Axiomatic Justification of Election Outcomes

Ulle Endriss

Institute for Logic, Language and Computation University of Amsterdam

[joint work with Arthur Boixel]

COMSOC Video Seminar — 3 July 2020

Example Definition Scenarios Algorithm

<u>Exercise:</u> Can you think of a voting rule that makes win?

<u>Exercise:</u> Can you think of a voting rule that makes *win*?

$\square \succ \land \lor \bigcirc$

What's a good outcome? *Why?*

[■]*Clear winner!*(FAITHFULNESS)

(FAITHFULNESS)
 {■, ▲, ●}
Note the symmetry!
 (CANCELLATION)

 $\left\{ \blacksquare \right\}$

Clear winner!

The Model

Suppose agents in N^* express preferences over alternatives in X. Consider voting rules F defined on profiles for subelectorates:

$$F: \mathcal{L}(X)^{N \subseteq N^*} \to 2^X \setminus \{\emptyset\}$$

Attractive rules might satisfy axioms such as Neutrality, Pareto, ...

The *interpretation* of an axiom A is just a set of voting rules:

$$\mathbb{I}(A) \subseteq \mathcal{L}(X)^{N \subseteq N^*} \to 2^X \setminus \{\emptyset\}$$

<u>Example</u>: $\mathbb{I}(\text{NEU}) = \{ \text{BORDA}, \text{COPELAND}, \dots, F_{4711}, \dots \}$

An *instance* A' of axiom A (for a specific profile, etc.) is what you think it is, and itself an axiom, with $\mathbb{I}(A) = \bigcap_{A' \in \text{Inst}(A)} \mathbb{I}(A')$.

<u>Example</u>: Inst(PAR) = { "don't elect c in $(abc^{[2]}, bca^{[5]})!$ ", ... }

Proposal for a Definition

How can you justify an election outcome $X^* \subseteq X$ for a profile \succ_{N^*} using axioms from a (large!) corpus A?

Justification = Normative Basis + Explanation

A pair $\langle \mathcal{A}^{\text{NB}}, \mathcal{A}^{\text{EX}} \rangle$ of sets of axioms is a justification if it satisfies:

- Adequacy: $\mathcal{A}^{\text{NB}} \subseteq \mathbb{A}$
- Relevance: \mathcal{A}^{EX} is a set of instances of the axioms in \mathcal{A}^{NB}
- Explanatoriness: $F(\succ_{N^*}) = X^*$ for all rules $F \in \bigcap_{A' \in \mathcal{A}^{EX}} \mathbb{I}(A')$ and this is not the case for any proper subset of \mathcal{A}^{EX}
- Nontriviality: $\bigcap_{A \in \mathcal{A}^{NB}} \mathbb{I}(A) \neq \emptyset$ (some rule satisfies all axioms)

Scenario 1: Confidence in Election Results

Scenario 2: Deliberation Support

Scenario 3: Justification Generation as Voting

<u>Exercise</u>: What is the name of this well-known voting rule? $F_{\{CON\}\gg\{NEU, REI, FAI, CAN\}}$

Computing Justifications

We can encode axiom instances in propositional logic with variables $p_{x \in F(\succ_N)}$. Can also use other languages for constraint satisfaction. Encode all instances of axioms in A together with goal constraint expressing $F(\succ_{N^*}) \neq X^*$. Check whether this set is satisfiable:

• If yes, no justification exists.

- If *no*, a justification $\langle \mathcal{A}^{NB}, \mathcal{A}^{EX} \rangle$ exists if these steps succeed:
 - Find an MUS (*minimal unsatisfiable subset*) that includes the goal constraint. Let \mathcal{A}^{EX} be MUS \ {goal constraint}.
 - Let \mathcal{A}^{NB} be the set of axioms in \mathbb{A} with instances in \mathcal{A}^{EX} . Check that \mathcal{A}^{NB} is *satisfiable* (for nontriviality).

Highly complex! <u>But</u> all computationally intractable tasks directly map to well-studied standard problems in automated reasoning.

Possible Directions for Future Work

- *Beyond simple voting:* Can you adapt this idea to other models, such as multiwinner voting, matching, or judgment aggregation?
- *Algorithmic angle:* We are using SAT and constraint solving. Can you think of other promising algorithmic approaches?
- *Cognitive angle:* How do you present justifications to people? What makes justifications convincing?
- Broader research agenda: How can we use computers to support people in 'arguing about voting rules'?

O. Cailloux and U. Endriss. Arguing about Voting Rules. AAMAS-2016.

Last Slide

I proposed a notion of *axiomatic justification* for election outcomes:

- Definition: Justification = Normative Basis + Explanation
- \bullet Algorithm: Justification Generation = MUS Generation + SAT
- Scenarios: Confidence Building | Deliberation Support | Voting
- Opportunities: lots of potential for follow-up research ...

A. Boixel and U. Endriss. Automated Justification of Collective Decisions via Constraint Solving. AAMAS-2020.