right neighbour t' with $\mathcal{M}, t' \models \varphi$;
(9) $\mathcal{M}, t \models \oslash \varphi$ iff t has got a right sibling t' with $\mathcal{M}, t' \models \varphi$;
(10) $\mathcal{M}, t \models \oslash \varphi$ iff t has got a child t' with $\mathcal{M}, t' \models \varphi$;

Satisfiability and Validity

Satisfiability. A formula φ is *satisfiable* iff there are a model \mathcal{M} and a node t in that model such that $\mathcal{M}, t \models \varphi$.

Global truth. A formula φ is *globally true* in a model \mathcal{M} iff it is true at every node in \mathcal{M} . We write $\mathcal{M} \models \varphi$.

Tree validity. A formula φ is called *valid in an ordered tree* \mathcal{T} iff it is true at every node in every model based on \mathcal{T} . We write $\mathcal{T} \models \varphi$.

Validity. A formula φ is called *valid* iff it is true at every node in every model. We write $\models \varphi$.

Examples

• A node t is the root of the tree iff ROOT is true at t:

ROOT = $\Box \perp$

• Similar formulas identify leftmost and rightmost siblings:

 $LEFTMOST = \Box \bot \qquad RIGHTMOST = \Box \bot$

• An ordered tree \mathcal{T} is a binary tree iff BINARY is valid in \mathcal{T} (or, equivalently, iff BINARY is globally true in a model based on \mathcal{T}):

BINARY = $(LEFTMOST \leftrightarrow RIGHTMOST) \rightarrow ROOT$

• An ordered tree \mathcal{T} is "discretely branching" iff the formula DISCRETE is valid in \mathcal{T} :

DISCRETE =
$$\Box(\Box A \to A) \to (\Diamond \Box A \to \Box A)$$

This is the standard axiom schema familiar from temporal logic to characterise discrete flows of time.

OTL as a Temporal Representation Language

Temporal interpretation. We can interpret OTL as a (restricted) temporal interval logic as follows:

- nodes in a tree represent time intervals;
- \bullet descendants represent subintervals; and
- the order declared over siblings represents an earlier-later ordering over time intervals.

Questions. But this raises some questions:

- What is the meaning of, say, the ⇒-operator? Is it a proper future modality?
- Are models where, say, φ is true at some node t but not at all of t's children meaningful under this temporal interpretation?

If you are allowed to move *up* before and *down* after moving to the right, you can reach *all* the nodes to the right.

Let $\diamondsuit^* \varphi = \varphi \lor \diamondsuit \varphi$ and $\diamondsuit^* \varphi = \varphi \lor \diamondsuit^+ \varphi$. We can now define a *global future modality* as follows:

$$\Phi \varphi = \Phi^* \Diamond \widehat{\nabla}^* \varphi$$

Ontological Considerations

Consider the following two basic propositions:

- (1) The sun is shining.
- (2) I move the pen from the table onto the OHP.

Propositions like (1) are sometimes called *properties*; propositions like (2) are sometimes called *events* (Allen, 1984).

Properties

Properties like *"The sun is shining."* are *homogeneous* propositions (Shoham, 1987), which we can capture in OTL as follows:

DOWNWARD-HEREDITARY
$$(\varphi) = \varphi \rightarrow \Box^+ \varphi$$

UPWARD-HEREDITARY $(\varphi) = \Diamond \top \rightarrow (\Box^+ \varphi \rightarrow \varphi)$
HOMOGENEOUS $(\varphi) =$ DOWNWARD-HEREDITARY $(\varphi) \land$
UPWARD-HEREDITARY (φ)

Then φ is a homogeneous proposition (with respect to a given model \mathcal{M}) iff HOMOGENEOUS(φ) is globally true in \mathcal{M} .

Events

Events like *"I move the pen from the table onto the OHP."* may be characterised as propositions that cannot be true at two intervals one of which contains the other.

Shoham (1987) calls such propositions gestalt:

$$\operatorname{GESTALT}(\varphi) = \varphi \to (\Box \neg \varphi \land \Box^+ \neg \varphi)$$

Decidability

Theorem: *OTL is decidable.*

Proof by reduction to Rabin's Theorem (1969) on the decidability of the monadic second-order theory of n successor functions:

- Embed infinite densely ordered tree into S4S tree:
 - encode rationals using two successor functions
 - alternate the two pairs of successor functions to encode tree
- Define OTL accessibility relations; characterise initial subtrees; translate formulas \Rightarrow decidability for countable ordered trees.
- Countable Model Lemma: Show that restriction to countable trees does not matter, by constructing a model based on a countable ordered tree from an arbitrary model.

$$x.1 \le y \ \lor \ y.0 \le x \ \lor \ (\exists z)[z.0 \le x \land z.1 \le y]$$

Conclusion

- We have introduced a simple yet expressive modal logic for talking about ordered trees.
- Original motivation: linear temporal logic + zoom
- Compromise between point- and interval-based temporal logics:
 - can model subintervals, but not overlapping intervals
 - decidable (unlike many interval logics)
- Also decidability-wise OTL appears to be an interesting borderline case: 2-dimensional modal logics with interacting modalities are often undecidable.

Future Work

- Show decidability of OTL by a direct argument:
 - basic idea would be to use techniques inspired by work on upper complexity bounds of PLTL by Sistla and Clarke to prove a small model theorem
 - various details to be worked out
 - more difficult for extended OTL (with *until*-style operators)
- Devise a Tableaux-based decision procedure
- Applications to Agent Communication Languages:
 - use OTL to represent (nested) communication protocols
 - possibly use model checking to verify protocol conformance

Further Information

For a brief introduction to OTL see:

 U. Endriss and D. Gabbay. Halfway between Points and Intervals: A Temporal Logic Based on Ordered Trees. In Proceedings of the ESSLLI Workshop on Interval Temporal Logics and Duration Calculi, Vienna, August 2003. Available soon at http://www.doc.ic.ac.uk/~ue/pubs/.

For the full story consult:

• U. Endriss. *Modal Logics of Ordered Trees.* PhD thesis, King's College London, Dept. of Computer Science, January 2003. Available at http://www.doc.ic.ac.uk/~ue/phd/.